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ON THE EXISTENCE, UNIQUENESS OF SOLUTION
OF A NONLINEAR VIBRATIONS EQUATION

1. Introduction
We consider the following initial and boundary value problem

1.1) uy + yA%u - B(||Vu|®)Au + g(u,us) = f(z,t), €, t >0,
1.2) u=0 on &9,

1.4) u(z,0) = uo(z), ue(z,0) = u1(z), ze€Q,

where 2 is a bounded domain in R™ with a sufficiently smooth boundary
0, v is the outward unit normal vector on the boundary 9, v is a positive
constant, B, g, f, uo, u; are the given functions. The precise hypotheses on
these functions will be specified later. In Eq. (1.1), the function B(||Vu/|?)
depends on the integral

(1.5) IVal® =" §

i=10

2
dz

ou
gg(x’t)

and satisfy the conditions

(1.6) B is a continuous function defined on R4 = [0, +00);

A
(L.7) 3o >0,D9>0:{B(s)ds > Dy forall X2 M.
0
In [1] the two-dimensional problem (n = 2), (1.1), (1.2), (1.4) and

2
(1.3
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was considered, where

(1.8) v; =cos(y,0z;), Q=(0,7)x (0,7), ~=

g(u,u;) = eug, e > 0 is a positive constant.

In this case, problem (1.1), (1.2), (1.3’), (1.4) and (1.8) describes the
nonlinear vibrations of a square plate with statistic load.

In [5] the following class of quasilinear hyperbolic equation was consid-
ered:

(1.9) et + (—1)'“3( { |v'"u|2dz)Amu = f(z,t),
0

where B satisfy the following conditions, which are stronger than (1.6), (1.7):
(1.10) B e CYRy), B(s)>by>0Vs>0.

In 3] the authors have studied the existence and uniqueness of the fol-
lowing equation

(1.11) wy + A% — B(||Vul|®)Au + Jue|* Tuy = f(z,t),

where 0 < a < 1 is a given constant.

In this paper, we use Galerkin and weak compactness method associated
with a monotone operator to study the existence and uniqueness of the
global solution of the problem (1.1)-(1.4) with respect to the conditions
(1.6), (1.7). This result is a relative generalization of {1], (3], [4].

2. Notations
We omit the definitions of the usual function spaces which we will as
follows

LP =LP(Q), H™=H™(Q), HF = H(N).

Let (-,-) be either the scalar product in L? or the dual pairing of a con-
tinuous linear functional and an element of a function space. The notation
| - || stands for the norm in L? and we denote by || - ||x the norm in the
Banach space X. We call X’ the dual space of X.

We denote by LP(0,T; X), 1 < p < 0o, a Banach space of the measurable
functions f: (0,T) — X such that

T p 1/p
Ifllzso.z = (IF@OIFA) " < oo for 1<p<oo,
0
or

| fll Leo(0,7;x) = esssuppcier I1f(t)lix-
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We make the following assumptions
(H,) uo € HE,u; € L?,

(H:) f € L*(Qr), QT = 2 x (0,T),

(Hj3) the function B : Ry — R satisfy the following conditions
(i) B is continuous,
(ii) there exist two positive constants A\g and Dy such that

A
| B(s)ds > —Dg forall A2 X,
0

(H4) the function g : R2 — R satisfy the following conditions:
(i) g is continuous,
(ii) g is nondecreasing with respect to the second variable, i.e.,

(9(u,v) — g(u,9))(v—9) 20 Vu,v,VER,
(iii) there exist two positive constants A; and ‘D, such that

A
{9(5,0)ds > —D; forall A€ R,|A| 2 A,
0

(4i) the Nemytsky operator g : HZ x L2 — L? takes bounded sets into
bounded sets,
(5i) the Nemytsky operator g : H2 — L! where

A

30 = { g(s,0)ds,
0

takes bounded sets of HZ into bounded sets of L?,

(Hs) for each bounded subset M of HZ x L? there exists a constant kp; > 0
such that

lg(u, w) — g(v, w)|| < kmllAu - Avf| V(u,w),(v,w) € M,
(Hg) for each 7 > 0 there exists a constant D, > 0 such that
|B(s1) — B(s2)| < D,|sy — s2|Vs1, 52 € [0,7].
REMARK 1. We consider the following function:
(i) g(u, ue) = |u|®u — u + |u)*'uy or
(ii) 9(u, ue) = [ul®fuel® up + |ul®u - u,

where a, (3 are the constants, with 0 < 8 < 1,0< a < n—fz if n > 5 and
0<a<wifn=1,23,4.
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Then, g satisfies assumptions (Hy), (Hs).

. 2
We also use the notations v’ = u; = %%, u' = uy = %—}.

3. The existence and uniqueness theorem
Without loss of generality, we can suppose that v = 1.

THEOREM 1. Let T > 0 be fized. Let (H,)-(H4) hold. Then the problem
(1.1)—(1.4) has at least one weak solution u such that

(3.1) u € L®(0,T; H3) and wu, € L®(0,T;L?).
Furthermore, if g, B satisfy (Hs), (Hg), the solution is unique.
Proof. The proof consists of several steps.

STEP 1. The Galerkin approximation (introduced by Lions (2]). Let {w;}
be a denumerable base of HZ.
Put

tm(t) = D ems(t)w;,
j=1
where c,,,;(t) satisfy the system of nonlinear differential equations
(3:2)  (upm(t), w;) + (Aum(t), Aw;) + B(|Vum ()12} (Vum(t), Vw;)
+(9(um(®), (1)), w)) = (f(1),w;), 1<j<m,
(3.3) um(0) =vom, UM (0)=1uim,
where
(3.4) wugm — up strongly in HZ,
(3.5) uym — u; strongly in L2

For fixed T > 0, from the assumptions of the theorem, system (3.2),
(3.3) has solution u,,(t) on an interval 0 < t < T,,. The following estimates
allow one to take T,, = T for all m.

STEP 2. a priori estimates. Multiplying each equation in (3.2) by c7,;(t),

summing up with respect to j and then integrating with respect to the time
variable from 0 to t, we have

(36) Sm(t) +2{(9(um(s), urm(s)), uin(5))ds = Sm(0) + 2{(f(5), uim(5))ds,
0 0
where
IVum ()2
(37 Sm®) =L@+ lAun@I?+ | B(s)ds.

0
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Using the monotonicity assumption (Hy, (ii)) with respect to the second
iable, we have

t

[3.8)  2{(9(um(9), urn(5)), umm(s))ds 2 2{(g(um(s),0), ur(s))ds
0

0
= 2| §(um(z,t))dz — 2 | G(uom(z))dz.
2] Q

Note that from (Hy, (iii)) we obtain

p Ar
(3.9) 90 = {g(s,00ds > ~Co= - | Ig(s,0)lds - D
0 -1

for all A € R. Then we deduce, from (3.8), (3.9), that

(3.10)  2{(g(um(s), uin(s)), uim(s))ds > —2ComeasQ — 2 | G(uom(z))dz.
0 Q

Similarly, from (Hg3, (ii)) we also obtain

A Ao
(3.11) [ B(s)ds > —~Cy = - | |B(s)lds — Dy forall A>0.
0 0

It follows from (3.6), (3.10) and (3.11) that
(3.12) Jlul. (D)) + |Aum(t)]|? < C; + 2Comeass) + 2 S 9(uom(z))dz

Q
+ Sm(0) + £ (s)I2ds + { llur (s) 1 ds.
0 0

On the other hand, from (3.4), (3.5), using the assumptions (Hs, i) and
(Hg,(51)), we obtain

(3.13) Sm(0) + 2 S 9(uom(z))dz < C; for all m.
Q
Hence, from (3.12), (3.13) we obtain
(3.14) Xm(t) < Mr + § Xm(s)ds
0
whe;e Xm(t) = |Jub,(®)I1? + |Aum(t)]|?, Mr is a constant depending only
onT.
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By Gronwall’s lemma, we obtain from (3.14) that
(3.15) Xm(t) < Mpe! < MreT Vte|0,T,].
Therefore we can take T}, = T for all m and hence

(3.16) {um} in bounded in L*(0,T; HZ),
(3.17) {u,} in bounded in L*(0,T;L?).

Using (3.16), (3.17) and (Hy, (4i)) we get

(3.18) g(m,ul,) is bounded in L°°(0,T; L?).
On the other hand, from the inequality

(3.19) |Vo|? < Col|Av||®> Vv € HE

we have

(3:20) BVl < _ max IB(s)

hence

(3.21) B(|Vem||?)Vttm  is bounded in  L*°(0, T; (L2)™).

STEP 3. The limiting process. From (3.16), (3.17) and (3.18), we deduce
that there exists a subsequence of {u,,}, still denoted by {u,}, such that

(3.22) Up — U in L*°(0,T; H?) weak *,
(3.23) ul, — in L*®(0,T;L* weak x,
(3.24) 9(um,ul)) = x in L®(0,T;L?) weak *.

By the compactness lemma of Lions ([2], p. 57), we can deduce from
(3.22), (3.23) that there exists a subsequence, still denoted by {u,,}, such
that

(3.25) um —wu in L%(0,T;H}) strongly and ae. (z,t) in Qr.

By the Riesz-Fischer theorem, from (3.25) we can take a subsequence,
still denoted by {u,}, such that

(3.26) IVum,| — [|[Vul| ae t in (0,7T).
Because B is continuous

(3.27) B(|[Vun|l?) = B(|Vu|?) ae. t in (0,T)
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bhen

[3.28) B(|Vum|*)Vum — B(||Vu|>)Vu ae. (z,t) in Qr.
Combining (3.21) and (3.28) with Lemma 1.3 in (|2|, p. 12), we have

(3.29) B(||[Vum]|®)Vum — B(|Vu|>)Vu in L*®(0,T;(L?)") weak *.

Passing to the limit in (3.2) by (3.22)-(3.24) and (3.29) we have
d

7 (¢ (), 0) + (Bu(t), Av) + B([Vu(t)[|*)(Vu(t), Vo) + (x(t),v)

= (f(t),v) ae t in (0,T), Vv in H3.

(3.30)

Since u, u,, € C°(0,T; L?), we have u,,(0) — u(0) strongly in L2. Thus
(3.31) u(0) = uo.

On the other hand, (u/,(t),w;) and (u'(t), w;) belong to C°(0, T'). There-

fore, (u;,(0) — v'(0),w;) — 0, as m — oo. Hence

(3.32) u'(0) = ;.

Then, in order to prove the existence of weak solution of the problem (1.1)-
(1.4), we only have to prove that: x = g(u,u’).
We shall now require the following lemma.

LEMMA 1. Let u be the solution of the following problem

(3.33) v+ A%m+x, =0, z€Q, te(0,T],
(3.34) u(z,0) = uo(z),u'(z,0) = u) (z),
(3.35) u€e L™(0,T;H?), u' €L>™(0,T;L?).

Then we have
(336) SO + I + [xa(s), v/ ())ds
0

1 1
2 Sllul? + SlAuel? ae te(0,T).

Furthermore, if ug = u; = 0 there is equality in (3.36).

The proof of Lemma 1 can be found in {3].
We now return to the proof of existence of a solution of the problem

(1.1)-(1.4).
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It follows from (3.2), (3.3) that
t

(337)  [(g(um(s), uln(s)), uim(s))ds

0
IVuomll?
= l 2 l 2 l _ l 1 2 _ l 2
= 3lluaml® + 5| Auom||® + 3 (S) B(s)ds ~ sllum (DI = 5[l Aum(t)l
1 I1Vum(e))? t
-5 | B(s)ds+ [(£(d),urn(s))ds.
0 0

Passing to the limit as m — oo, by using (3.4), (3.5), (3.22)-(3.24), (3.26)
and Lemma 1 with

x1 = ~B(|Vul?)Au + x - f,

we obtain
t

(3.38) lim supS(g(um(s),u:n(s)),u:n(s))ds <

m—oo
0

(x(s),'(s))ds,

© Gy o

ae. t in (0,7).
By using the same arguments as in [4] we can show that
x =g(u,v') ae.in Qr.

STEP 3. Uniqueness of the solution. Let u and v be two solutions of the
problem (1.1)-(1.4). Then w = u — v satisfies the following problem

w” + A%w - B(||Vu|?)Aw — [B(|[Vu]?) - B(|Vv|*)]Av
+g(u,u) - g(v,v) = 0,
w(0) = w'(0) =0,
u,v,w € L(0,T; H?),v',v',w' € L=(0,T; L?).
Using Lemma 1 with up = u; = 0 we have equality

(339) I @I + IAw@ = - [(gus), v(s))
0

~ 9(v(s),v'(s)), w'(s))ds + | B(IVu(s)|*(Aw(s), w'(s))ds
0

+{[BUIVu(s)I?) = B(IVo(s)IP)){Av(s), w'(s))ds.
0
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Let
X(t) = |lw' ()| + lAw(t)||?,
R = max{||v/||Le(0,r;L3) + 1A%l Lo (0,715 1Vl Lo (0,T;£2)
+”Av”L°°(0.T;Hg)}a
M = {(0,q) € H} x L? : ||A0|| + ||l < R},

by = max__|B(s)|,r = CoR?,
0<s<CoR?

where Cj is constant as in (3.19).
Noticing that the function g is nondecreasing with respect to the second
variable, we have from (3.39) that

t

(3.41) X(¢) < 2§ llg(u(s), v'(s)) — g(v(s), ' ())llllw'(s)llds

0
+2{1B(IVu(s) )| Aw(s)lllw'(s) Ids
0
+2{1B(IVu(s)I?) = B(IVu(s)IP) | Av(s) 1w’ (s) lids.
0

Using the assumptions (Hs) and (Hg) it follows from (3.41) that

t
(3.42) X(t) < (knm + bar + 2CoR?D;) | X (s)ds,
0
i.e., X = 0 by Gronwall’s lemma.
Theorem 1 is proved completely.

IE the case 1 < n < 3, using the imbedding theorem of Sobolev: H 2,
C°(9), it follows that g satisfies the assumption (Hg, (5i)).

Then, we have the following theorem.

THEOREM 2. Let fir T > 0. Let (H,-Hj3), (Hy, (i)-(4i)) hold.

Then, the problem (1.1)—(1.4) has at least one weak solution u satisfying
(3.1).

Furthermore, if g, B satisfy (Hs), (Hg), the solution is unique.
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