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ON T H E EXISTENCE, U N I Q U E N E S S OF SOLUTION 
OF A N O N L I N E A R VIBRATIONS EQUATION 

1. Introduction 
We consider the following initial and boundary value problem 

(1.1) utt + -yA2u - B(\\Vu\\2)Au + g{u,ut) = f(x,t), i g f i , t > 0, 
(1.2) u = 0 on 0Ω, 

du 
(1.3) — = 0 on dü, 

σν 
(1.4) u(x, 0) = uq(x), ut(x, 0) = κ ι ( ι ) , χ 6 Ω, 

where Ω is a bounded domain in Rn with a sufficiently smooth boundary 
dü, ν is the outward unit normal vector on the boundary dil, 7 is a positive 
constant, B, g, / , uq, u\ are the given functions. The precise hypotheses on 
these functions will be specified later. In Eq. (1.1), the function 5( | |Vu| | 2) 
depends on the integral 

In [1] the two-dimensional problem (n = 2), (1.1), (1-2), (1.4) and 

and satisfy the conditions 

(1.6) Β is a continuous function defined on R+ = [0, +00); 

λ 
(1.7) for all λ ^ λο-

ο 

(1.3') 
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was considered, where 

7Γ 2h 2 

(1.8) Vi = cos(i/, Oxi), Ω = (0,π) χ (0, π), 7 = B(s) = β, 
ο 

g(u, ut) = eut, t > 0 is a positive constant. 

In this case, problem (1.1), (1.2), (1.3'), (1.4) and (1.8) describes the 
nonlinear vibrations of a square plate with statistic load. 

In [5] the following class of quasilinear hyperbolic equation was consid-
ered: 

(1.9) utt + ( - l ) m ß ( J |Vmu| 2dx)Amu = f(x,t), 
Ω 

where Β satisfy the following conditions, which are stronger than (1.6), (1.7): 

(1.10) Β e CHÄH-), B{S) >B0> OVs > 0. 

In [3] the authors have studied the existence and uniqueness of the fol-
lowing equation 

(1.11) utt + A 2 U - £(||VU||2)AU + |u t I 0 " 1 «« = f(x, t), 

where 0 < α < 1 is a given constant. 
In this paper, we use Galerkin and weak compactness method associated 

with a monotone operator to study the existence and uniqueness of the 
global solution of the problem (1.1)-(1.4) with respect to the conditions 
(1.6), (1.7). This result is a relative generalization of [1], [3], [4]. 

2. Notations 
We omit the definitions of the usual function spaces which we will as 

follows 

Lp = LP(Q), Hm = Hm{Q), Ηζ1 = 

Let (·, ·) be either the scalar product in L2 or the dual pairing of a con-
tinuous linear functional and an element of a function space. The notation 
|| · || stands for the norm in L2 and we denote by || · ||χ the norm in the 
Banach space X. We call X' the dual space of X. 

We denote by Lp(0, Τ; X) , 1 < ρ < oc, a Banach space of the measurable 
functions / : (0,T) —> X such that 

II/IUP(O,T;X) = (S l l / ( i ) l l *dt ) P <<x> for 1 < ρ < oo, 
0 

or 

ll/IU-(o,T;X) = esssup 0 < t < r ||/(t)||x· 
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We make the following assumptions 

Ή ι ) U0 G H%,U! G L2, 

^ 2 ) / G L2(QT),QT = Ω χ (0, Τ ) , 

j(H3) the function Β : R+ —» R satisfy the following conditions 
(i) Β is continuous, 
(ii) there exist two positive constants Ao and Do such that 

A 
j B(s)ds > -D0 for all λ > λ 0 , 
ο 

(H4) the function g : R2 —> R satisfy the following conditions: 
(i) g is continuous, 
(ii) g is nondecreasing with respect to the second variable, i.e., 

{g{u, v) — g(u,v))(v — v) > 0 V u , ν , ΰ ξ R, 

(iii) there exist two positive constants λι and 'D1 such that 

λ 
\g(s,0)ds>-Di for all λ € Λ , | λ | > λ ι , 
ο 

(4i) the Nemytsky operator g : HQ χ L 2 —» L2 takes bounded sets into 
bounded sets, 
(5i) the Nemytsky operator g : HQ —• L1 where 

λ 
g( A) = \g{s,0)ds, 

0 

takes bounded sets of HQ into bounded sets of L1, 

(H5) for each bounded subset Μ of HQ χ L2 there exists a constant k^ > 0 
such that 

||g(u,u;) - iy)|| < ^mIIAu - Δυ|| V(u,io), (v,w) Ε Μ, 

(H6) for each τ > 0 there exists a constant DT > 0 such that 

I B ( s i ) - B(S2)I < Dr\si - s2|Vsi,s2 G [0,r], 

REMARK 1. We consider the following function: 

(i) g(u, ut) = |u|Qu — u + \ut\0~lut or 

(ii) g(u, u t ) = M a | u t l 0 ' 1 ^ + |u|au - u, 

where α, β are the constants, with 0 < / 3 < 1 , 0 < α < if η > 5 and 
0 < α < oo if η = 1 , 2 , 3 , 4 . 
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Then, g satisfies assumptions (H4), (H5). 

We also use the notations u' = ut = ^, u" = utt = ^ f · 

3. The existence and uniqueness theorem 
Without loss of generality, we can suppose that 7 = 1 . 

THEOREM 1. Let Τ > 0 be fixed. Let (HI)-(H 4 ) hold. Then the problem 
(1.1)—(1.4) has at least one weak solution u such that 

( 3 . 1 ) u 6 L°°(0, T ; Hq) and ut E L°°{0, T ; L2). 

Furthermore, if g, Β satisfy (H5), (Hß), the solution is unique. 

P r o o f . The proof consists of several steps. 

STEP 1. The Galerkin approximation (introduced by Lions [2]). Let {wj} 
be a denumerable base of H 2 . 

Put 
m 

um{t) = ]Pcmj(i)u;j, 
j = 1 

where cmj(t) satisfy the system of nonlinear differential equations 

(3.2) « , ( « ) , Wj) + (Aum(t), Awj) + ß ( | | V u m ( i ) | | 2 ) ( V u m ( i ) , V ^ ) 

+ (g(um(t), u'm(t)), Wj) = (f(t),Wj), 1 < j < m, 

(3.3) Um(0) = U0m, tim(°) = «Im, 

where 

(3.4) u0m u0 strongly in Hq , 

(3.5) Uim Ui strongly in L2. 

For fixed Τ > 0, from the assumptions of the theorem, system (3.2), 
(3.3) has solution um(t) on an interval 0 < t < T m . The following estimates 
allow one to take Tm = Τ for all m. 

STEP 2. a priori estimates. Multiplying each equation in (3.2) by c'mj(t), 
summing up with respect to j and then integrating with respect to the time 
variable from 0 to t, we have 

t t 
(3.6) Sm(t) + 2 \ ( g ( u m ( s ) , u ' m ( s ) ) , u ' m ( s ) ) d s = S M (0 ) + 2 \ ( f ( s ) , u'm(s))ds, 

0 0 
where 

livum(t)||2 

(3.7) sm(t) = | | * 4 ( 0 I | 2 + | |AUM(<) | |2 + S B(s)ds. 
0 
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Using the monotonicity assumption (H4, (ii)) with respect to the second 
variable, we have 

t t 
3.8) 2S( 5 (u m ( S ) ,u^( S ) ) ,u^( S ) ) r f S > 2S( 5 (u m ( S ) , 0 ) ,u^( S ) )d S 

0 0 

= 2 J g(um(x,t))dx - 2 J g(u0m{x))dx. 
η Ω 

Note that from (H4, (Iii)) we obtain 

λ λ! 
(3.9) g(X) = \g(s,0)ds>-Co = - \ \g(s, 0)\ds - D1 

0 -Αχ 

for all λ e R. Then we deduce, from (3.8), (3.9), that 
t 

(3.10) 2\(g{urn(s),u'm(s)),u'm(s))ds > -2C 0measfi - 2 \ g(u0m(x))dx. 

0 Ω 

Similarly, from (H3, (ii)) we also obtain 

λ λ0 

(3.11) \ B(s)ds > - C i = - J \B(s)\ds - D0 for all λ > 0. 
0 0 

It follows from (3.6), (3.10) and (3.11) that 

(3.12) ||t4(*)H2 + l|Au m ( i )H 2 < Ci + 2C0measQ + 2 J g{u0m(x))dx 
Ω 

t t 

+ Sm(0) + \Wf(s)\\2ds + \\\u'm(s)\\2ds. 
0 0 

On the other hand, from (3.4), (3.5), using the assumptions (H3, i) and 
(H4,(5i)), we obtain 

(3.13) S m (0) + 2 j g(u0m(x))dx < C2 for all m. 
Ω 

Hence, from (3.12), (3.13) we obtain 
t 

(3.14) Xm(t)<MT + \Xm(s)ds 
0 

where Xm{t) = ||u ,̂(f)||2 + ||Aum(<)||2, Mt is a constant depending only 
on T. 
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By Gronwall's lemma, we obtain from (3.14) that 

(3.15) Xm{t) < MTe1 < MTeT Vi € [0,Tm], 

Therefore we can take Tm = Τ for all m and hence 

(3.16) { u m } in bounded in L°°(0,T; 

(3.17) « J in bounded in L°°(0, Γ; L2 ) . 

Using (3.16), (3.17) and (H4, (4i)) we get 

(3.18) g(um,u'm) is bounded in L°°{0,T;L2). 

On the other hand, from the inequality 

(3.19) ||Vi>||2 < Co||Au||2 Vi; € Η 2 

we have 

(3.20) |ß(||VUm||2)| < max |5(S)| 
0<s<CoMre 

hence 

(3.21) £(||Vum||2)Vum is bounded in L°°(0, Γ; (L2 )n ) . 

STEP 3. The limiting process. Prom (3.16), (3.17) and (3.18), we deduce 
that there exists a subsequence of {u m } , still denoted by {u m } , such that 

(3.22) um^u in L°°(0,T;Hjj) weak*, 

(3.23) u'm^u' in L°°(0,T;L2) weak*, 

(3.24) g(um,u'm)χ in L°°(0,T-,L2) weak*. 

By the compactness lemma of Lions ([2], p. 57), we can deduce from 
(3.22), (3.23) that there exists a subsequence, still denoted by {u m } , such 
that 

(3.25) in L2(0,T,HQ1) strongly and a.e. (x,t) in QT. 

By the Riesz-Fischer theorem, from (3.25) we can take a subsequence, 
still denoted by {u m } , such that 

(3.26) l|Vum||||Vu|| a.e. t in (0,T). 

Because Β is continuous 

(3.27) £(||Vum||2) - ß(l|Vu||2) a.e. t in (0,T) 
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hen 

3 . 2 8 ) - B ( | | V u m | | 2 ) V u m —• 5 ( | | V U | | 2 ) V U a . e . ( x , t ) i n QT. 

Combining ( 3 . 2 1 ) and ( 3 . 2 8 ) with Lemma 1 .3 in ( | 2 | , p. 12) , we have 

(3.29) ß( | |Vu m | | 2 )Vu m —> ß( | |Vu| |2)Vu in L°°(0, Γ; (L2)") weak*. 

Passing to the limit in (3.2) by (3.22)-(3.24) and (3.29) we have 

( 3 . 3 0 ) jt(u'(t),v) + (Au(t),Av) + ß ( | | V u ( t ) | | 2 ) ( V u ( i ) , V « ) + (X(t),v) 

= (f(t),v) a.e. t in (0,T), Vu in 

Since u, um e C°(0,T; L2), we have um(0) u(0) strongly in L2. Thus 

( 3 . 3 1 ) u(0) = UQ. 

On the other hand, (u'm(t), w}) and (u'{t), w3) belong to C°(0, Γ). There-
fore, (u^(0) - u'(0),u>j) —» 0, as m —» oo. Hence 

(3.32) u'(0) = u\. 

Then, in order to prove the existence of weak solution of the problem (1.1)-
(1.4), we only have to prove that: χ = g(u,u'). 

We shall now require the following lemma. 

LEMMA 1. Let u be the solution of the following problem. 

(3.33) u" + Δ 2 η + X l = 0, χ € Ω, i e (0, Τ], 
(3.34) u(x, 0) = u0(x), u'(z, 0) = ui(x), 
(3.35) u G £°°(0, Τ; HQ), υ! € L°°(0, Γ; L2). 

Then we have 

(3.36) i | |u '( i) | |2 + ^||Au(<)||2 + i(xi(S),u'(S))d5 

> ^ I M 2 + ^ l | A u o | | 2 a.e. i e ( 0 , T ) . 

Furthermore, ifuο = «χ = 0 there is equality in (3.36). 

The proof of Lemma 1 can be found in [3]. 
We now return to the proof of existence of a solution of the problem 

( 1 . 1 H 1 . 4 ) . 
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It follows from (3.2), (3.3) that 
t 

(3.37) S ( f f ( n m ( S ) , u ^ ( S ) ) , ^ ( S ) ) d S 

ο 

1 1 ι l | V u o m l 1 3 1 1 
= ^\Wim\\2 + 2 l l A u ° ~ H 2 + 2 S B { s ) d s ~ 2 l | u - ( < ) 1 1 2 " 2 l | A U m ( i ) l 1 2 

ο 

- l|Vum(t)||2 t 
- - S B(s)ds + \(f(d),u'm(s))ds. 

0 0 

Passing to the limit as m - * oo, by using (3.4), (3.5), (3.22)-(3.24), (3.26) 
and Lemma 1 with 

Xl = -B(\\Vu\\2)Au + X - f , 

we obtain 
t t 

(3.38) lim s u p \ ( g ( u m ( s ) , u'm(*)h u'm(s))ds < \ ( X ( s ) , u'(s))ds, 
m—» oo J J 

0 0 

a.e. t in (0 ,T). 

By using the same arguments as in [4] we can show that 

X = ö(u ,u ' ) a.e. in QT. 
STEP 3. Uniqueness of the solution. Let u and υ be two solutions of the 
problem (1.1)—(1.4). Then w = u — ν satisfies the following problem 

w" + A2W - B(||VU||2)AU; - [£(| |Vu|| 2) - Β( | |νυ | | 2 ) ]Δυ 

+ g(u,u') - g(v, υ') = 0, 

w(0) = w'(0) = 0, 

u,v,w G L ° ° (0 , : r ; J i 2 ) , u W e L ° ° ( 0 , T ; L2). 

Using Lemma 1 with uq = u\ = 0 we have equality 

(3.39) J | | W ' ( i ) | | 2 + ^| |AU ; ( i ) | | 2 = - | ( 5 K s ) , n ' ( S ) ) 
L L ο 

t 
- g(v{s),v'(s)),w'{s))ds + \ B(||Vu(s)\\2(&w(s), w'(s))ds 

0 
t 

+ S[B(| |Vu( S) | | 2) - B(\\Vv(s)\\ 2)}(Av(s),w'(s))ds. 
ο 
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Let 

R = maxfllu'llL-o^rjLa) + ||Δμ||ΛΟΟ(0ιΤ;Η»); \\V'\\l°°(O,T-,L*) 

~(0,Γ;//*)}> 

M = {(V>,q)€H2xL2:\m\ + \\q\\<R}, 

6m = max |.B(s)|,r = CoR2, 
ο <3<C0R3  

where Co is constant as in (3.19). 
Noticing that the function g is nondecreasing with respect to the second 

variable, we have from (3.39) that 

t 
(3.41) X(t) < 2 J | | g ( u ( s ) , v ' ( s ) ) - g(v(s),v'(s))\\\\w'(s)\\ds 

ο 
t 

+ 2 J |.B(||Vu(s)||2)|||Au;(s)||||u/(s)||ds 
ο 
t 

+ 2 ( |ß(||VU(S)||2) - -B(||Vv(s)||2)|||At;(s)||||u/(s)||ds. 
ο 

Using the assumptions (H5) and (Ηβ) it follows from (3.41) that 

t 
(3.42) X(t) < (kM + bM + 2 C 0 R 2 D t ) J X{s)ds, 

0 

i.e., X = 0 by Gronwall's lemma. 
Theorem 1 is proved completely. 
In the case 1 < η < 3, using the imbedding theorem of Sobolev: H 2 <—» 

(7°(Ω), it follows that g satisfies the assumption (H4, (5i)). 
Then, we have the following theorem. 

THEOREM 2. Let fix Τ > 0. Let (H1 - H 3 ) , (H4, (i)-(4i)) hold. 
Then, the problem (1.1)—(1.4) has at least one weak solution u satisfying 

(3.1). 
Furthermore, if g, Β satisfy (H5), (Ηβ), the solution is unique. 
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