

Nguyen Thanh Long, Tran Minh Thuyet

ON THE EXISTENCE, UNIQUENESS OF SOLUTION
OF A NONLINEAR VIBRATIONS EQUATION

1. Introduction

We consider the following initial and boundary value problem

$$(1.1) \quad u_{tt} + \gamma \Delta^2 u - B(\|\nabla u\|^2) \Delta u + g(u, u_t) = f(x, t), \quad x \in \Omega, \quad t > 0,$$

$$(1.2) \quad u = 0 \quad \text{on} \quad \partial\Omega,$$

$$(1.3) \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on} \quad \partial\Omega,$$

$$(1.4) \quad u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega,$$

where Ω is a bounded domain in R^n with a sufficiently smooth boundary $\partial\Omega$, ν is the outward unit normal vector on the boundary $\partial\Omega$, γ is a positive constant, B , g , f , u_0 , u_1 are the given functions. The precise hypotheses on these functions will be specified later. In Eq. (1.1), the function $B(\|\nabla u\|^2)$ depends on the integral

$$(1.5) \quad \|\nabla u\|^2 = \sum_{i=1}^n \int_{\Omega} \left| \frac{\partial u}{\partial x_i}(x, t) \right|^2 dx$$

and satisfy the conditions

$$(1.6) \quad B \text{ is a continuous function defined on } R_+ = [0, +\infty);$$

$$(1.7) \quad \exists \lambda_0 > 0, D_0 > 0 : \int_0^{\lambda} B(s) ds \geq -D_0 \quad \text{for all } \lambda \geq \lambda_0.$$

In [1] the two-dimensional problem ($n = 2$), (1.1), (1.2), (1.4) and

$$(1.3') \quad \sum_{i=1}^2 \frac{\partial^2 u}{\partial x_i^2} \nu_i = 0 \quad \text{on} \quad \partial\Omega,$$

was considered, where

$$(1.8) \quad \nu_i = \cos(\nu, 0x_i), \quad \Omega = (0, \pi) \times (0, \pi), \quad \gamma = \frac{\pi^2 h^2}{6}, \quad B(s) = s, \\ g(u, u_t) = \epsilon u_t, \quad \epsilon > 0 \quad \text{is a positive constant.}$$

In this case, problem (1.1), (1.2), (1.3'), (1.4) and (1.8) describes the nonlinear vibrations of a square plate with statistic load.

In [5] the following class of quasilinear hyperbolic equation was considered:

$$(1.9) \quad u_{tt} + (-1)^m B \left(\int_{\Omega} |\nabla^m u|^2 dx \right) \Delta^m u = f(x, t),$$

where B satisfy the following conditions, which are stronger than (1.6), (1.7):

$$(1.10) \quad B \in C^1(R_+), \quad B(s) \geq b_0 > 0 \quad \forall s \geq 0.$$

In [3] the authors have studied the existence and uniqueness of the following equation

$$(1.11) \quad u_{tt} + \Delta^2 u - B(\|\nabla u\|^2) \Delta u + |u_t|^{\alpha-1} u_t = f(x, t),$$

where $0 < \alpha < 1$ is a given constant.

In this paper, we use Galerkin and weak compactness method associated with a monotone operator to study the existence and uniqueness of the global solution of the problem (1.1)–(1.4) with respect to the conditions (1.6), (1.7). This result is a relative generalization of [1], [3], [4].

2. Notations

We omit the definitions of the usual function spaces which we will as follows

$$L^p = L^p(\Omega), \quad H^m = H^m(\Omega), \quad H_0^m = H_0^m(\Omega).$$

Let $\langle \cdot, \cdot \rangle$ be either the scalar product in L^2 or the dual pairing of a continuous linear functional and an element of a function space. The notation $\|\cdot\|$ stands for the norm in L^2 and we denote by $\|\cdot\|_X$ the norm in the Banach space X . We call X' the dual space of X .

We denote by $L^p(0, T; X)$, $1 \leq p \leq \infty$, a Banach space of the measurable functions $f : (0, T) \rightarrow X$ such that

$$\|f\|_{L^p(0, T; X)} = \left(\int_0^T \|f(t)\|_X^p dt \right)^{1/p} < \infty \quad \text{for } 1 \leq p < \infty,$$

or

$$\|f\|_{L^\infty(0, T; X)} = \text{esssup}_{0 < t < T} \|f(t)\|_X.$$

We make the following assumptions

$$(H_1) \quad u_0 \in H_0^2, u_1 \in L^2,$$

$$(H_2) \quad f \in L^2(Q_T), Q_T = \Omega \times (0, T),$$

(H₃) the function $B : R_+ \rightarrow R$ satisfy the following conditions

(i) B is continuous,

(ii) there exist two positive constants λ_0 and D_0 such that

$$\int_0^\lambda B(s)ds \geq -D_0 \quad \text{for all } \lambda \geq \lambda_0,$$

(H₄) the function $g : R^2 \rightarrow R$ satisfy the following conditions:

(i) g is continuous,

(ii) g is nondecreasing with respect to the second variable, i.e.,

$$(g(u, v) - g(u, \tilde{v}))(v - \tilde{v}) \geq 0 \quad \forall u, v, \tilde{v} \in R,$$

(iii) there exist two positive constants λ_1 and D_1 such that

$$\int_0^\lambda g(s, 0)ds \geq -D_1 \quad \text{for all } \lambda \in R, |\lambda| \geq \lambda_1,$$

(4i) the Nemytsky operator $g : H_0^2 \times L^2 \rightarrow L^2$ takes bounded sets into bounded sets,

(5i) the Nemytsky operator $\hat{g} : H_0^2 \rightarrow L^1$ where

$$\hat{g}(\lambda) = \int_0^\lambda g(s, 0)ds,$$

takes bounded sets of H_0^2 into bounded sets of L^1 ,

(H₅) for each bounded subset M of $H_0^2 \times L^2$ there exists a constant $k_M > 0$ such that

$$\|g(u, w) - g(v, w)\| \leq k_M \|\Delta u - \Delta v\| \quad \forall (u, w), (v, w) \in M,$$

(H₆) for each $r > 0$ there exists a constant $D_r > 0$ such that

$$|B(s_1) - B(s_2)| \leq D_r |s_1 - s_2| \quad \forall s_1, s_2 \in [0, r].$$

REMARK 1. We consider the following function:

$$(i) \quad g(u, u_t) = |u|^\alpha u - u + |u_t|^{\beta-1} u_t \quad \text{or}$$

$$(ii) \quad g(u, u_t) = |u|^\alpha |u_t|^{\beta-1} u_t + |u|^\alpha u - u,$$

where α, β are the constants, with $0 < \beta < 1$, $0 \leq \alpha \leq \frac{2}{n-4}$ if $n \geq 5$ and $0 \leq \alpha < \infty$ if $n = 1, 2, 3, 4$.

Then, g satisfies assumptions (H_4) , (H_5) .

We also use the notations $u' = u_t = \frac{\partial u}{\partial t}$, $u'' = u_{tt} = \frac{\partial^2 u}{\partial t^2}$.

3. The existence and uniqueness theorem

Without loss of generality, we can suppose that $\gamma = 1$.

THEOREM 1. *Let $T > 0$ be fixed. Let (H_1) – (H_4) hold. Then the problem (1.1)–(1.4) has at least one weak solution u such that*

$$(3.1) \quad u \in L^\infty(0, T; H_0^2) \quad \text{and} \quad u_t \in L^\infty(0, T; L^2).$$

Furthermore, if g , B satisfy (H_5) , (H_6) , the solution is unique.

P r o o f. The proof consists of several steps.

STEP 1. The Galerkin approximation (introduced by Lions [2]). Let $\{w_j\}$ be a denumerable base of H_0^2 .

Put

$$u_m(t) = \sum_{j=1}^m c_{mj}(t)w_j,$$

where $c_{mj}(t)$ satisfy the system of nonlinear differential equations

$$(3.2) \quad \begin{aligned} \langle u_m''(t), w_j \rangle + \langle \Delta u_m(t), \Delta w_j \rangle + B(\|\nabla u_m(t)\|^2) \langle \nabla u_m(t), \nabla w_j \rangle \\ + \langle g(u_m(t), u'_m(t)), w_j \rangle = \langle f(t), w_j \rangle, \quad 1 \leq j \leq m, \end{aligned}$$

$$(3.3) \quad u_m(0) = u_{0m}, \quad u'_m(0) = u_{1m},$$

where

$$(3.4) \quad u_{0m} \rightarrow u_0 \quad \text{strongly in } H_0^2,$$

$$(3.5) \quad u_{1m} \rightarrow u_1 \quad \text{strongly in } L^2.$$

For fixed $T > 0$, from the assumptions of the theorem, system (3.2), (3.3) has solution $u_m(t)$ on an interval $0 \leq t \leq T_m$. The following estimates allow one to take $T_m = T$ for all m .

STEP 2. a priori estimates. Multiplying each equation in (3.2) by $c'_{mj}(t)$, summing up with respect to j and then integrating with respect to the time variable from 0 to t , we have

$$(3.6) \quad S_m(t) + 2 \int_0^t \langle g(u_m(s), u'_m(s)), u'_m(s) \rangle ds = S_m(0) + 2 \int_0^t \langle f(s), u'_m(s) \rangle ds,$$

where

$$(3.7) \quad S_m(t) = \|u'_m(t)\|^2 + \|\Delta u_m(t)\|^2 + \int_0^t \|\nabla u_m(s)\|^2 B(s) ds.$$

Using the monotonicity assumption (H₄, (ii)) with respect to the second variable, we have

$$(3.8) \quad 2 \int_0^t \langle g(u_m(s), u'_m(s)), u'_m(s) \rangle ds \geq 2 \int_0^t \langle g(u_m(s), 0), u'_m(s) \rangle ds \\ = 2 \int_{\Omega} \hat{g}(u_m(x, t)) dx - 2 \int_{\Omega} \hat{g}(u_{0m}(x)) dx.$$

Note that from (H₄, (iii)) we obtain

$$(3.9) \quad \hat{g}(\lambda) = \int_0^{\lambda} g(s, 0) ds \geq -\tilde{C}_0 \equiv - \int_{-\lambda_1}^{\lambda_1} |g(s, 0)| ds - D_1$$

for all $\lambda \in R$. Then we deduce, from (3.8), (3.9), that

$$(3.10) \quad 2 \int_0^t \langle g(u_m(s), u'_m(s)), u'_m(s) \rangle ds \geq -2\tilde{C}_0 \text{meas}\Omega - 2 \int_{\Omega} \hat{g}(u_{0m}(x)) dx.$$

Similarly, from (H₃, (ii)) we also obtain

$$(3.11) \quad \int_0^{\lambda} B(s) ds \geq -\tilde{C}_1 \equiv - \int_0^{\lambda_0} |B(s)| ds - D_0 \quad \text{for all } \lambda \geq 0.$$

It follows from (3.6), (3.10) and (3.11) that

$$(3.12) \quad \|u'_m(t)\|^2 + \|\Delta u_m(t)\|^2 \leq \tilde{C}_1 + 2\tilde{C}_0 \text{meas}\Omega + 2 \int_{\Omega} \hat{g}(u_{0m}(x)) dx \\ + S_m(0) + \int_0^t \|f(s)\|^2 ds + \int_0^t \|u'_m(s)\|^2 ds.$$

On the other hand, from (3.4), (3.5), using the assumptions (H₃, i) and (H₄, (5i)), we obtain

$$(3.13) \quad S_m(0) + 2 \int_{\Omega} \hat{g}(u_{0m}(x)) dx \leq C_2 \quad \text{for all } m.$$

Hence, from (3.12), (3.13) we obtain

$$(3.14) \quad X_m(t) \leq M_T + \int_0^t X_m(s) ds$$

where $X_m(t) = \|u'_m(t)\|^2 + \|\Delta u_m(t)\|^2$, M_T is a constant depending only on T .

By Gronwall's lemma, we obtain from (3.14) that

$$(3.15) \quad X_m(t) \leq M_T e^t \leq M_T e^T \quad \forall t \in [0, T_m].$$

Therefore we can take $T_m = T$ for all m and hence

$$(3.16) \quad \{u_m\} \text{ is bounded in } L^\infty(0, T; H_0^2),$$

$$(3.17) \quad \{u'_m\} \text{ is bounded in } L^\infty(0, T; L^2).$$

Using (3.16), (3.17) and (H₄, (4i)) we get

$$(3.18) \quad g(u_m, u'_m) \text{ is bounded in } L^\infty(0, T; L^2).$$

On the other hand, from the inequality

$$(3.19) \quad \|\nabla v\|^2 \leq C_0 \|\Delta v\|^2 \quad \forall v \in H_0^2$$

we have

$$(3.20) \quad |B(\|\nabla u_m\|^2)| \leq \max_{0 \leq s \leq C_0 M_T e^T} |B(s)|$$

hence

$$(3.21) \quad B(\|\nabla u_m\|^2) \nabla u_m \text{ is bounded in } L^\infty(0, T; (L^2)^n).$$

STEP 3. The limiting process. From (3.16), (3.17) and (3.18), we deduce that there exists a subsequence of $\{u_m\}$, still denoted by $\{u_m\}$, such that

$$(3.22) \quad u_m \rightarrow u \quad \text{in } L^\infty(0, T; H_0^2) \text{ weak *},$$

$$(3.23) \quad u'_m \rightarrow u' \quad \text{in } L^\infty(0, T; L^2) \text{ weak *},$$

$$(3.24) \quad g(u_m, u'_m) \rightarrow \chi \quad \text{in } L^\infty(0, T; L^2) \text{ weak *}.$$

By the compactness lemma of Lions ([2], p. 57), we can deduce from (3.22), (3.23) that there exists a subsequence, still denoted by $\{u_m\}$, such that

$$(3.25) \quad u_m \rightarrow u \quad \text{in } L^2(0, T; H_0^1) \text{ strongly and a.e. } (x, t) \text{ in } Q_T.$$

By the Riesz–Fischer theorem, from (3.25) we can take a subsequence, still denoted by $\{u_m\}$, such that

$$(3.26) \quad \|\nabla u_m\| \rightarrow \|\nabla u\| \quad \text{a.e. } t \text{ in } (0, T).$$

Because B is continuous

$$(3.27) \quad B(\|\nabla u_m\|^2) \rightarrow B(\|\nabla u\|^2) \quad \text{a.e. } t \text{ in } (0, T)$$

then

$$(3.28) \quad B(\|\nabla u_m\|^2) \nabla u_m \rightarrow B(\|\nabla u\|^2) \nabla u \quad \text{a.e. } (x, t) \quad \text{in } Q_T.$$

Combining (3.21) and (3.28) with Lemma 1.3 in ([2], p. 12), we have

$$(3.29) \quad B(\|\nabla u_m\|^2) \nabla u_m \rightarrow B(\|\nabla u\|^2) \nabla u \quad \text{in } L^\infty(0, T; (L^2)^n) \quad \text{weak } *.$$

Passing to the limit in (3.2) by (3.22)–(3.24) and (3.29) we have

$$(3.30) \quad \begin{aligned} \frac{d}{dt} \langle u'(t), v \rangle + \langle \Delta u(t), \Delta v \rangle + B(\|\nabla u(t)\|^2) \langle \nabla u(t), \nabla v \rangle + \langle \chi(t), v \rangle \\ = \langle f(t), v \rangle \quad \text{a.e. } t \quad \text{in } (0, T), \quad \forall v \quad \text{in } H_0^2. \end{aligned}$$

Since $u, u_m \in C^0(0, T; L^2)$, we have $u_m(0) \rightarrow u(0)$ strongly in L^2 . Thus

$$(3.31) \quad u(0) = u_0.$$

On the other hand, $\langle u'_m(t), w_j \rangle$ and $\langle u'(t), w_j \rangle$ belong to $C^0(0, T)$. Therefore, $\langle u'_m(0) - u'(0), w_j \rangle \rightarrow 0$, as $m \rightarrow \infty$. Hence

$$(3.32) \quad u'(0) = u_1.$$

Then, in order to prove the existence of weak solution of the problem (1.1)–(1.4), we only have to prove that: $\chi = g(u, u')$.

We shall now require the following lemma.

LEMMA 1. *Let u be the solution of the following problem*

$$(3.33) \quad u'' + \Delta^2 u + \chi_1 = 0, \quad x \in \Omega, \quad t \in (0, T],$$

$$(3.34) \quad u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x),$$

$$(3.35) \quad u \in L^\infty(0, T; H_0^2), \quad u' \in L^\infty(0, T; L^2).$$

Then we have

$$(3.36) \quad \begin{aligned} \frac{1}{2} \|u'(t)\|^2 + \frac{1}{2} \|\Delta u(t)\|^2 + \int_0^t \langle \chi_1(s), u'(s) \rangle ds \\ \geq \frac{1}{2} \|u_1\|^2 + \frac{1}{2} \|\Delta u_0\|^2 \quad \text{a.e. } t \in (0, T). \end{aligned}$$

Furthermore, if $u_0 = u_1 = 0$ there is equality in (3.36).

The proof of Lemma 1 can be found in [3].

We now return to the proof of existence of a solution of the problem (1.1)–(1.4).

It follows from (3.2), (3.3) that

$$\begin{aligned}
 (3.37) \quad & \int_0^t \langle g(u_m(s), u'_m(s)), u'_m(s) \rangle ds \\
 &= \frac{1}{2} \|u_{1m}\|^2 + \frac{1}{2} \|\Delta u_{0m}\|^2 + \frac{1}{2} \int_0^t \|\nabla u_{0m}\|^2 B(s) ds - \frac{1}{2} \|u'_m(t)\|^2 - \frac{1}{2} \|\Delta u_m(t)\|^2 \\
 &\quad - \frac{1}{2} \int_0^t \|\nabla u_m(t)\|^2 B(s) ds + \int_0^t \langle f(d), u'_m(s) \rangle ds.
 \end{aligned}$$

Passing to the limit as $m \rightarrow \infty$, by using (3.4), (3.5), (3.22)–(3.24), (3.26) and Lemma 1 with

$$\chi_1 = -B(\|\nabla u\|^2) \Delta u + \chi - f,$$

we obtain

$$\begin{aligned}
 (3.38) \quad & \lim_{m \rightarrow \infty} \sup \int_0^t \langle g(u_m(s), u'_m(s)), u'_m(s) \rangle ds \leq \int_0^t \langle \chi(s), u'(s) \rangle ds, \\
 & \text{a.e. } t \text{ in } (0, T).
 \end{aligned}$$

By using the same arguments as in [4] we can show that

$$\chi = g(u, u') \text{ a.e. in } Q_T.$$

STEP 3. Uniqueness of the solution. Let u and v be two solutions of the problem (1.1)–(1.4). Then $w = u - v$ satisfies the following problem

$$\begin{aligned}
 w'' + \Delta^2 w - B(\|\nabla u\|^2) \Delta w - [B(\|\nabla u\|^2) - B(\|\nabla v\|^2)] \Delta v \\
 + g(u, u') - g(v, v') = 0, \\
 w(0) = w'(0) = 0, \\
 u, v, w \in L^\infty(0, T; H_0^2), u', v', w' \in L^\infty(0, T; L^2).
 \end{aligned}$$

Using Lemma 1 with $u_0 = u_1 = 0$ we have equality

$$\begin{aligned}
 (3.39) \quad & \frac{1}{2} \|w'(t)\|^2 + \frac{1}{2} \|\Delta w(t)\|^2 = - \int_0^t \langle g(u(s), u'(s)) \\
 &\quad - g(v(s), v'(s)), w'(s) \rangle ds + \int_0^t B(\|\nabla u(s)\|^2) \langle \Delta w(s), w'(s) \rangle ds \\
 &\quad + \int_0^t [B(\|\nabla u(s)\|^2) - B(\|\nabla v(s)\|^2)] \langle \Delta v(s), w'(s) \rangle ds.
 \end{aligned}$$

Let

$$X(t) = \|w'(t)\|^2 + \|\Delta w(t)\|^2,$$

$$R = \max\{\|u'\|_{L^\infty(0,T;L^2)} + \|\Delta u\|_{L^\infty(0,T;H_0^2)}, \|v'\|_{L^\infty(0,T;L^2)} + \|\Delta v\|_{L^\infty(0,T;H_0^2)}\},$$

$$M = \{(\emptyset, q) \in H_0^2 \times L^2 : \|\Delta \emptyset\| + \|q\| \leq R\},$$

$$b_M = \max_{0 \leq s \leq C_0 R^2} |B(s)|, r = C_0 R^2,$$

where C_0 is constant as in (3.19).

Noticing that the function g is nondecreasing with respect to the second variable, we have from (3.39) that

$$(3.41) \quad X(t) \leq 2 \int_0^t \|g(u(s), v'(s)) - g(v(s), v'(s))\| \|w'(s)\| ds$$

$$+ 2 \int_0^t |B(\|\nabla u(s)\|^2)| \|\Delta w(s)\| \|w'(s)\| ds$$

$$+ 2 \int_0^t |B(\|\nabla u(s)\|^2) - B(\|\nabla v(s)\|^2)| \|\Delta v(s)\| \|w'(s)\| ds.$$

Using the assumptions (H₅) and (H₆) it follows from (3.41) that

$$(3.42) \quad X(t) \leq (k_M + b_M + 2C_0 R^2 D_r) \int_0^t X(s) ds,$$

i.e., $X = 0$ by Gronwall's lemma.

Theorem 1 is proved completely.

In the case $1 \leq n \leq 3$, using the imbedding theorem of Sobolev: $H^2 \hookrightarrow C^0(\bar{\Omega})$, it follows that g satisfies the assumption (H₄, (5i)).

Then, we have the following theorem.

THEOREM 2. *Let fix $T > 0$. Let (H₁–H₃), (H₄, (i)–(4i)) hold.*

Then, the problem (1.1)–(1.4) has at least one weak solution u satisfying (3.1).

Furthermore, if g , B satisfy (H₅), (H₆), the solution is unique.

Acknowledgement. The authors would like to thank the referee for his corrections and suggestions.

References

- [1] Zh. N. Dmitriyeva, *On stable solutions in nonlinear oscillations of rectangular plates under random loads*, Prikl. Mat. Mekh. L. 4 (1979), 189–197.
- [2] J. L. Lions, *Quelques Méthodes de Résolution des Problèmes aux Limites Non-linéaires*, Dunod–Gauthier–Villars. Paris, 1969.
- [3] H. B. Lan, L. T. Thanh, N. T. Long, N. T. Bang, T. L. Cuong, T. N. Minh, *On the nonlinear vibrations equation with a coefficient containing an integral*, Zh. Vychist. Mat. Mat. Fiz. 33 (1993), 1324–1332.
- [4] N. T. Long, A. P. N. Dinh, *On the quasilinear wave equation: $u_{tt} - \Delta u + f(u, u_t) = 0$ associated with a mixed nonhomogeneous condition*, Nonlinear Anal. 19 (1992), 613–623.
- [5] S. I. Pokhozhayev, *On a class of quasilinear hyperbolic systems*, In Research of the Moscow Mechanical Engineering Institute, No. 146 (1972), 116–132.

Nguyen Thanh Long

DEPARTMENT OF APPLIED MATHEMATICS
POLYTECHNIC UNIVERSITY OF HOCHIMINH CITY
268 Ly Thuong Kiet Str., Dist. 10
HOCHIMINH CITY, VIETNAM

Tran Minh Thuyet

DEPARTMENT OF MATHEMATICS, COLLEGE OF ECONOMICS
VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY
59 C Nguyen Dinh Chieu Str. Dist. 3
HOCHIMINH CITY, VIETNAM

Received August 19, 1998.