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RESOLUTION OF A COMPLETE ABSTRACT
SECOND ORDER DIFFERENTIAL EQUATION
OF ELLIPTIC TYPE

Abstract. In this work we give some new results on the complete abstract second
order differential equation of elliptic type in non homogeneous case. The existence, the
uniqueness and the maximal regularity of the strict solution are proved under some natural
assumptions which imply the ellipticity of the differential equation.

1. Introduction
In this paper, we study the following second order abstract differential
equation

(1) u”(t) + 2B/ (t) + Au(t) = f(1), te(0,1)
under the non homogeneous boundary conditions
u(0) = o,
2
® e

where ¢, 9 and f(t) belong to a complex Banach space E, and A, B are two
closed linear operators with domains D(A), D(B). We are interested in the
existence, uniqueness and maximal regularity of the strict solution « when
f is regular ( for instance f is Holder continuous function ). We recall that
u € C([0,1]; E) is a strict solution of (1) — (2) if and only if

u € C*([0,1]; E) n C*([0,1); D(B)) N C((0,1]; D(A))
and u verifies (1) — (2).
Throughout this paper we assume that

(H,) B generates a strongly continuous group in E,

(1 (3K >0¥A20
2) (A =B2 =AYy e) < K/(1+X),
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(Hs) { (A- B? - /\I)"I(B - ;LI)_1 - (B - p.I)—l(A - B?2 - /\I)_l =0
Vi eR, VA >0,

3K > 0/¥A 20
(Ha) 1) |B(A - B? - '\I)_1||L(E) < K/(1+ V),

ii) |B3(A - B? - AI)7 Yy < K,

iii) |A(A — B? — M)l (g) < K.

Note that (H,) implies D(B) = E. But the domain D(4 — B?) may
be not dense. On the other hand, it is not difficult to see that assumptions
(H1), (H2), (H3) permit us to apply the Da Prato- Grisvard[l] sum theory
and deduce that, necessarily,

(A-AN)7" € L(E) and ||(A = AD)7Y| 5y < K/(1+ ), forall A > 0.
(See the proof of Theorem 1, the end of statement i)).

Equation (1) can be illustrated, for instance, by the following simple
differential problem

2 2 2
(3) { %(t,m) + 2b:zgt(t,a:) + a%(t,:r) = f(t,z), (t,z)€ XL,

u(0,z) = p(z), u(l,z)=y(z), z €R,
where £ =10,1[ x R and
(4) a—b>0.
Then we can choose in E = LP(R), 1 < p < oo, the operators A, B defined
by

{D(B) = W'P(R), (Bu)(z)=bu'(z), Yu € D(B)
D(A) = W2P(R), (Au)(z)=au’(z), YV u € D(A).

So, our objective is to have an unified study for the problems of type (1)-(2)
in general case.

Several authors have studied equation (1) when it is regarded as an
abstract Cauchy problem, that is under the following initial data u(0) = ¢,
u'(0) = . See, for instance, Favini[4], Neubrander(10|, Liang and Xiao[7].
The techniques used in these papers are based on the parabolicity of (1), that
is on the Cauchy’s data. In our study, hypotheses (H;) and (Hy4) express
the ellipticity of (1) and generalize the one used in Krein 5] in the case
B = 0. In example (3) these two assumptions are equivalent to (4). So it is
difficult to reduce equations (1)-(2) to some first order system. When B = 0,
Labbas [6] has studied problem (1)-(2) and has given necessary and sufficient
conditions on ¢, ¥, f(0) and f(1) for having a unique strict solution when
f is Holder continuous function. In this work we generalize these results
since all the hypotheses considered here, coincide with those used in [6] in
the case B = 0. Note that assumptions (H;), (Hz), (H3) allow us to apply
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the sum theory of linear operators as in Da Prato-Grisvard [1] and we have
D 4(8; +00) = D(4-p3)(8; +00) N Dp2(8; +00) (see Grisvard [3]).

In section 2, we build the natural representation of the eventual solution
of the problem (1)—(2) by using the operational calculus and the Dunford’s
integral.

In section 3, we prove an essential lemma, which allow us to justify and
to study the optimal smoothness of the previous representation; we then
give necessary and sufficient conditions on ¢, ¥, f(0) and f(1) for having a
strict solution when f is Holder continuous function.

Finally, in section 4, we give some concrete examples in different spaces,
to which our abstract results can be applied.

2. Construction of the solution
If A and B are two scalars such that B2 — A = — ) is strictly positive,
then the solution of (1) is given by

Smhv (l_t) —tB Slnhv At (1 t)B :

t - G t) d y
u(t) = P o+ — Y b Y g v=x(t,8)f(s)ds
where

inh v/ —A(1 — t) sinh/—As
Gt (t,s) = > , 0<s<t
G rtio) = v=x(h9) V=Asinh v—X ’
v=xh G (t,5) = sinh /—A(1 — s) sinh V- At t<s<l
V=R e v/=Asinh =X T T

Now, it is well known that (H) implies the existence of §p € ]0, 7/2[ and
€0 > 0 such that the resolvent set of A — B? contains the following sector of
the complex plane

S(b0,€0) = {2z € C/|arg(z)| < 60} U B(0,¢€0),

where B(0, £g) is the open ball of radius €. If v denotes the sectorial bound-
ary curve of S(&g, €9) oriented positively, then the natural representation of
the solution of (1)-(2), in the abstract case, is given by Dunford’s integral

() u(t) =

6(1 t)B
+

ng-x(l—t)(L A1 dA

- 2—:,; { SGm(t, s)e=C=IB(L _ A1) "1 f(s)dsdA,
v0
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where

() = sinh v—-A(1 — t)
WA S T VA
Here +/—A is the analytic determination defined by Rey/—\ > 0. From the
easy relation

L=A- B?, D(L)= D(A)n D(B?),
{ te(0,1), Aen.

e~

1= —2V=X(1-1)
l9=(8)] = : )|

1-e-2v-2

m:(

we deduce that there exists two constants ¢y and Ky such that

) loy=(t)| < Koe=®P"*t wxeq, vtelo,1),
l9y=x(1 - )| < Koe=oM*0-0 vxeq, wie[o,1],

2
where co = cos(m/2 — 60/2) and Ko = otV

On the other hand, for any f € C([0,1]; E), we can see that

1

(M) . < T\[cos (6072) Ifllccey

YA € 1.

1
|G /=(t,5)f(s)ds
0

According to (H;), (H2) and estimates (6), (7) all the integrals in (5)
converge absolutely for every t € ]0, 1[.

3. Smoothness of the solution
Consider, for ¢ and ¢ in E, the following two integrals

-tB
U(t,~B,L)p = S5— {gy=x(t)(L — M) T'pdA telo,1),
Y
(1-t)B
U(l-t,B,Lyp = —— lo/=(1-t)(L-an~'pdr te(o,1]
Y

Then we have the essential lemma

LEMMA 1. Under the assumptions (H;) and (Ha)
1) there exists a positive constant K = K(eg,60) such that

{ U, ~B,L)pllg < Klpllg, Yyo€E,Vtelo,1],

ii) U(., ~B, L)y € C({0,1]; E) <= ¢ € D(L),
iii) U(1 - ., B, L)y € C([0,1); E) < v € D(L).
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Proof. ) For t > 0 we can write
—tB

_ _¢ N1
Ut =B, Lp = 5 § oL = ANT'pd)
T4
e—tB 1
+ 5 § 9y=x(t)(L = M) pdA
v_
= I+ + I_,
where
(8) v ={z€v 2l 2 1/%}; 4L ={ze |zl <1/},

Then we have

+00 o—colAM %
e ‘o
Il < Ko § S ) liels
1/63
+o0 e~ oo
< 2o | T dolgls < Kllls.

1
The sec)nd integral can be written as

e—tB ]
L= | (9v=x(t) — 9,=x(0)) (L = A} A
e
e—tB
T om S‘(L AT pdA
Yo
-tB t —v —
=~ o S S I\CO.Sh Al s)ds (L— D)7 pdA
2mi 4t \0 sinh V=
e~tB 1
" omi S (L - M) pdA
Cl/:2
=I_+1I”
where
Cyja = {2/ |arg 2| < 6 and |2] = 1/t2}.
Then

1/:
e < Ko PEZ s olle < Kl
P Y
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+60 ;0
1 e’ de
10z < 5 § WL =520 els% < Kol
-5

Similarly we obtain
WU(1-t,B,L)yllp < K|¢llg, VYeE,Vte[01]
ii) Fix € > 0 and let ¢ € D(L). Then there exists y € D(L) such that

(9) le—yll<e
Using the identity

an-ly= E-AD Yy

(-l = =225 3

we have
U(t,—B,L)y— -uLyd/\,
and this gives
1 T K
(10) JU(t,~B, Liyllp < 5 § Sod M Msll < KLyl Ve € [0,1]
€0

Now, from the equality
U(t’ _BvL)SO_(p = U(ta —B,L)‘,D—U(t, —B,L)y+U(t’ —B,L)y“y'*'y“‘P»
and the estimates (9), (10) we deduce that

t—0t
U(t) —B,L)SP -y - 0.

The continuity in ¢ > 0 is easily verified.
Conversely, that U(.,—B, L)p€ C([0,1]; E). Then lim,_,o+U(t,—B, L)y
exists and is necessarily equal to ¢; however
9/=x(t)e™*B(L - AI)"'p € D(L),
which implies that U(t,-B, L)y € D(L).
For statement iii) it is enough to substitute 1 — ¢ for ¢.

Let us consider, for 8 € |0, 1], the well known real interpolation space
between D(L) and E characterized by

DuBi+oo) = {p € B/ supr L =)ol < oo}
>

(See Grisvard [2]).

LEMMA 2. Under assumptions (H,), (Hz) and (H3), and for 6 € ]0,1/2[ we
have

U(.,—B,L)p € C*([0,1]; E) <= ¢ € Dr(8;+00).
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Proof. Let ¢ € Dr(0;+00) and 7,t € |0, 1] such that 7 < ¢, then
U(t,—B,L)p —U(r,—B,L)yp

e~tB L(L - A1)t
=2 fay=(t) - gy=3 (7)) —————wdA
5
(e™tB — e~7B) L(L - AI)~!
+ Eg\/_—,\(f) e dA
=L+ 1.
I, may be written as
=B L(L - )™t
h=—— ‘K_T(g\/:x(t) = 9y=x(T))—————wdA
T+
e~tB L(L - M)™1
27 ‘S_f(g\/:x(t) - QJTX(T))—/\—‘P dA
i
—L+1,

(where 7v4~7 and 7'~ " are defined in (8)), and

dlA|
Il < 2Ko | Non”‘p“DL(O;-{-oo)’

t—r

|t — 7|
Illg < Ko S W‘“/\I ||¢IIDL(9;+°°)-

From the latter inequalities it follows that

Ille < Kt =7)* el p, (6400 -

We may write I as

L=@t-1)% e"'B(

e—(t—-r)B¢l o él)
(t—7)% ’
with
— 1 -1
¢ =5 §gm(r)(L )" pdA.

Then, the classical operational calculus gives

L(L - )~

_ 1 1
LL-rI)' = 5= g =5(r) === Par Vr>0,
Y
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which implies that

_ K
||L(L — TI) lQl”E < '1'__9- ||80||D,,(0;+00) )
Therefore
&, € DL(8; +00) C Dp3(6;+00) = Dp(26;+00),

the last equality holds by using the well known reiteration theorem in inter-
polation theory (see, Lions-Peetre[8]). So, we obtain

I12llp < K (¢ = 7) 191l p g 264 00) -
The main result in this work is the following

THEOREM 1. Assume (H,), (H2),(Hs) and (Hy). Let ¢ € D(L),y € D(L)
and f € C*([0,1); E) with 6 €)0,1/2[. Then u given in (5) verifies
i) u(t) € D(A) vVt e [0,1],
ii) Au(.) belongs to C([0,1]; E) if and only if Ap, Ay, f(0) and f(1)
belong to D(L),
iii) Au(.) belongs to C?*([0,1]; E) if and only if Ap, Ay, f(0) and f(1)
belong to Dy (6;+00).

Furthermore, if
(11) By € Dp(0+1/2;+00) and By € D(6 + 1/2; +00),
then

iv) w/(¢) € D(B) Vt € [0,1],
v) Bu/(.) € C([0,1]; E) if and only if B2y and B%y belong to D(L),
vi) Bu/(.) € C?([0,1]; E) if and only if B%p,B?y belong to D(8;+00).

Proof. Statement i). The study of the first and second integral in rep-
resentation (5) is identical since t and (1 — t) have the same role. So we
can assume that ¢ = 0. Moreover, if in the third integral in (5) we write
f(s) = (f(s) — f(t)) + f(t), then, after two integrations by parts, we get

tB

S o (O@ - A pd

-5

e—tB

27

Vo= @(L — AD~H(B? + A7 £(t) dA
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e(1-t)B
- T Sovml - 0= ATHE £ A
1
2_717“(;“”)6 E=9B(L - AN (f(s) - £(2)) dsdX
~0
ﬁk +A)THL = AI)THf(t) dA
. Y
= Za,».

All these integrals converge absolutely. From Lemma 1 and (H,), we deduce
that the first integral a, belongs to D(A). Writing A = L+ B? = (L — AI)+
(32 + /\I) and using (H4) we obtain

AL = 2D)Y(B2+AD7f(t) = (L= AD)71f(t) + (B2 + M) f(t),
which implies, as for the first integral, that a2 and a3 belong to D(A). For
a4, we use iiz) of (Hs), getting

1

LG =(t, )e 9B A(L - AI)71(f(s) - £(t)) ds d

27rz‘70

E

[

<K

S g

( sup §|G=x(t,5)| It = 1" ds ) d I\ |l cae s

0<t<1

T 1
< K(}O et ) flecey

(the last estimate follows in virtue of Holder’s inequality). For as we apply
the Da Prato-Grisvard’s[1] sums theory to B2 and L. In fact, from (H;)
we deduce that B2 generates a bounded holomorphic semigroup in E (see
Stone([12]); then (B? + L) is closable and

(BZ+ L)y '=8= % (B2 + AD)~Y(L - AN~ dA,
Y

which implies that
Sz=A"'z,Vz€E,
o)
as = A71f(t).
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Statements ii) and iii). We have

e—tB

Au(t) = 5— ng(t)(L— A" ApdA

Sg\/— t)(B2 + AI)"1f(t) dA

27n

e—tB

- S fo/=@®(L - AN f(t)dA

e(1-t)B

o § 9v=x(1 = 0)(B® + A1) 7 f(2) d

e(1-)B

2mi ng(1 —t)(L - AI)71f(t)dX

“G’\/—th)e (=B AL — XI)72(f(s) — f(t))dsdA + f(¢)

T omi

||[\/]a

ui(t) + f(¢)

As in Lemmas 1-2, v;(.) € C([0,1]; E) if and only if Ap € D(L) and v;(.) €
C?%([0,1); E) if and only if Ap € Dr(8; +00). Let us write for 0 < 7 <t < 1

—tB

va(t) —va(r) = = S— [ g /=x(®)(B? + A1) (£() - £(r)) dA
-8
- S Moym(®) = ay=x(M)(B2 + AN (£(r) - £(0)) dA

(e—tB _ e—'rB)

T om [oy=x®)(B® + AD)7X(£(r) — £(0))dA

e {9,/=x()(B + AI)~' £(0) dA

+ 2T

e—rB

5= V9v=x(T)(B + A1) 7 £(0) dA

5
=) b
i=1
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Then, as in the proof of Lemma 1, we have
611l < K(t = 7)* || fll g ) -

Writing b, as
"B ¢ V=Acosh vZA(L — 3)
__€ cos $), 2 . ~
b2 = -5 i Snb vV (B® + AI)™)(f(r) — £(0)) dAds,
we get
t +o00 -'\II/’C s 20
”bz“E S S I |1/2 dl/\ld.?”f”C”(E)
T €0
t +oo e—9co
<K | 0 dods fl g
'r\/_,

< KS ( (S) e—ac0d0)320—1 ds “f”C”(E‘)

< Kt =) || fll gao (i
<K(t- ")29 ||f||czo(E) .

For b3, we have

bs = 5 | [ o =x(t)e™*P B(B + AI)™ (f(r) - f(0)) dds,

and
t+ -|,\|‘/’cot 20
losll < K S ——7— A4\ ds||fllgse (g
T €0
t +oo —l)‘ll/zcos 20
K| : — 4P lllcaney
T &0

S K(t- T) ”f“c?o(s) :

The sum b4 + b5 can be estimated by the same method used in Lemma 2.
Then we obtain that

14 + bsll g < Kt =) 11 £(O)lp, (65400) »

if and only if f(0) € Dpgs(6;+00). Similarly v3(.) belongs to C?([0,1]; E)
if and only if f(0) belongs to Dp(6;+00) and v4(.) + vs(.) belongs to
C?%([0,1]; E) if and only if f(1) belongs to Dy (8; +o0).
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Finally
ve(t) — vs( )
= 2m§§c 5(t,9)e"IBA(L — AT (f(s) - f(2)) dsdA

S S(G+ (t,s) — G:L/-_—’\-(‘r, s))

T omi

x e B AL — AD)Y(f(s) — f(t)) dsdA

1 (f o o
~ = 1[Gt )8 — =95
~0

x A(L — A)7Y(f(s) = f(t))dsdA

2m§§c- 5(t,5)(el" 798 — eC=MBYA(L — AI)72(f(s) — f(t)) dsdA

T % 1§67 (t,9)eIBA(L - AD)7H(f(s) — f(t)) dsdA
- o 55 (G=(t,5) - G=(7,9))

x el*~ ‘)BA(L — A7 f(s) = f(t)) dsdAr

- sgn(r JA(L = AI)TH(B? + AD)7H(£(t) - £(7)) dA

e(l 7)B

Jou=(1 = M)A - AD)THB? + AD) NS () - £(7)) dA

2w

= (f(&) - f(7))
8

=Y a—(f(t) - f(r)).
=1

Using the fact that in the first integral ¢; (since 0 < 7 <s <t 1)

—[AM2eo(t-3)

|G’ (t,s)| < K |A|1/2

)
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have
400 A1 2co(t—s)
lalls <K§ | = 7 st~ 5)®d|A|ds || fll gas
T €0
t +o0
< KS(t - 8)20_1( S e‘“"do)ds 1 fllcae iy
T Veo(t—s)
<K(@-1)% ”f”cu(z) .
iting c2 as
. ____Hscosh\/—/\(l—ﬁ)sinh\/—,\s
2= T omi sinh /—A
X e-” "BA(L - AD)7H(f(s) - f(t)) dE drds,
obtain
7400t 1/2
leallg S K§ § §em M eol=2) (¢ — )2 ded N[ ds || f| oo,
0 €9 T
T t—8 400 12
SK| | | e P eon(t — ) d|x| dnds||fll cas g
0r1-5 €9
Tt—28 20  +oo
t—s
< KS s (—17)_( S ge "°°da)d17ds ”f”C:O(E)
O7-s \/_7,

< KS (t - 3)29 ( S dn)d-’ | fllgae(y
0

T—38
r

20

< K(S, (t— Ifllcao gy
<K(t-7) g Iiﬂ_—l ds || fll gae (k)
0 T—38
<xe-n( T i) Il
1+2 (E)

0
S K@t -7 flicsoe -
c3 + ¢4, wWe write

ca+ca=eTBet-TIBg, _ &),
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where

2mSSG (t, s)e*PA(L — M)~} (f(s) - £(£)) dsdA

27”SSG_ (t,8)e*BA(L — AI)"1(f(s) — f(t))dsd).

Using the fact that for r > 0 and A € «

LL—rD) AL =AD" = - T_A(L-rT) f AL - M)
we get
L(L- rI)"1452
== S SG (t,9)e*® =2 A(L = M) (f(5) - f(1)) ds
1 ¢ A
+ o §§G:/j(t, s)e”® — A(L - A7 (f(s) - f(t)) dsd,
and
| L(L — rI)~ &, ||

+o0
<K | ( sup S|G\,—(t s)||s—t|29ds) al
c <1

dIM | fllcre gy
0<t<1y [r — Al

+oco
d|/\|
< K _

K
< r—g”f”c"(E)-
Therefore $; € D (6; +00) C Dpga(8; +00) = Dp(26; +00). Thus we have

e—(t—f)B¢2 - &,
(t—7)%0
SK(t- 7)20 ”¢2”DB(20;+00) :

By reasoning in the same manner for the last integral we obtain

lvs () — ve(T)lIg = O (¢ = 7)) .

llca + call g < K(t — 7)20 sup
t—r>0
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Statement iv). We have

—tB
iy & _ -1
u(t) = o gam(t)<L M)~ pdA

e—tB

o V9v=x()(L = A1)~ Bp d
)

e [ 9L - A1)~} (B2 + AD)"L£(2) dA

2mi

—tB
+ esz 5 9y=x(t)B(B? + A1)\ (L - AI)~* f(¢) dA

e(1-t)B
T Tom Vol (1= t)(L — AD)~H(B? + AI)7 f(t) dA
]
e(1-t)B , 1 1
t omi {9,=x(1 —t)B(B* + AI)"}(L — AI)" f(t) dA
;

1
+ % Egcm(t’ s)e” =B B(L — A)TY(f(s) - £(t)) ds d

1
- % 1§0:G /=t 5)e==IB(L = AI)7(f(s) - £(t)) dsd)
~v0

The derivative of the last integral in (5) is obtained by differentiation the
integrand then writing f(s) = (f(s) — f(t)) + f(t) and carrying out two
integrations by parts. We verify that all these integrals converge absolutely.
The first integral w,(t) € D(B). In fact, writing

e"tB ., 1 e t8 ., L(L-)I)"'Byp
o §gm(t)(L—AI) Bpd = —— ggm(t) S d,
we have
e”t8 ., L(L-AI)"'Byp
2mi §g~/fx(t) A A,

+o00 _|,\|l/260t

K(Se

—lW—dIAI) 1Bl 5, (6.41/3:40)
€o
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S K|Bollp,(9+1/2;400) -
Due to Lemma 1 and (H4), we have w;(t) € D(B). Moreover, we can write

1U3(t) + 1U4(t)

e—tB

= - 57 (\/-—'\gm(t) - gi/:x(t)) (L — AI)"Y(B? + AI)1f(t) dA

€

+ 2—: { V=g /=x(t)(L - AD)~Y(B* + AI)" f(t) dA

e—tB

+

omi { 9y/==(t)B(B* + AI)7Y(L — A1)~ £(t) dA
~
-t “e—V-A(2-t
_ (4 B S \/_AC _2\/2 )(L_/\I)_I(Bz'*'/\l)_lf(t)d/\

¢ -
71e

€

—tB -1 -
+ 5 § gv=x() (B = V=AI) (L - A0 S dr,

which implies that w3(t) + ws(t) € D(B). Similarly, we show that the sum
ws(t) + we(t) € D(B). As in the proof of statement i), we also obtain that
wz(t) and wg(t) belong to D(B).

Statements v) and vi). We have

e—tB :
Bu'(t) = - {9/ =(t)(L— A Bpdx
vy

e—tB B
- 55 Jam@®@ - AT B2pdx
e
et -1/ 2 -1
"2775 9 /—(E)B(L — \I)~}(B® + AI)~! f(t) d)
o

€

-tB
* o Egﬂ(t}Bz(fﬂ + M)~V L = M) f(t) dA

~ e(1-t)B
271

e(1-t)B

{9/ =1 —t)B(L - AI)Y(B? + AI)7* f(t) dX

{9/=(1 - t)BY(B? + A1)~} (L — AI)7 £(t) dA

27
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1
+ 2L1l'2 SSGm(t,s)e’(t—c)BBl’(L _ AI)—I(f(s) _ f(t)) ds d\
~¥0 .
1
- 5}; SsatGm(t, 8)e~ (=B B[ _ AI)7Y(f(s) - f(t)) dsdA
70

8
= Z .'E,'(t),

i=1
and for0< 7 <t 1, we get
e—tB ! 1
(t) —z1(r) = — o EEW_—A(S)L(L — A)"'Bpdrds
(e7tB —e"B) ( , L(L - A\I)"'Byp
R T — dA
+ 2 E 9v=x(7) )
=1+ I,
Then
t oo e—|,\|’/’cos
1Lz < Kof § 7 N4 1Belo, o1 /2iveo
T €0
t +oo -
20e79¢0
< Kos S TMdUdS ”B‘P”DL(0+1/2;+00)
T JEos (3’) s

+o0 e

t
gKSs”"l( S 520 dd)dSHBS"“DL(o+1/2;+oo)
T 0

< K(t-1)% IBollp, (6+1/2,+00) -
Writing I, as
12 — e—‘rB(e—(t—‘r)B¢3 _ QS))
with
1 , L(L - MI)"'By
P3 = I §9m(7) X dA,

we obtain
-1 K
|Z(L ~rI) ¢3“E < ] I1Belip, 94172400y VT > 0.
Therefore $3 € Dy (8;+00) C Dpg(26;+00). Thus we have

e_(t_T)B¢3 _ ¢3
(t—17)%

IL2llg < K(t - 7)* sup
t—r>0

E
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6
< K(t—r)? 1931l p g (264 0) -
The techniques for the rest of the proof is quite similar to those used in the
preceeding statements.

REMARK 1. In the same manner we have a simtlar result to Theorem 1
when the second member f has a spatial smoothness, that is

fe{f eL®(E)/f(t) € Dr(o,) Vt € [0,1], e Ilf ()DL (o00) < 00}

where L°(E) is the set of the strongly measurable and bounded functions f
defined on [0,1]. We omit to prove this assertion in this work.

REMARK 2. We can consider other hypotheses instead of (11) involving a
comparison of D(B) and D ((—L)*) for some a € )0, 1].

4. Examples
Let a,b € R, 8 €]0,1/2( be given.

4.1. In Hilbertian spaces
In E = L*(R), we define A and B by

D(A)= H'R), [ D(B)=H’(R)
Au = au™ ’ Bu = ibu”
where a > 0. Then B generates a Cy-group (see Pazy [11], p. 224). Moreover,
it is well known that
Dy (6;+00) = (D(L); E)1-6,00
= (H*(R); L*(R))1-0,00
= B (R).
The last space is a Besov space defined, for instance, in Grisvard(3]. It is

not difficult to see that (H,),(H2),(Hs), and (H,) are verified. Applying
Theorem 1 we have

THEOREM 2. Let f € C?9([0, 1]; L3(R)) be such that for j = 0,1 the mappings
z — f(j,z) belong to B3® (R) and assume that o, ¥ belong to H*(R) and
@) () belong to B§® (R). Then the problem

02u + 2ib8%28,u + adiu = f, in]0,1[ xR,
{ w(0,z) = (),
u(l,z) = ¥(z),
has a unique solution u verifying
i) w € C2([0, 1J; L*(R)) N C ([0, 1], HA(R)) N C([0, 1], H4(R)),
ii) 83u,528,u belong to C?°([0,1); L2(R)).
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Analogous results can be given in all the followings cases
{ D(A) = HA(R?) . { D(B) = H*(R?)
Au = aA%u ’ Bu = ibAu
4.2. In L* spaces
E=LP(R),1<p<ooand
{D(A) ~W2R). [ D(B)=W"(R)
Au = au” ' Bu = b’
4.3. In continuous functions spaces
In E = Co(R) = {u € C(R)/lim¢j_ o u(t) = 0}, consider the following
operators defined by
D(A) = {u € C*(R)/u,u" € Co(R)}
Au=au’, ue€ D(A)

and
D(B) = {u € Co(R)/v’ € Co(R)}
{ Bu =bu', ue€ D(B).
Then B generates a bounded Cp-group on Co(R) (see Nagel (9], p. 9)). In
this case we have D (6;+00) = C?(R) N Cp(R).
We can also consider cases of spaces defined on bounded sets.
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