

Devendra Kumar

THE GROWTH OF HARMONIC FUNCTIONS IN HYPERSPHERES

Abstract. The present paper deals with the growth of solutions (harmonic in n -dimensional Euclidean space R^n) of Laplace's differential equation.

$$\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2} \right) H = 0.$$

Characterizations of q -order and q -type of harmonic functions $H(x)$ have been obtained explicitly in terms of the m -th gradients $|\nabla_m H(o)|$. The $H(x)$ are taken to be regular in a finite hyperball $B_R = \{x : |x| < R\}$, where $|x| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

1. Introduction

A real valued function $H(x)$, $x = (x_1, x_2, \dots, x_n)$ is said to be harmonic in n -dimensional Euclidean space R^n if it has continuous partial derivatives of the first and second order and satisfies the Laplace equation

$$\frac{\partial^2 H}{\partial x_1^2} + \frac{\partial^2 H}{\partial x_2^2} + \dots + \frac{\partial^2 H}{\partial x_n^2} = 0,$$

throughout a neighbourhood of the origin in R^n . Such functions have spherical harmonic expansions

$$(1.1) \quad H(x) = \sum_{m=0}^{\infty} H_m(x),$$

1991 *Mathematics Subject Classification*: Primary 30D15.

Key words and phrases: hypersphere, Euclidean space, m -th gradient, Laplace's differential equation.

This work was supported by University Grant Commission (N.R. Office) Ghaziabad, U.P. (India).

where $H_m(x)$ are harmonic, homogeneous polynomials of degree m in x_1, x_2, \dots, x_n , [2. p. 45]. It has been shown [4] that the series (1.1) converges absolutely and uniformly on compact subsets of the open ball $B_R = \{x : |x| < R\}$, where $|x| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

$$(1.2) \quad R^{-1} = \limsup_{m \rightarrow \infty} (\|\nabla_m H(o)\|/m!)^{1/m},$$

and the norm of the m -th gradient of $H(x)$ is defined as follows:

For each n -tuple $a = (a_1, a_2, \dots, a_n)$ of nonnegative integers, let $|a| = a_1 + a_2 + \dots + a_n$, $a! = a_1!a_2! \dots a_n!$, and

$$D^a = \frac{\partial^{|a|}}{\partial x_1^{a_1} \partial x_2^{a_2} \dots \partial x_n^{a_n}}.$$

Then

$$(1.3) \quad \|\nabla_m H(o)\| = \left(\frac{m!}{2^m} \sum_{|a|=m} (D^a H(o))^2 / a! \right)^{1/2}.$$

Further, such convergence of the series (1.1) does not hold on a larger ball centered at the origin.

The concepts of index q , the q -order $\varrho(q)$ and q -type $T(q)$ are introduced by Bajpai et al. [1] in order to obtain a measure of growth of the maximum modulus, when it is rapidly increasing. Thus, let $M(r, H) \rightarrow \infty$ as $r \rightarrow R$ and let for $q = 2, 3, \dots$, set

$$(1.4) \quad \varrho_q(H, R) = \limsup_{r \rightarrow R} \frac{\log^{(q)} M(r, H)}{\log(R/R - r)},$$

where $\log^{(0)} M(r, H) = M(r, H)$ and $\log^{(q)} M(r, H) = \log \log^{(q-1)} M(r, H)$.

For an analytic function f with Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where $R^{-1} = \limsup_{n \rightarrow \infty} |a_n|^{1/n}$, it has been shown [6] that $\varrho q(R)$ as defined by (1.4) with $M(r) = \max_{|z|=r} |f(z)|$ is given by the expression.

$$(1.5) \quad \varrho_q(R) + A(q) = \limsup_{n \rightarrow \infty} \frac{\log^{(q-1)} n}{\log n - \log^+ \log^+ |a_n| R^n},$$

where $A(q) = 1$ if $q = 2$, $A(q) = 0$ if $q \geq 3$ and for $x > 0$, we put $\log^+ x = \max(\log x, 0)$. Now we need the definition of q -type of the function $H(x)$. Suppose that $H(x)$ is of finite nonzero q -order $\varrho q(H, R)$ in the ball B_R . We define the q -type $T_q(H, R)$ of $H(x)$ just like the q -type of a function of a complex variable analytic in the disc $|z| < R$, $0 < R < \infty$, [5]. The q -type

$T_q(H, R)$ of $H(x)$ is defined by the relation

$$(1.6) \quad T_q(H, R) = \limsup_{r \rightarrow R} \frac{\log^{(q-1)} M(r, H)}{(R/(R-r))^{\varrho_q(H, R)}}.$$

If the analytic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is of finite nonzero q -order $\varrho_q(R)$ in the disc $|z| < R$, then the explicit characterization of its q -type $T_q(R)$ in terms of the Taylor coefficients a_n is given by [5] by the relation

$$(1.7) \quad T_q(R) B(q) = V(q),$$

where

$$V(q) = \limsup_{n \rightarrow \infty} (\log^{(q-2)} n) \left(\frac{\log^+ |a_n| R^n}{n} \right)^{\varrho_q(R) + A(q)},$$

$B(q) = (\varrho_q(R) + 1)^{(\varrho_q(R)+1)} / (\varrho_q(R))^{\varrho_q(R)}$ for $q = 2$ and $B(q) = 1$ if $q \geq 3$. Here $M(r, H) = \max |H(x)|_{|x|=r}$. The $H(x)$ is said to have the index q if $\varrho_q(H, R) < \infty$, and $\varrho_{q-1}(H, R) = \infty$. If q is the index of H then $\varrho_q(H, R)$ and $T_q(H, R)$ are called the q -order and q -type of $H = H(x)$ respectively.

The notions of index and q -order play a significant role in classifying the rapidly increasing functions analytic in B_R . However, these concepts fail to compare the rates of growth of any two functions analytic in B_R that have same q -order. This paper gives the distinct parameters for the rates of growth of such functions. Our results extend and improve the results due to Fryant and Shankar [3].

The text has been divided into two parts. Section 1, consists of introductory exposition of the topic and a lemma which is used in proving the main theorems. In Section 2, we obtain expressions for the q -growth order and type of H , explicitly in terms of the m -th gradients $|\nabla_m H(o)|$, interior to the ball B_R .

The following lemma [3] gives upper and lower bounds on the maximum value attained by a harmonic function on the sphere $S(r)$ of radius r centered at the origin, in terms of analytic functions of r .

LEMMA A. *Let $H = H(x)$ be a harmonic in a neighbourhood of the origin in R^n . Then for all $r < R$.*

$$(1.8) \quad M_2(r, H) \leq M(r, H) \leq M_1(r, H),$$

where

$$\begin{aligned} M_2(r, H) &= \left[\frac{1}{C_n r^{n-1}} \int_{S(r)} H^2(x) d\sigma(x) \right]^{1/2} \\ &= \left[\Gamma(n/2) \sum_{m=0}^{\infty} \frac{|\nabla H_m H(o)|^2}{m! \Gamma(m + (n/2))} r^{2m} \right]^{1/2} \end{aligned}$$

and

$$M_1(r, H) = \sqrt{\Gamma(n/2)} \sum_{m=0}^{\infty} \sqrt{dm} (|\nabla_m H(o)| \sqrt{m! \Gamma(m + (n/2))}) r^m,$$

$d\sigma$ is the element of the surface area on the sphere $S(1)$, and C_n is the surface area of $S(1)$.

2. Main results

THEOREM 1. Let $H(x)$, $x = (x_1, x_2, \dots, x_n)$ be harmonic in a neighbourhood of origin in R^n , having index q , and suppose the radius R of harmonicity of $H(x)$ is given by (1.2). Then the q -order of $H(x)$ is given by the expression.

$$\varrho_q(H, R) + A(q) = \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ (|\nabla_m H(o)|/m!) R^m}.$$

Proof. Let $M_2(r, H)$, $M(r, H)$ and $M_1(r, H)$ be as defined in Lemma A, we observe that $[M_2(r, H)]^2$ is an analytic function of r , and thus can be continued analytically to complex variables, where the radius of convergence R of

$$[M_2(z, H)]^2 = \Gamma(n/2) \sum_{m=0}^{\infty} \frac{|\nabla_m H(o)|^2}{m! \Gamma(m + (n/2))} z^{2m}$$

is given by the expression (1.2). Further $|M_2(z, H)|^2 \leq [M_2(r, H)]^2$, where $r = |z|$, and

$$\begin{aligned} \limsup_{r \rightarrow R} \frac{\log^{(q)} [M_2(r, H)]^2}{\log(R/R - r)} &= \limsup_{r \rightarrow R} \frac{\log^{(q)} M_2(r, H)}{\log(R/R - r)} \\ &\leq \limsup_{r \rightarrow R} \frac{\log^{(q)} M_2(r, H)}{\log(R/R - r)} \equiv \varrho_q(H, R) \end{aligned}$$

Thus the growth of the function $[M_2(z)]^2$ is less than or equal to the q -growth order of the harmonic function $H(x)$. Further, by the classical function theoretic result [6] the q -growth order of the function $[M_2(z)]^2$ can be expressed in terms of its Taylor Coefficients as follows :

$$\varrho_q(M_2^2, R) + A(q) = \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} 2m}{\log 2m - \log^+ \log^+ \frac{\Gamma(n/2) |\nabla_m H(o)|^2}{m! \Gamma(m + \frac{n}{2})} R^{2m}}.$$

Since $\Gamma(m + \frac{n}{2})/m! \sim m^{n/2-1}$, so we get

$$\varrho_q(M_2^2, R) + A(q) = \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ \frac{|\nabla_m H(o)|}{m!} R^m}.$$

Now we observe that $M_1(r, H)$ is also an analytic function of r , and thus can be continued to complex variables, where the radius of convergence of the power series

$$M_1(z, H) = \sqrt{\Gamma(n/2)} \sum_{m=0}^{\infty} \sqrt{dm} \left(|\nabla_m H(o)| / \sqrt{m! \Gamma\left(m + \left(\frac{n}{2}\right)\right)} \right) z^m$$

is also R given by the expression (1.2). Further applying the result of Lemma A, we obtain $M(r, H) \leq M_1(r, H) \leq \max_{|z|=r} M_1(z, H)$, and thus the q -growth order of $H(x)$ is less than or equal to the q -growth order $\varrho_q(M_1, R)$ of the function $M_1(z, H)$. But in view of the result (1.5), the q -order $\varrho_q(M_1, R)$ is given by the expression

$$\begin{aligned} \varrho_q(M_1, R) + A(q) &= \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ \sqrt{\frac{\Gamma(n/2)}{dm}} \frac{|\nabla_m H(o)| R^m}{\sqrt{m! \Gamma(m + (n/2))}}} \\ &= \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ \frac{|\nabla_m H(o)|}{\sqrt{m! \Gamma(m + (n/2))}} R^m} \end{aligned}$$

or

$$\begin{aligned} \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ (|\nabla_m H(o)| / m!) R^m} \\ &= \varrho_q(M_2, R) + A(q) \leq \varrho_q(H, R) + A(q) \\ &\leq \varrho(M_1, R) + A(q) \\ &= \limsup_{m \rightarrow \infty} \frac{\log^{(q-1)} m}{\log m - \log^+ \log^+ \frac{|\nabla_m H(o)|}{m!} R^m}. \end{aligned}$$

Hence the theorem is proved.

REMARK 1. For $q = 2$, this theorem includes Theorem 1 by Fryant and Shankar [3].

THEOREM 2. Let $H(x)$, $x = (x_1, x_2, \dots, x_n)$ be harmonic in a neighbourhood of origin in R^n , having index q and suppose the radius R of harmonicity of $H(x)$ is given by (1.2). Then the q -type of $H(x)$ is given by the expression

$$T_q(H, R) = \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} m) \left[\frac{\log^+ \frac{|\nabla_m H(o)|}{m!} R^m}{m} \right]^{\varrho_q(H, R) + A(q)},$$

where $B(q, H) = (\varrho_q(H, R) + 1)^{(\varrho_q(H, R) + 1)} / \varrho_q(H, R)^{\varrho_q(H, R)}$ for $q = 2$ and $B(q, H) = 1$ if $q \geq 3$, and $\varrho_q(H, R) > 0$, $q = 2, 3, \dots$

Proof. In the proof of Theorem 1 it has been shown that the q -order of $[M_2(z, H)]^2$, $H(z)$ and $M_1(z, H)$ are all equal. Thus the q -order of $[M_2(z, H)]^2$ is equal to $\varrho_q(H, R)$, and so the q -type $T_q(M_2^2, R)$, according to (1.7), is given by

$$\begin{aligned}
 T_q(M_2^2, R) &= \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} 2m) \\
 &\quad \times \left[\frac{\log^+ \frac{\Gamma(n/2) |\nabla_m H(o)|^2}{m! \Gamma(m + (n/2))} R^{2m}}{2m} \right]^{\varrho_q(H, R) + A(q)} \\
 &= \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} 2m) \left[\frac{\log^+ \left(\frac{|\nabla_m H(o)|}{m!} R^m \right)}{m} \right]^{\varrho_q(H, R) + A(q)} \\
 &= \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} 2m) \left[\frac{\log^+ \left(\frac{|\nabla_m H(o)|}{m!} R^m \right)}{m} \right]^{\varrho_q(H, R) + A(q)}
 \end{aligned}$$

Since $[M_2(z, H)]^2$ has a Taylor series expansion with real, nonnegative coefficients,

$$\max_{|z|=r} |M_2(z, H)|^2 = [M_2(r, H)]^2.$$

Thus,

$$\begin{aligned}
 (2.1) \quad \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} 2m) \left[\frac{\log^+ \left(\frac{|\nabla_m H(o)|}{m!} R^m \right)}{m} \right]^{\varrho_q(H, R) + A(q)} \\
 = \limsup_{r \rightarrow R} \frac{\log^{(q-2)} [M_2(r, H)]^2}{(R/R - r)^{\varrho_q(H, R)}}.
 \end{aligned}$$

For $q = 2$, it follows from (2.1) that

$$\begin{aligned}
 &\{2\varrho_2(H, R)^{\varrho_2(H, R)}/(\varrho_2(HR) + 1)^{\varrho_2(H, R) + 1}\} \\
 &\quad \times \limsup_{m \rightarrow \infty} \left\{ [\log^+ \frac{|\nabla_m H(o)|}{m!} R^m]^{\varrho_2(H, R) + 1} / m^{\varrho_2(H, R)} \right\} \\
 &= 2 \limsup_{r \rightarrow R} \frac{\log^+ M_2(r, H)}{(R/R - r)^{\varrho_2(H, R)}}.
 \end{aligned}$$

Using Lemma A, we get

$$\leq 2 \limsup_{r \rightarrow R} \frac{\log^+ M(r, H)}{(R/R - r)^{\varrho_2(H, R)}}.$$

For $q \geq 3$, (2.1) gives

$$\begin{aligned} \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} 2m) \left[\frac{\log^+ \frac{|\nabla_m H(o)|}{m!} R^m}{m} \right]^{\rho_q(H, R)} \\ = \limsup_{r \rightarrow R} \frac{\log^{(q-1)} M_2(r, H)}{(R/R - r)^{\rho_q(H, R)}}. \end{aligned}$$

Again using Lemma A, we have

$$\leq \limsup_{r \rightarrow R} \frac{\log^{(q-1)} M(r, H)}{(R/R - r)^{\rho_q(H, R)}}.$$

Next, the q -order of $M_1(z, H)$ is also $\rho_q(H, R)$, and thus by the relation (1.7) the q -type $T_q(M_1, R)$ is given by

$$\begin{aligned} T_q(M_1, R) &= \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} m) \\ &\quad \times \left[\frac{\log^+ \sqrt{\frac{\Gamma(n/2)}{dm}} \frac{|\nabla_m H(o)|}{\sqrt{m! \Gamma(m+(n/2))}} R^m}{m} \right]^{\rho_q(H, R) + A(q)} \\ &= \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} m) \left[\frac{\log^+ \frac{|\nabla_m H(o)|}{m!} R^m}{m} \right]^{\rho_q(H, R) + A(q)} \end{aligned}$$

We thus have

$$\begin{aligned} T_q(M_2, R) &\leq T_q(H, R) \\ &\leq T_q(M_1, R) = \frac{1}{B(q, H)} \limsup_{m \rightarrow \infty} (\log^{(q-2)} m) \\ &\quad \times \left[\frac{\log^+ \frac{|\nabla_m H(o)|}{m!} R^m}{m} \right]^{\rho_q(H, R) + A(q)} \end{aligned}$$

Hence the theorem is proved.

REMARK 2. For $q = 2$, this theorem includes Theorem 2 by Fryant and Shankar [3].

References

- [1] S. K. Bajpai, G. P. Kapoor and O. P. Juneja, *On entire functions of fast growth*, Trans. Amer. Math. Soc. 203 (1975), 275–298.
- [2] N. Du Plessis, *An Introduction to Potential Theory*, Oliver & Boyd, Edinburg, 1970.
- [3] A. Fryant and H. Shankar, *Growth of harmonic functions in hyper sphere*, J. Math. Anal. Appl. 122 (1987), 453–462.

- [4] T. B. Fugard, *On the largest ball of harmonic continuation*, J. Math. Anal. Appl. 90 (1982), 548–554.
- [5] K. Gopal and G. P. Kapoor, *Coefficient characterization for functions analytic in the unit disc having fast rates of growth*, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 25 (73) : 1, (1981), 367–380.
- [6] G. P. Kapoor and K. Gopal, *On the coefficient of functions analytic in the unit disc having fast rates of growth*, Ann. Mat. Pura Appl. 61 (1979), 337–349.

DEPARTMENT OF MATHEMATICS
D.S.M. DEGREE COLLEGE
KANTH - 244 501 (MORADABAD) U.P., INDIA

Received November 30, 1998.