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NOTE ON ROBINSON'S FUNCTIONAL EQUATION 

Abstract. The purpose of this note is to give a new proof of the fact, that the 
only entire solutions of the Robinson's functional equation are given by f(z) = Az or 
f(z) = A sin az, where A, a are complex constants and a is real or purely imaginary. 

Robinson in [3] solved the following functional equation 

(1) \f(s + it)\ = \f(s) + f(it)\, 

where / is entire function of a complex variable, and s, t are real variables. 
Hille [2] found all entire solutions of the functional equation 

(2) |/(s + zi)|2 = |/(s)|2 + |/(ii)|2. 

Haruki [1] showed that equations (1) and (2) are equivalent. 
Robinson's result from the paper [3] may be presented in the following 

form: 

THEOREM. The only entire solutions of (I) are 

f(z) = Az and f(z) = A sin az, 

where A is an arbitrary complex constant and a is an arbitrary real or purely 
imaginary constant. 

This paper gives a new proof of the above theorem - different to the 
proof we can find in [3]. 

First we will prove the following 

LEMMA 1. The only entire solutions of the functional equation 

(3) f{x + y)f(x -y) = /(χ)2 - f(y)2, x,y e C 

are 
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f ( z ) = Az and f ( z ) = Asinaz, 
where A, a are complex constants. 

P r o o f . Let an entire function / satisfy (3). We may assume that f φ 0. 
Putting in (3) y = χ = 0 we have 

(4) m = o. 

Differentiating both sides of (3) with respect to χ and y we obtain 

f"(x + y)f(x - y) - f(x + y)f"(x - y) = 0 

whence 

(5) f"(x)f(y) = f(x)f"{y) 
for all Ε C. Since / φ 0, there exists a non-empty domain D, where 
f ( z ) φ 0. By (5) 

= c2 for all ζ € D, 
f(^) 

where c is a complex number. From the Identity Theorem we obtain 

f"{z) = c2f{z) for all ζ e C. 

If c = 0, then 

(6) f ( z ) = Az 

with respect to (4), where A is a complex constant. If c φ 0, than 

ecz - e~" (7) f ( z ) = A = Asinoz, Zi 
where A is a constant and ai — c. Simple calculations show, that (6) and 
(7) with arbitrary complex constants a and A satisfy (3). • 

Let / be an entire function. It is easy to see that the function defined as 

(8) g(z) = f ( z ) 
is also entire. 

The following result can be found in [1]. 

LEMMA 2. If an entire function f satisfies equation ( 1 ) , then 

(9) f(x + y)g{x - y) = ( f ( x ) + f(y))(g(x) - g(y)) 

for all complex χ and y, where g is given by (8) and 
(10) 1/(01 = \g(z)\ 
for all complex z. 

In the proof of Theorem, Robinson determined coefficients of power series 
expansion of an entire solutions of (1). We will apply the above lemmas. 
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Proof of Theorem. Let an entire function / satisfy equation (1). We may 
assume that / φ 0. By (10) and by the Maximum Modulus Principle we 
obtain that 
(11) g(z) = c/(z) for ζ 6 C 
where c is a complex constant of modulus 1. By (11) we can rewrite (9) in 
the form 

f(x + y)f(x-y) = f(x)2-f(y)2. 
Hence and by Lemma 1 we obtain that 

f(z) — Az or f (z) — A sin az, 
where A,a are complex constants. To end the proof it is enough to show 
that a2 G R. Write 

n = o v ' 

From (8) and (11) we obtain 
«21 (nz\2n+l «21 (az\2n+1 

Comparing coefficients of ζ and z3 yields 

Ää = cAa and Aa3 = cAa3. 
Since acA φ 0, we get a2 = a2 , hence a2 is real. • 
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