Krzysztof Piejko

NOTE ON ROBINSON’S FUNCTIONAL EQUATION

Abstract. The purpose of this note is to give a new proof of the fact, that the
only entire solutions of the Robinson’s functional equation are given by f(z) = Az or
f(z) = Asinaz, where A, a are complex constants and a is real or purely imaginary.

Robinson in [3] solved the following functional equation

(1) |f(s +at)] = |f(s) + f(it)],
where f is entire function of a complex variable, and s, ¢ are real variables.
Hille [2] found all entire solutions of the functional equation

(2) [f(s+it)|* = |£(s)I* + | £ (it) .
Haruki [1] showed that equations (1) and (2) are equivalent.

Robinson’s result from the paper [3] may be presented in the following
form:

THEOREM. The only entire solutions of (1) are
f(z)=Az and f(z)= Asinaz,

where A is an arbitrary complez constant and a is an arbitrary real or purely
tmaginary constant.

This paper gives a new proof of the above theorem - different to the
proof we can find in [3].
First we will prove the following

LEMMA 1. The only entire solutions of the functional equation
(3) flz+y)f(z-y) = f(z)*- f(v)*, =zyeC
are
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f(z) = Az and f(z)= Asinaz,
where A, a are complex constants.
Proof. Let an entire function f satisfy (3). We may assume that f # 0.
Putting in (3) y = z = 0 we have
(4) f(0)=o.
Differentiating both sides of (3) with respect to x and y we obtain
ffz+y)flz—y) - flz+y)f'(z-y)=0
whence
(5) (@) f(y) = f(=)f"(y)

for all z,y € C. Since f # 0, there exists a non-empty domain D, where

f(z) #0. By (5)

f;l((:)) =c? forall z€ D,

where c is a complex number. From the Identity Theorem we obtain
f"(z2) =c*f(z) forall zeC.

If c=0, then

(6) f(z) = Az

with respect to (4), where A is a complex constant. If ¢ # 0, than
cz _ ,—cz
(7 f(z) = Ae—2,e—- = Asinaz,
i
where A is a constant and ai = c. Simple calculations show, that (6) and
(7) with arbitrary complex constants a and A satisfy (3). m

Let f be an entire function. It is easy to see that the function defined as
(8) 9(z) = f(?)

is also entire.
The following result can be found in [1].

LEMMA 2. If an entire function f satisfies equation (1), then

(9) flz+y)9(z - y) = (f(z) + F(¥)(9(2) - 9(v))
for all complex = and y, where g is given by (8) and
(10) 1f(2)] = 9(2)]

for all complex z.

In the proof of Theorem, Robinson determined coefficients of power series
expansion of an entire solutions of (1). We will apply the above lemmas.
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Proof of Theorem. Let an entire function f satisfy equation (1). We may
assume that f # 0. By (10) and by the Maximum Modulus Principle we
obtain that

(11) g(z)=cf(z) forzeC
where c is a complex constant of modulus 1. By (11) we can rewrite (9) in

the form
f+y)f(z—y) = f(z)* - f(v)*.
Hence and by Lemma 1 we obtain that

f(z)=Az or f(z)= Asinaz,

where A,a are complex constants. To end the proof it is enough to show
that a® € R. Write

f(z)= Asmaz—Az (2n—+1)'

)2n+1

From (8) and (11) we obtain
2n+1 2n+1

EZ_;)(—I)"((%'H-I —CAZ( b 2n+1)

Comparing coefficients of z and 23 yields
Ad =cAa and Aa®=cAd.

Since acA # 0, we get @* = a2, hence a? is real. a
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