

Krzysztof Piejko

NOTE ON ROBINSON'S FUNCTIONAL EQUATION

Abstract. The purpose of this note is to give a new proof of the fact, that the only entire solutions of the Robinson's functional equation are given by $f(z) = Az$ or $f(z) = A \sin az$, where A, a are complex constants and a is real or purely imaginary.

Robinson in [3] solved the following functional equation

$$(1) \quad |f(s + it)| = |f(s) + f(it)|,$$

where f is entire function of a complex variable, and s, t are real variables. Hille [2] found all entire solutions of the functional equation

$$(2) \quad |f(s + it)|^2 = |f(s)|^2 + |f(it)|^2.$$

Haruki [1] showed that equations (1) and (2) are equivalent.

Robinson's result from the paper [3] may be presented in the following form:

THEOREM. *The only entire solutions of (1) are*

$$f(z) = Az \quad \text{and} \quad f(z) = A \sin az,$$

where A is an arbitrary complex constant and a is an arbitrary real or purely imaginary constant.

This paper gives a new proof of the above theorem – different to the proof we can find in [3].

First we will prove the following

LEMMA 1. *The only entire solutions of the functional equation*

$$(3) \quad f(x + y)f(x - y) = f(x)^2 - f(y)^2, \quad x, y \in \mathbb{C}$$

are

1991 *Mathematics Subject Classification*: 39B32, 30D05.

Key words and phrases: entire functions, Hille's functional equation, Robinson's functional equation.

$$f(z) = Az \quad \text{and} \quad f(z) = A \sin az,$$

where A, a are complex constants.

Proof. Let an entire function f satisfy (3). We may assume that $f \neq 0$. Putting in (3) $y = x = 0$ we have

$$(4) \quad f(0) = 0.$$

Differentiating both sides of (3) with respect to x and y we obtain

$$f''(x+y)f(x-y) - f(x+y)f''(x-y) = 0$$

whence

$$(5) \quad f''(x)f(y) = f(x)f''(y)$$

for all $x, y \in \mathbb{C}$. Since $f \neq 0$, there exists a non-empty domain D , where $f(z) \neq 0$. By (5)

$$\frac{f''(z)}{f(z)} = c^2 \quad \text{for all } z \in D,$$

where c is a complex number. From the Identity Theorem we obtain

$$f''(z) = c^2 f(z) \quad \text{for all } z \in \mathbb{C}.$$

If $c = 0$, then

$$(6) \quad f(z) = Az$$

with respect to (4), where A is a complex constant. If $c \neq 0$, then

$$(7) \quad f(z) = A \frac{e^{cz} - e^{-cz}}{2i} = A \sin az,$$

where A is a constant and $ai = c$. Simple calculations show, that (6) and (7) with arbitrary complex constants a and A satisfy (3). ■

Let f be an entire function. It is easy to see that the function defined as

$$(8) \quad g(z) = \overline{f(\bar{z})}$$

is also entire.

The following result can be found in [1].

LEMMA 2. *If an entire function f satisfies equation (1), then*

$$(9) \quad f(x+y)g(x-y) = (f(x) + f(y))(g(x) - g(y))$$

for all complex x and y , where g is given by (8) and

$$(10) \quad |f(z)| = |g(z)|$$

for all complex z .

In the proof of Theorem, Robinson determined coefficients of power series expansion of an entire solutions of (1). We will apply the above lemmas.

Proof of Theorem. Let an entire function f satisfy equation (1). We may assume that $f \neq 0$. By (10) and by the Maximum Modulus Principle we obtain that

$$(11) \quad g(z) = cf(z) \quad \text{for } z \in \mathbb{C}$$

where c is a complex constant of modulus 1. By (11) we can rewrite (9) in the form

$$f(x+y)f(x-y) = f(x)^2 - f(y)^2.$$

Hence and by Lemma 1 we obtain that

$$f(z) = Az \quad \text{or} \quad f(z) = A \sin az,$$

where A, a are complex constants. To end the proof it is enough to show that $a^2 \in \mathbb{R}$. Write

$$f(z) = A \sin az = A \sum_{n=0}^{\infty} (-1)^n \frac{(az)^{2n+1}}{(2n+1)!}.$$

From (8) and (11) we obtain

$$\bar{A} \sum_{n=0}^{\infty} (-1)^n \frac{(\bar{a}z)^{2n+1}}{(2n+1)!} = cA \sum_{n=0}^{\infty} (-1)^n \frac{(az)^{2n+1}}{(2n+1)!}.$$

Comparing coefficients of z and z^3 yields

$$\bar{A}\bar{a} = cAa \quad \text{and} \quad \bar{A}\bar{a}^3 = cAa^3.$$

Since $acA \neq 0$, we get $\bar{a}^2 = a^2$, hence a^2 is real. ■

References

- [1] H. Haruki, *On the equivalent of Hille's and Robinson's functional equations*, Ann. Pol. Math. 28 (1973), 261–264.
- [2] E. Hille, *A Pythagorean functional equation*, Ann. Math. 24 (1923), 175–180.
- [3] R. M. Robinson, *A curious trigonometric identity*, Amer. Math. Monthly 64 (1957), 83–85.

DEPARTMENT OF MATHEMATICS

SILESIAN UNIVERSITY

ul. Bankowa 14

40-007 KATOWICE, POLAND

DEPARTMENT OF MATHEMATICS

TECHNICAL UNIVERSITY OF RZESZÓW

ul. W. Pola 2

35-959 RZESZÓW, POLAND

E-mail: piejko@prz.pl

Received November 3, 1998.

