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THE GROWTH OF HARMONIC FUNCTIONS 
IN HYPERSPHERES 

A b s t r a c t . The present paper deals with the growth of solutions (harmonic in n-
dimensional Euclidean space Rn) of Laplace's differential equation. 

i d 2 d2 a2 \ „ ft 

Characterizations of ς-order and ς-type of harmonic functions H(x) have been obtained 
explicitly in terms of the m-th gradients |V m #(o ) | · The H(x) are taken to be regular in 
a finite hyperball BR = {χ : |z| < Ä}, where |x| = (x j + x2 + . . . + x 2 ) 1 / 2 · 

1. Introduction 
A real valued function H(x), χ — (χι, 12, . . . , xn) is said to be harmonic 

in n-dimensional Euclidean space Rn if it has continuous partial derivatives 
of the first and second order and satisfies the Laplace equation 

d2H d2H d2H 

dx\ + dx\ + ''' + dx\ " ' 

throughout a neighbourhood of the origin in Rn. Such functions have spher-
ical harmonic expansions 

00 
(1.1) H(x) = £ Hm(x), 

m = 0 
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where Hm(x) are harmonic, homogeneous polynomials of degree τη in 
x i , i 2 , . . · ,x n , [2. p. 45]. It has been shown [4] that the series (1.1) con-
verges absolutely and uniformly on compact subsets of the open ball BR = 
{x : |x| < R}, where |x| = {x\ + x\ + . . . + x*)1 / 2 . 

(1.2) R - 1 = limsup(| |VmH(o)| | /m!)1/m , 
m—»oo 

and the norm of the m-th gradient of H(x) is defined as follows: 
For each η-tuple a — (a 1,02,. . · ,an) of nonnegative integers, let |a| = 

öi + a2 + . . . + a n , a! = a i !a 2 ! . . . an!, and 

dial 
Da -

dxfdx? ...dxtr 

Then 

(1.3) | |Vm / /(o)| | = £ {D«H{o))2/a\} 
1/2 

| a | = m 

Further, such convergence of the series (1.1) does not hold on a larger 
ball centered at the origin. 

The concepts of index q, the q-order g(q) and q-type T(q) are introduced 
by Bajpai et al. [1] in order to obtain a measure of growth of the maximum 
modulus, when it is rapidly increasing. Thus, let M(r,H) —• 00 as r —• R 
and let for q = 2 ,3 , . . . , set 

(1.4) = 

where log(o) M(r, Η) = M(r, H) and log(<7) M(r, Η) = log log( , ,_1) M(r, H). 
For zin analytic function / with Taylor series expansion f(z) = 

Ση=οαηζη> w^ere R'1 - l imsup n _ 0 0 | a n | 1 / n , it has been shown [6] that 
ßq(R) as defined by (1.4) with M(r) = max|z |= r \f{z)\ is given by the ex-
pression. 

log ( 9 _ 1 )n 
(1.5) 6q(R) + A(q) = limsupn_ 

' log η — log+ log |an | i in 

where yl(g) = 1 if q = 2, A(q) = 0 if q > 3 and for χ > 0, we put log+ χ = 
max(logx, 0). Now we need the definition of ς-type of the function H(x). 
Suppose that H(x) is of finite nonzero g-order gq{H, R) in the ball BR. We 
define the g-type Tq(H,R) of H(x) just like the ς-type of a function of a 
complex variable analytic in the disc \z\ < R, 0 < R < 00, [5]. The ς-type 
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Tq(H, R) of Η(x) is defined by the relation 

( 1 . 6 ) Tq(H, R) = lim sup 
l o g (q~l)M{r,H) 

r (R/{R - r))M».«>" 

If the analytic function f ( z ) = anzn is of finite nonzero g-order gq(R) 
in the disc \z\ < R, then the explicit characterization of its <7-type Tq(R) in 
terms of the Taylor coefficients an is given by [5] by the relation 

B(q) = {eq{R) + for q = 2 a n d B(q) = 1 if q > 3. 
Here M(r,H) = max| / i (x) | | x |_ r . The H(x) is said to have the index q if 
gq(H,R) < 00, and (H,R) = 00. If q is the index of Η then gq{H,R) 
and Tq(H, R) are called the q-order and q-type of Η = Η (χ) respectively. 

The notions of index and ς-order play a significant role in classifying the 
rapidly increasing functions analytic in BR. However, these concepts fail 
to compare the rates of growth of any two functions analytic in BR that 
have same g-order. This paper gives the distinct parameters for the rates of 
growth of such functions. Our results extend and improve the results due to 
Fryant and Shankar [3]. 

The text has been divided into two parts. Section 1, consists of intro-
ductory exposition of the topic and a lemma which is used in proving the 
main theorems. In Section 2, we obtain expressions for the ς-growth order 
and type of H, explicitly in terms of the m-th gradients |Vm i / (o) | , interior 
to the ball BR. 

The following lemma [3] gives upper and lower bounds on the maximum 
value attained by a harmonic function on the sphere 5(r) of radius r centered 
at the origin, in terms of analytic functions of r. 

LEMMA A . Let Η = H(x) be a harmonic in a neighbourhood of the origin 
in Rn. Then for all r < R. 

where 

(1.7) Tq(R)B(q) = V(q), 

V(q) = l imsup n ^ 0 0 ( log^- 2 )n) ( 1 ° 6 + )*(«)+*(«> 

( 1 . 8 ) M2{r,H) < M(r, Η) < Μ^Γ,Η), 

where 

M2(r,H)= J H2(x)da(x) 
1 n S(r) 

1/2 
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and 
oo 

Mx{rtH) = ν β Σ ^(\VmH(o)\y/m\r(m + (n/2)))rm , 
m = 0 

da is the element of the surface area on the sphere 5(1), and C„ is the 
surface area of S( 1). 

2. Main results 

THEOREM 1. Let H(x), χ = (χχ, X2, • • •, xn) be harmonic in a neighbourhood 
of origin in Rn , having index q, and suppose the radius R of harmonicity of 
H(x) is given by (1.2). Then the q-order of H(x) is given by the expression. 

log^-1) m 
ßq(H, R) + A(q) = ^ u p i o g T n _ i o g + i o g + ( | V m g ( o ) | / m , ) f l m . 

P r o o f . Let M2{r,H) , M(r,H) and Mi(r,H) be as defined in Lemma A, 
we observe that [M2(r, H)]2 is an analytic function of r, and thus can be 
continued analytically to complex variables, where the radius of convergence 
Äof 

is given by the expression (1.2). Further \M2{z,H)\2 < [Mi{r, H)]2, where 
r = |z|, and 

l ; _ _ l o g W [ M a ( r , H ) ] 2 log MM2(r,H) 
log(R/R-r) = \og(R/R - r) 

_ l o g ^ M 1 { r 1 H ) _ , „ ~ 
- l l m S U P ι /ρ/ρ Γ Ξ Ä 

r—*R log (R/R - r) 

Thus the growth of the function [M2{z))2 is less than or equal to the 
ς-growth order of the harmonic function H(x). Further, by the classical 
function theoretic result [6] the g-growth order of the function [M2{z)]2 can 
be expressed in terms of its Taylor Coefficients as follows : 

Qq(M2,R) + A(q) = lim sup Γ(η/η\ν h(o) Ι» „ · 
— log 2m — log log R2m 

Since Γ(πι + f )/m! ~ m n / 2 _ 1 , so we get 

log ( 9 _ 1 ) m 
Qq(M2, R) + A(q) = lim sup 

log m — log+ log"1" I ^ W I J E » · 
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Now we observe that Μχ (r, H) is also an analytic function of r, and thus 
Can be continued to complex variables, where the radius of convergence of 
he power series 

Μ^ζ,Η) = y/r(n/2) f ; V^(\VmH(o)\/^m\r(m+ 

is also R given by the expression (1.2). Further applying the result of Lemma 
A, we obtain M(r,H) < Mi(r,H) < max|2|=r M\(z, H), and thus the q-
growth order of Η (χ) is less than or equal to the q-growth order eq{M\, R) of 
the function M\{z, H). But in view of the result (1.5), the ς-order gq(My,R) 
is given by the expression 

log(«-1) m 
ρΛΜι,Κ) + Λ(ς) - lim sup . 

logm - log+ log+ J ^ V 6 5 6 V dm ν/τη!Γ(τη+( n/2)) 

l og ( , - 1 ) m 
- lim sup ; ; „, .. 

m—oo logm — log log , r - " ^ ! — R m 
6 6 & /m!r(m+(n/2)) 

or 

r (?- l ) log ( q - l ) m 
!!?-!«Ρ logm - log+ log+(|VmÄ'(o)|/77i!)iZm 

= Qq(M2,R) + A(q) < Qq(H, R) + A(q) 

< e(M1,R) + A(q) 

l og ( , - 1 ) m 
= lim sup 

nwoo log m - log"1" log"1" 1 Rm ' 

Hence the theorem is proved. 

REMARK 1. For q = 2, this theorem includes Theorem 1 by Fryant and 
Shankar [3]. 

THEOREM 2. Let H(x), χ = (χχ , I 2 , · · ·, x n ) be harmonic in a neighbourhood 
of origin in Rn, having index q and suppose the radius R of harmonicity of 
H{x) is given by (1.2). Then the q-type of H(x) is given by the expression 

^ = ΈΓ-m limsup(log(«-2) m) ^ 
ts{q,H) m—oo L m 

where B(q,H) = (gq(H,R) + 1)<*("·Λ)+1>/ρ,(#,Λ)*(»·Λ> for q = 2 and 
B{q,H) = \ ifq>3, and gq(H, R) > 0, q = 2 ,3 , . . . 
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P r o o f . In the proof of Theorem 1 it has been shown that the g-order of 
[M2(Z,H)]2, H(X) and Μι(ζ,Η) are all equal. Thus the g-order of 
[.M2(z,H)]2 is equal to ρη(Η,ϋ), and so the ς-type T^M^R), according 
to (1.7), is given by 

Tq{Ml R) = — i — limsup(log('-2) 2m) 
D\q, t l ) m—oo 

riog+ r ( n / 2 ) l v ^ ° 2 l 3 R 2 m i ° m\r(m+{ η/2)) Λ 

2m 

ev{H,R)+A(q) 

= p , 1 m limsup(log(q 2 ) 2 m ) η) m—oo 

limsup(log^' -2^ 2m) 
B(q,H) 

Since [M2(z, H)]2 has a Taylor series expansion with real, nonnegative co-
efficients, 

max\M2(z,H)\2 = [M2(r,H)}2. 
\z\=r 

Thus, 

( 2 1 ) Έ Γ - m l i m sup(log ( 9" 2 ) 2m) 
£>{q,n) m—>oo m 

gq(H,R) + A(q) 

. . l o g ^ 2 ) [ M 2 ( T , H ) } 2 

= h Z T (Ä/Ä - r ) * < " . * > 

For q = 2, it follows from (2.1) that 

χ lim sup / (log+ R^M*,*)^/m*,(H,R)\ 
m—»oo t ml ) 

= 2 lim sup 
log+ M2(r,H) 

R (R/R-r)E^H>R)' 

Using Lemma A, we get 

< 2 lim sup 
log+ M(r,H) 

R {R/R-r)»LH'*Y 
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For q > 3, (2.1) gives 

— i - — limsup(log(« 2 )2m) 
r!(q,ii) m—»oo 

log^" 1 ) M 2 ( r , # ) 

m 

= lim sup 
ü ( Ä / Ä - r ) M « . « > ' 

l o g ( 9 _ 1 ) M(r , i f ) 

Again using Lemma A, we have 

Next, the q-order of M\{z,H) is also gq(H,R), and thus by the relation 
(1.7) the type Tq(MltR) is given by 

Tq{MuR) = — i — limsup(log('-2) m) 
£f(q,Il) m—>oo 

limsup(log^9 2^m) 
B(q,H) m—»oo 

We thus have 
Tq(M2,R) <Tq(H, R) 

τη 

< Tq(MuR) = — l — limsup(log('-2 ' m) 

riog+ 

m 

m—»oo 

Hence the theorem is proved. 

REMARK 2 . For q = 2, this theorem includes Theorem 2 by Fryant and 
Shankar [3]. 
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