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RESOLUTION OF A COMPLETE ABSTRACT 
SECOND ORDER DIFFERENTIAL EQUATION 

OF ELLIPTIC TYPE 

Abstract. In this work we give some new results on the complete abstract second 
order differential equation of elliptic type in non homogeneous case. The existence, the 
uniqueness and the maximal regularity of the strict solution are proved under some natural 
assumptions which imply the ellipticity of the differential equation. 

1. Introduction 
In this paper, we study the following second order abstract differential 

equation 

where ψ, ψ and f(t) belong to a complex Banach space E, and A, Β are two 
closed linear operators with domains D(A), D{B). We are interested in the 
existence, uniqueness and maximal regularity of the strict solution it when 
/ is regular ( for instance / is Holder continuous function ). We recall that 
u e C([0,1]; E) is a strict solution of (1) - (2) if and only if 

(2) 
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(Hz) 
[(Α-B2- XI)~l(B - μ/)-1 - (Β - μΙ)-ι(Α - Β2 - XI)-1 = Ο 
Γ ν μ e R, VA ^ Ο, 

ξα: > ο/ν λ ^ ο 
. i) l l ß ^ - ß ^ A / J - M U ^ ^ ^ A l + ^Ä), 

^ ) η) ρ ^ - ^ - λ / ) - 1 ! ^ ) ^ , 
iii) Ρ ( Χ - Β 2 - λ / ) - Μ | £ ( Ε ) ^ κ . 

Note that (ffχ) implies D(B) = Ε. But the domain D(A - Β2) may 
be not dense. On the other hand, it is not difficult to see that assumptions 
(Hi), (H2), (H3) permit us to apply the Da Prato- Grisvard[l] sum theory 
and deduce that, necessarily, 

(A - A/)-1 G L(E) and ||(Λ - A/)_1||i(B) ^ K/( 1 + A), for all λ ^ 0. 

(See the proof of Theorem 1, the end of statement i)). 
Equation (1) can be illustrated, for instance, by the following simple 

differential problem 

tt(0,x) = φ(χ), u(l,x) = ψ(χ), χ € R, 

where Σ = ]0,1[ χ R and 
(4) a - b2 > 0. 
Then we can choose in Ε = LP(R), 1 < ρ < 00, the operators A, Β defined 
by 

Γ D(B) = W1'P(R), (Bu) (x) = bu'(x), Vu 6 D(B) 
\ D(A) = PV2'P(R), (Au) (χ) = au" (χ), Vu€ D(A). 

So, our objective is to have an unified study for the problems of type (l)-(2) 
in general case. 

Several authors have studied equation (1) when it is regarded as an 
abstract Cauchy problem, that is under the following initial data u(0) = φ, 
u'(0) = V· See, for instance, Favini[4], Neubrander[10], Liang and Xiao[7]. 
The techniques used in these papers are based on the parabolicity of (1), that 
is on the Cauchy's data. In our study, hypotheses (H2) and (i/4) express 
the ellipticity of (1) and generalize the one used in Krein [5] in the case 
Β = 0. In example (3) these two assumptions are equivalent to (4). So it is 
difficult to reduce equations (l)-(2) to some first order system. When Β = 0, 
Labbas [6] has studied problem (l)-(2) and has given necessary and sufficient 
conditions on φ, ψ, /(0) and /(1) for having a unique strict solution when 
/ is Holder continuous function. In this work we generalize these results 
since all the hypotheses considered here, coincide with those used in [6] in 
the case Β = 0. Note that assumptions (Hi), (H2), (#3) allow us to apply 
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the sum theory of linear operators as in Da Prato-Grisvard [1] and we have 
ϋΑ(θ\ +oo) = Ό{α_Β2)(Θ·, +oo) Π ΏΒ*{Θ\ +00) (see Grisvard [3]). 

In section 2, we build the natural representation of the eventual solution 
of the problem (l)-(2) by using the operational calculus and the Dunford's 
integral. 

In section 3, we prove an essential lemma, which allow us to justify and 
to study the optimal smoothness of the previous representation; we then 
give necessary and sufficient conditions on φ, ψ, /(Ο) and /(1) for having a 
strict solution when / is Holder continuous function. 

Finally, in section 4, we give some concrete examples in different spaces, 
to which our abstract results can be applied. 

2. Construction of the solution 
If A and Β axe two scalars such that Β2 — A = — λ is strictly positive, 

then the solution of (1) is given by 

_ s m h ^ Ä ( l - t ) e - , B y + _ J G ( t , , ) / ( l ) 

sinh ν —A sinh ν—A jj 

where 

<Vzj ( t , e )= < 

. . . sinh \ / -A( l — i) sinh v/—As 

sinh >ΛΑ(1 - s) sinh y^At 
G ^ S ) = v/^-Asinhy/—X ' ' ° * L 

Now, it is well known that (H2) implies the existence of 6q € ]0, π/2[ and 
εο > 0 such that the resolvent set of A — B2 contains the following sector of 
the complex plane 

S(6o,eo) = {z€ C/|arg(z)| ^ ί 0 }υΒ(0 , ε 0 ) , 
where 5(0, εο) is the open ball of radius εο· If 7 denotes the sectorial bound-
ary curve of S(6q, eo) oriented positively, then the natural representation of 
the solution of (l)-(2), in the abstract case, is given by Dunford's integral 

(5) u(t) = ^ J g ^ ( t ) ( L - \I)~1tpd\ 
7 

+ 5 " t ) { L
 ~

 X I ) Φ ά χ 

7 

~ h 5 i s ) e ~ { t " ) B ( < L - A / ) _ 1 / ( s ) ds d\, 
70 
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where 

{ L = A-B2, D(L) = D(A) Π D{B2), 
/ x s i n h V ^ Ä ( l - t ) /Λ % 

s i n h ^ Ä 
Here ν^-λ is the analytic determination defined by Re\f-\ > 0. From the 
easy relation 

- e - ^ d - O ' / l - e - 2 y / - M i - t ) \ 

we deduce that there exists two constants Co and KQ such that 

(6) ! ^ K ° e ~ e o , X , 1 / ' t ν λ € 7 ' V ^ ] 0 , 1 ] , 

l l ö ^ l - O N ^ o e - ^ 1 ^ 1 - ' ) VA € 7, Vi G [0,1[, 

2 
where CQ = cos(7r/2 - δο/2) and KQ = _2EO^_. 

On the other hand, for any / G C ([0,1]; Ε), we can see that 
ι 

(7) \GVrj(t,s)f(s)ds 
^ l A l c o s W ? ) I l / I l c ( g ) ' V A € 7 · 

According to (Hi), (Hi) and estimates (6), (7) all the integrals in (5) 
converge absolutely for every t € ]0,1[. 

3. Smoothness of the solution 
Consider, for ψ and ψ in E, the following two integrals 

e~tB
 r 

U(t,-Β, Σ)φ=—\ <ντλ(ί)(£ - λ / ) " V dX t G ]0,1], 
7 

e ( 1 _ t )ß . U( 1 - t, Β, L)V> = J ön / tä(1 - t ) ( L - λ / ) - V <*λ i G [0,1[. 
7 

Then we have the essential lemma 

Lemma 1. Under the assumptions (Ηi) and (Hi) 
i) f/iere extsfs α positive constant Κ = Κ(εο,δο) such that 

f IIU(t, -Β, LME ^ κ im i^ , V v. G E, V t G]0, 1], 
\ \\U(1 - i, Β, ^ Ä· M i s , V V € Ε, V t G [0,1[, 

ii) C/(„ - 5 , L)y> g C([0,1]; E) ·<=> ψ G £>(L), 
iii) U{ 1 - ., B, L)xjj G C([0,1]; i?) <ί=Φ· -ψ G L>(L). 



Second order differential equation 

> r ο o f. ) For ί > 0 we can write 

U { t , - B , L ) < p = e ^ r J 9 v ^ ( t ) ( L - X I ) - ^ d X 
2ni 

+ J 9 v r j ( t ) ( L - X I ) - ^ d X 

7i 

= / + + / _ , 

where 

(8) 7+ = e r, \z\ > i /<2}; 7 i = { ^ e 7 ; k K i / i 2 } · 

Then w( have 

Ί λ Γ 
\\Ι+\\Ε*ζΚ0( \ Γ Γ Τ — ) l M I ® 

•I/O 

^2K0 5 άσ\\<ρ\\ε < Κ\\φ\\Ε. 

ι σ 

The seond integral can be written as 

e-tB 

2πϊ 
7 l 

e~tB 

7l 

e - t B 

2 7ΓΙ 
71 

J (L — XI)~xipdX 

where 

Then 

2ττί 
C l / « 3 

= Ι'- + Γ1, 

Cl/t7 = { z / |argz| < and |z| = 1/t2} . 

I I ' - J ^ Ι ^ Φ Ι • IMIe < 
£0 ' ' 
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1  + ί ο e i e άθ 

5 U L " ψ-iy:i(ph¥ * KMe-
— ίο 

Similarly we obtain 

\\U(1 - t, B, L)nE ^ κ M\e . V V e £ , V ί G [0,1[. 

ii) Fix ε > 0 and let φ 6 D(L). Then there exists y € D(L) such that 

(9) l k - ϊ / Ι Κ ε -

Using the identity 

(τ Λ n - i T J _ y 
~ y - — λ λ · 

we have 

U(t,-B,L)y =  1 Ly d\, 
ι 

and this gives 

(10) j Ä r f l A M I L y l U ^ K\\Ly\\E V i e [0,1]. 
eo ' ' 

Now, from the equality 

U(t, -Β, 1)ψ-φ = U(t, -B, L)<p - U(t, -Β, L)y + U(t, -B, L)y - y + y - φ, 

and the estimates (9), (10) we deduce that 

U(t, -B, L)tp - ψ 0. 

The continuity in t > 0 is easily verified. 
Conversely, that U{., -B, L)<p6 C([0,1]; E). Then \imt^0+U(t,-B,L)ip 

exists and is necessarily equal to φ\ however 

9 ^ ( t ) e - t B ( L - X I ) - ^ e D ( L ) , 

which implies that U(t,-B, L)tp € D(L). 
For statement iii) it is enough to substitute 1 — t for t. 

Let us consider, for θ 6 ]0,1[, the well known real interpolation space 
between D(L) and Ε characterized by 

Dl{9\ +oo ) = {φ e Ε/supr e IIL(L - τΙ)~ ιψIL < oo}. 
r>0 

(See Grisvard [2]). 

LEMMA 2. Under assumptions (Ηχ), (H2) and (H3), and for θ € ]0, l / 2 [ we 
have 

U(., -B, L)tp e c2 e([0,1]; E) <==> ψ € Dl(6·, +00). 
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Proof . Let ψ € Z?£,(ö;+oo) and τ,ί € ]0,1[ such that τ < t, then 

υ(1,-Β,Ι,)φ-υ(τ,-Β,Ι,)φ 

= ^ \ { 9 V = X ® ~ 9 ^ ( T ) ) L { L ~ x
X I ) ~ \ d X 

7 

( e - « B _ e - r f l ) .L(L-XI)-1
 JX 

+ art s g ^ ( r ) Λ 
7 

= /I + /a. 
i i may be written as 

r e ~ t B r / / , / ^L(L-XI)~l
 JX 

= 4 + tf. 
(where 7+_r and 7I-1" are defined in (8)), and 

IWII« < 2 * 0 S 7~5+T ΙΜΙί>/,(0;+οο) ' 

7 
From the latter inequalities it follows that 

\\h\\B<K(t-T)"MDL{e.t+oo). 

We may write I2 as 

i j = ( i " T ) 6 { ( t - r , » )' 

with 

7 

Then, the classical operational calculus gives 

L(L - τΙ)~ιΦ\ = ^ - \ 9 ^ { r ) L { L ~ r ^ l ~ l { p d X Vr > 0, 
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which implies that 

I l L i L - r / r ^ l l ^ ^ l M I ^ ^ . 

Therefore 

ΦΙ € DL(9\ +oo) C D b 3 (0 ;+oo ) = Z?B(20;+oo), 

the last equality holds by using the well known reiteration theorem in inter-
polation theory (see, Lions-Peetre[8]). So, we obtain 

11-^2lis ζ Κ (t — τ)2θ ||Φΐ||/}β(20;+οο) · 

The main result in this work is the following 

T h e o r e m 1. Assume ( # i ) , (H2), (H3) and (H4). Let φ € D(L),ip G D(L) 
and f G C2e{[0,1]; E) with θ G ]0, l /2[ . Then u given in (5) verifies 

i) u(t) G D(A) Vi € [0,1], 
ii) Ait(.) belongs to C([0, ! . ] ;£ ) if and only if Αφ, Αψ, f{0) and /(1) 

belong to D(L), 
iii) Au{.) belongs to C2e{\0,1]; E) if and only if Αφ, Αψ, / (0) and f{ 1) 

belong to Dl(0·, +oo). 

Furthermore, if 

(11) Βφ G DL{e + 1/2; +oo) and Βφ G DL{9 + 1/2; +oo), 

then 

iv) u'(i) 6 D(B) Vi € [0,1], 
ν) Bu'{.) G C([0,1]; E) if and only if Β2φ and Β2ψ belong to D(L), 

vi) Bu'{.) G C26{\0,1]; E) if and only i}Β2φ,Β2φ belong to DL(0·, +oo). 

Proof . Statement i). The study of the first and second integral in rep-
resentation (5) is identical since t and (1 - t) have the same role. So we 
can assume that ψ = 0. Moreover, if in the third integral in (5) we write 
f(s) = (f(s) — f(t)) + f{t), then, after two integrations by parts, we get 

e-tB 
u{t) = —\g^{t){L-XI)~^dX 

7 

P~tB , 
- -2— S gjzxML - XI)-\B2 + XI)-1 m dX 

7 
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M~t)B , 
~ ί ~ t ) { L ~ λ / ) _ 1 ( β 2 + λ / ) _ 1 / ( < ) d X 

7 

ι 1 

" S J <V=X(«. s)e-{t~')B{L ~ M T \ f { s ) - f ( t ) ) ds dX 
•yO 

+ ^ - \ ( B 2 + X i r 1 ( L - X I ) - 1 f ( t ) d X 
ι 

5 

= 

t = l 

All these integrals converge absolutely. From Lemma 1 and (Η4), we deduce 
that the first integral αϊ belongs to D(A). Writing A = L + B2 = (L — XI) + 
(Β2 + XI) and using (Η4) we obtain 

A(L - \ I ) - \ B 2 + X I ) ~ l f ( t ) = ( L - XI)-1 f { t ) + (B2 + XI)~1f(t), 

which implies, as for the first integral, that 02 and 03 belong to D(A). For 
a4, we use in) of (#5), getting 

! 1 
- S J s ) e ~ ^ B A { L - X I ) ~ 1 ( f ( s ) - f ( t ) ) dsdX 2 ni „ 

7 0 

( sup S | G ^ ( M ) | | t - s r ^ ) d | A | | | / | | c a e ( E ) 
Co " W o 

00 1 

£0 ΙΛΙ 

(the IsLst estimate follows in virtue of Holder's inequality). For 05 we apply 
the Da Prato-Grisvard's[l] sums theory to B2 and L. In fact, from (Hi) 
we deduce that B2 generates a bounded holomorphic semigroup in Ε (see 
Stone[12]); then (B2 + L) is closable and 

(.Β2 + L)-1 = S = \{B2 + XI)~l(L - XI)-1 dX, 
2πι J 

7 

which implies that 

Sx = A~lx, Vx € E, 

so 

a 5 = A - ' f i t ) . 
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Statements i i ) and iii ). W e have 

M t ) = V - S 9 y ^ x ( t ) ( L - X I ) ~ l A < p d X 
2 π ί 

7 

" ^ Γ \ 9 ^ x ( t ) ( B 2 + X I ) - 1 f ( t ) d X 

7 

7 

- \ 9 ^ ( 1 - t ) ( B 2 + λ / ) - 1 / ^ ) d A 

7 

e ( 1 - t ) ß , 
" S 5 ^ ( 1 - t ) ( L - X I ) - 1 m d X 

7 

ι 1 - 2 ~ S S < v r x ( t , - X I ) - l ( f ( s ) - f ( t ) ) d s dX + f ( t ) 

= Σ > ( * ) + / ( < ) • 
t = l 

A s in Lemmas 1-2, G C ( [0 ,1 ] ; £ ) if and only if e D ( L ) and υ ι ( . ) G 
C 2 e ( [ 0 , 1 ] ; £ ) if and only if Α φ G D L { Q \ + o o ) . Let us wr i te for 0 ^ r < t ζ 1 

e ~ t B 

« 2 ( 0 - V 2 ( x ) = - — S g ^ ( t ) ( B 2 + X i y ' i m - f ( r ) ) d X 
2 π ι 

7 

- ^ J f o ^ W " 9 ^ { r ) ) ( B 2 + X I ) - l ( f ( r ) - / ( 0 ) ) d A 

7 

- * S + A / J - ^ / M - f ( 0 ) ) d X 

7 

P ~ t B r 

+ ^ - \ 9 ^ - x ( t ) ( B 2 + X I ) - l f ( 0 ) d X 

7 
, - t B 

6 - S ö ^ M ^ + A / ) - 1 / ^ ) ^ 2πί 
7 

= Σ > . 
i = l 



Second order differential equation 735 

Then, as in the proof of Lemma 1, we have 

ll&ill ^ K{t — τ)2 θ ll/llc™(£) · 
Writing 62 as 

= - £ r J S ̂ ^ f f i ' V + " > " < / < * > - m ) d \ d s , 

we get 

* +
r°° β - μ ΐ ^ ^ . , . ί β 

\ M e * K \ 5 d\\\ds\\f\\c„(E) 

Τ ε0 
t +00 ε-σο0τ2θ 

K \ \ lu llc"(£) 
T %/eöi 
t +00 

τ 0 
^ K(t2e - τ2θ) \\f\\c3e{E) 

< - τ)26 \\f\\c„(E). 

For 63, we have 

63 = J 5 + λΙΓΗΗτ) ~ /(Ο)) dÄds, 2πι Τ7 
and 

ί e-\\\1/2c0t 2Θ 
S ^ 1 7 2 d\X\ds\\f\\c"(E) 

r e0 

ί +
r°° e~W1/3cosT2e 
\ ΓΓΤΪΤ2 d\\\ds\\f\\c„{E) 

τ Co lAl 
^ K(t - τγθ ||/||CM(£). 

The sum 64 + 65 can be estimated by the same method used in Lemma 2. 
Then we obtain that 

ll^ + M ^ ^ - r ) 2 0 | | / (0) | |D e a ( e .+ o o ) > 

if and only if /(0) € DB2(0; +00). Similarly u3(.) belongs to C2e{[0,1]; E) 
if and only if /(0) belongs to ϋι(θ;+οο) and υ4(.) + vs(.) belongs to 
C2e([0,1]; E) if and only if /(1) belongs to DL(0; +00). 
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Finally 

Μ*) - ν6(τ) 

= ~ L· 5 S s ) e ~ ( t ~ s ) B A ( L - A / ) _ 1 ( / ( s ) - / ( * ) ) d s d X 

7 T 

7 0 
x e-(t"i)ßyl(L - XI)~l{f(s) - /(<)) dsdA 

7 0 

X A(L - XI)~l(f(a) - f{t))dsdX 

~ h ί 1<ν=χ(<·ί)(βί'~°Β - e{'-T)S)A(L - Xiy'ifis) - f(t))dsdX 

7 r 

ι 4 
+ S S G-^it, s)e^BA(L - Xir'iHs) ~ /(*)) dsdX 

7 τ 

7 r 

x e{'-t)BA(L - λ/)_1(/(β) - /(«))dsdX 

+ - X I)~\B2 + Xir'm - f{r))dX + S - r)A(L - XI)~1(B2 + XI)-\f(t) - f(r))dX 2 πι 
7 

- ( / (« ) - / ( r ) ) 
8 

>=1 

Using the fact that in the first integral ci (since 0 ^ r < s < t ^ l ) 

-|A| l / 2c0(t-*) 
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h a v e 

ί +f°° e-|A|
, / 3co(t-.) 

I N I * < * S S [ 7 0 7 2 (t-s)"d\X\ds\\f\\c2,(E) 

Τ CO 1*1 

t +00 
^ Κ J(t - s)2e~l ( 5 e-<"*da)ds M c » w 

T y/cÖ(t-t) 

^ K(t - τ)26 \\f\\c„(E). 

iting C2 as 

1 r r ί c o s h \ / - λ ( 1 — ξ) sinh y / ^ X s 
C2 --5=JJJ 2πϊ J J J sinh > / — X 

0 7 τ v 

χ e - ( T - ' ) f l A ( L - XI)~1(f(s) - f{t))d£dX ds, 

o b t a i n 

r + 0 0 t 

l l c a l U ^ Ä - J J \ e - \ x \ 1 / 2 c ° « - ' ^ t - s ) 2 ^ d \ X \ d s \ \ f \ \ c 2 e { E ) 

0 eo τ 

τ t—s +00 

\ \ e-WU2<°0(t-s)2ed\X\dVds\\f\\c„(E) 

Οτ—s eo 

τ t_* (t — a\2$ / 
^ Κ \ \ \ ae-<"*da)dVds\\f\\c„{E) 

Οτ-ί " ^ η 

τ t—s , 

^K\(t-s)2e( J ^)ds\\f\\CM(E) 

Ο r—s ' 

< K \ ( t - s)2e(-L- - - L · ) d s M c m 
. Τ 9 ν S 
0 

r 1 i20—1 

< K(t - r) j - — — ds \\f\\C2e(E) 

0 r 5 

-2Θ-1 \ 

S — z dz) W / W c ^ E ) 

ζ K(t - τ)2β Wf\\c,HE). 

C3 + C4, w e write 

c 3 + c 4 = ε - τ Β ( ε - ^ Β Φ 2 - Φ 2 ) , 
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φ 2 = S S - u r H m - m ) dsdx 
70 

- 5 - Xir'iHs) - f(t))dsdX 

7 τ 

Using the fact that for r > 0 and λ € 7 

r r - λ 
L(L - rI)~xA{L - λ / ) " 1 = - r / ) " 1 A(L - λ / ) " 1 

r - λ 

we get 

L(L — r/)-1#2 

= ä b S S s ) e ' B ^ ; A { L ~ X I ) _ 1 ( / ( s ) - / ( < ) ) 

70 
ds ciA 

+ J , l - S I c - ^ ^ s y B ^ A i L - Xir'iHs) - f(t))dsdX, 
7 Τ 

and 

||L(L — r / ) - 1 # 2 | 

£ AT S ( sup \\G^-x(t,s)\\s-t\29ds) J ^ L d | A | | | / | | c a . ( B ) 
EJ0 v > \r - x\ 

j,ζ 

Therefore Φ2 e DL(9·, + 0 0 ) C £>bj(0; +oo) = ΌΒ(2Θ\ +oo). Thus we have 

6 - ( ι - τ ) Β φ 2 _ φ 2 

ΙΝ + ο4||Β ^ Κ{1-τΥ" sup 
t—τ>0 (t - τ)« 

Z K { t - T ) » Ι|Φ 2 || ϋ β ( 2 β ; + ο ο ) · 

By reasoning in the same manner for the last integral we obtain 

N ( < ) - f 6 ( r ) | | £ = 0 ( ( i - r ) 2 e ) . 
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Statement iv). We have 

u'{t) = \ g ' ^ m L - XI)~l<pdX 2 πι 
7 

- e - ^ r \ g V ^ { t ) { L - \ Ι ) - ι Β φ ά \ 
7 

e~tB 

- - λ / ) _ 1 ( 5 2 + x i r ' m d x 
7 

+ ^ + A / ) - x ( i - X i y ' m d X 

Μ-t)B r 
— J , ^ ( 1 - t)(L - XI)~1(B2 + XI)-1 f ( t ) dX 

2πί 
7 

+ 5 - t ) B { ß 2 + A / ) _ 1 ( L ~ λ / ) _ 1 / w d x 
2πΐ 

7 

ι 1 
+ r - τ \ \ G v = x ( t , 8 ) e - ^ B B ( L - X i r ' i f i s ) - f(t))dsdX 

2ni „ 
7 0 

ι ι 
— Τ 5 S d t G ^ ( t , s ) e - ^ B ( L - XI)~1(f(s) - f ( t ) ) ds dX 2πί „ 

7 0 

= E ^ w · 
i=l 

The derivative of the last integral in (5) is obtained by differentiation the 
integrand then writing f(s) = (f(s) — f(t)) + / ( f ) and carrying out two 
integrations by parts. We verify that all these integrals converge absolutely. 
The first integral wi(t) 6 D(B). In fact, writing 

^ s - ν ) - ι Β φ ά \ = j 
7 7 

we have 

7 

e-\\\l»cot . 
^ K { ) .. ,i+e d \ x \ ) 11^11^(0+1/2 ;+oo) 

£0 lAl 
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^ Κ l l ^ | | i ? L ( e + 1 / 2 ; + 0 0 ) · 

Due to Lemma 1 and (Η4), we have W2(t) € D(B). Moreover, we can write 

w 3 ( t ) + w 4 ( t ) 

= " $ W ) ) ( L ~ λ / ) _ 1 ( # 2 + λ / ) " 1 / ^ ) dX 
7 

p - t B 

+ S - x i r ' i B 2 + x i y ' m d x 
7 

+ ^ + λ / ) - 1 ^ - A/)"V(<)<*A 
7 

= V 1 " A / ) _ 1 ( B 2 + <*A πζ J 1 — e-2v-A 

+ ι ϊ γ ( 3 ~ ^ ή 1 ( L - u r ' m d x , 7 

which implies that ws(t) + ιυ4(ί) 6 D(B). Similarly, we show that the sum 
105(4) + we(t) € D(B). As in the proof of statement i), we also obtain that 
wr(t) and ws(t) belong to D(B). 

Statements v) and vi). We have 

B u ' ( t ) = ^ S g ' ^ ( t ) ( L - Χ Ι ) ~ ι Β ψ ά Χ 

7 

7 

- ^ \ g ' ^ ( t ) B ( L - X I ) ' 1 ( B 2 + X i r ' f ( t ) d X 

7 

+ ^ \ g ^ ( t ) B 2 ( B 2 + X i r ' i L - X i y ' m d X 
7 

(a—t)£r 
" s - i ) ß ( L - λ / ) _ 1 ( β 2 + λ / ) _ 1 / ( ί ) <*λ 

7 

+ - 3 — S 5 ^ ( 1 - t ) B 2 ( B 2 + X I ) - \ L - X I ) - 1 f i t ) dX 
7 
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+ SS Gv^(tys)e-^BB2(L - Xir'iHs) - f(t))dsd\ 

7 0 

1 1 

- r-τ\\dtGv^(t,s)e-^BB2(L - λ / ) " 1 ^ ) - f{t))dsd\ 
2πΐ 

7 0 

= Σ > ( < ) , 
»=1 

a n d f o r 0 ^ τ < t ^ 1 , w e g e t 

e-tB * 

Xl(t) - n(r) = - — J J 9^x(s)L(L - λΙ)-ιΒφά\ά8 
2πί 

τ 7 

T h e n 

W r i t i n g I i a s 

w i t h 

( e - t f l _ e - r f l ) ( t M L - \ η - * Β φ 

+ 2 π ϊ J λ 
7 

= h + h-

* e - | A | 1 / a c 0 i 

IWIe^^oS S +1/2 d\X\d»\\BV\\DLi$+l/2i+eo) 

Τ eo l A l 

4 2σβ~σ€0 

\ / σ \ 2 0 + 1 ^ ^ I I ^ I I d ^ O - H A + c c ) 
' ν ι ο » V j J s 

r ^ 0 ' 

<K(t-r)2e \\B<p\\DL{e+l/2.+oo). 

Ι2 = β-τΒ(β~^ΒΦ 3-Φ3), 

1 r , , λ L(L — \Ι)~ιΒψ 
λ ά Χ > 

7 

w e o b t a i n 

I I L ( L - τΙΓ'Φζ\\B ^ £ Ι Ι ^ Ι Ι ^ ί β + ι / , , + ο ο , Vr > 0. 

T h e r e f o r e Φ3 € DL(6\ + 0 0 ) c DB(20; + 0 0 ) . T h u s w e h a v e 

6 - ( ί - τ ) Β φ 3 _ φ 3 

\\I2\\E^K(t-r)2e s u p 
t — τ > 0 ( ί - τ ) " 
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£>B(20;+oo) · 
The techniques for the rest of the proof is quite similar to those used in the 
preceeding statements. 

R e m a r k 1. In the same manner we have a similar result to Theorem 1 
when the second member f has a spatial smoothness, that is 

f € { / G L°°(E)/f(t) € DL(a, 00) Vi € [0,1], sup ||/(ί)ΙΙ^(σ,οο) < oo} 
te(o,i) 

where L°°(E) is the set of the strongly measurable and bounded functions f 
defined on [0,1]. We omit to prove this assertion in this work. 

R e m a r k 2. We can consider other hypotheses instead of (11) involving a 
comparison of D(B) and D ((—L)a) for some a 6 ]0,1[. 

4. Examples 
Let a,b € R, θ G ]0, l/2[ be given. 

4.1. In Hilbertian spaces 
In Ε = L2(R), we define A and Β by 

ί D(A) = H*(R) . Γ D(B) = H2(R) 
\ Au = auW ' 1 Bu = ibu" 

where a > 0. Then Β generates a Co-group (see Pazy [11], p. 224). Moreover, 
it is well known that 

The last space is a Besov space defined, for instance, in Grisvard[3]. It is 
not difficult to see that (Hi), (#2), (#3)1 ami (i/4) are verified. Applying 
Theorem 1 we have 

T h e o r e m 2. Let f e C 2 e ( [ 0 , 1 ] ; L 2 ( R ) ) be such that for j = 0 , 1 the mappings 
χ i-> f(j,x) belong to #2?ooW αηι^ oasume that ψ, φ belong to HA(R) and 

belong to ^(R). Then the problem 

DL{9-,+ 00) = (D{L)· £)ι_β)00 

= (Ü"4(R); L 2 ( R ) ) I _ 0 

= Ό κ ) · 

,ΟΟ 

d^u + 2ibdldtu + ad*u = / , in ]0,1[ χ R, 
u ( 0 , x ) = <p{x), 
u(l,x) = ip(x), 
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Analogous results can be given in all the followings cases 

iD{A) = H*{R2). ί D{B) = i f2(R2) 
\ Au = aA2u ' \ Bu = ibAu 

4.2. In IP spaces 
Ε = IS{R), 1 < ρ < oo a n d 

Γ D(A) = . f D(B) = W^iR) 
1 Au = au" ' 1 Bu = bu' 

4.3. In continuous functions spaces 
In Ε = Co(R) = {u € CiRJ/limiti^oot^i) = 0}, consider the following 

operators defined by 
Γ D(A) = { u 6 C2(R)/u,u" 6 C0(R)} 

\ Au = au", u e D(A) 

and 
Γ D(B) = {« € C0(R)/u' € C0(R)} 
\ Bu = bu', u G £>(£). 

Then ß generates a bounded Co-group on Co(R) (see Nagel [9], p. 9)). In 
this case we have Z?L(0; +oo) = C2Ö(R) Π C0(R). 

We can also consider cases of spaces defined on bounded sets. 
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