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THE HADAMARD INEQUALITIES
FOR s-CONVEX FUNCTIONS IN THE SECOND SENSE

Abstract. We derive some inequalities of Hadamard’s type for s-cénvex functions in
the second sense and give some applications connected with special means.

1. Introduction
In the paper [11] the following class of functions was considered.

DEFINITION 1.1. Let s € (0,1]. A real valued function on an interval I C
[0,00) is s-convez in the second sense provided

(1.1) flau+ Bv) < o’ f(u) + B°f(v)
for all u, v € I and a, B > 0 with a + 8 = 1. This is denoted by f € K2.
This definition of s-convexity was considered by Breckner (1], where the

problem of whether rationally s-convex functions are s-convex was explored.
We record here some of the results from [11] about s-convex functions.

THEOREM 1.2. Let 0 < s < 1. If f € K2 then f is nonnegative.

Indeed one can put u =v =z and a =3 =1/2in (1.1) to get f(z) > 0.
Recall that a function f : [0,00) — [0,00) is a ¢-function if f(0) = 0 and
f is nondecresing and continuous.

THEOREM 1.3 [11, Corollary 2]. If & is a conver ¢-function and f is a
¢-function in K2 then the composition @ o f belongs to K2. In particular
& € K2.

There are, however, ¢-functions in K2 which are neither of the form
&(u®) nor ¢* for any convex ¢-function @ ([11], Example 3]).
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For a convex function in an interval I, Hadamard’s inequalities are

o

(a+)/2) < [ f(z) dz/(b - a) < (f(a) + £(b))/2

]

fora, be I with a < b.

Some generalizations and applications of these inequalities are given in
the papers [2-10] and the book [12], which gives further references.

In this paper we prove some inequalities like Hadamard’s for s-convex
functions in the second sense. We give some applications for numerical in-
equalities involving special means. The integrals exist because of the fol-
lowing result, which is analogous to the local Lipschitz property of convex
functions.

THEOREM 1.4. Let f be a function on [a,b] which is s-convez in the second
sense. Then fora <y < z < b we have

(1.2) 17 (y) = f(2)| < (z - y)* max (f(b)/(b—v)*, fa)/(z - a)°)

so the f is locally Hélder continuous of order s on (a,b). Thus f is Riemann
integrable on [a,b].

Proof Putt:=(z—y)/(b—y) so that z = (1—t)y + tb and by (1.1)
flz) A=) fly) +t°f(b) < f(y) +£°f(b).

Thus f(z) - f(y) <t°f(b) = ((z —9)*/(b—y)*) £(b).

Similarly we have f(y) — f(z) < (z — y)*f(a)/(z — a)*® by choosing t so
that y = ta+ (1 — t)z. That establishes (1.2) and the other assertions follow
easily.

In the case where f actually takes on its least possible value, 0, we have
monotonicity on either side of the zero.

THEOREM 1.5. Let f be a function on [a,b] which is s-convez in the second
sense. If f(c) =0 for some c € [a,b] then f(z) < f(y) ifc <z <y<band
(@) > fy) fa<z<y<ec |

Proof. If c < z € y < b then f(z) Sf(c) + (L —t)°f(y) by (1.1) if

<t
z=tc+(1-t)y. So f(z) £ (1-t)°f(y) < f(y). The inequality on the other
side of c is similar.

2. Hadamard’s Inequality

Qur first result is a generalization of Hadamard’s Inequalities which re-
duces to it in the case s = 1.
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ITHEOREM 2.1. Let f be a s-convez function in the second sense on an in-
r,erval IC[0,00) and leta, be I witha <b. Then

b

(21) 227" f((a+b)/2) < | f(z)dz/(b~ a) < (f(a) + f(B))/(s + 1).

a

Proof. As f is s-convex on I we have
f(ta+ (1 -t)b) < t°f(a) + (1 - 2t)° f(b)
for all ¢ € [0, 1]. Integrating this inequality we get

1 1 1
Jfita+ (1—t)p)dt < f(a) [t dt+ F(B) (1 - t)* dt = (F(a) + F(B))/(s + 1)
0 0

0

and the second inequality in (2.1) follows.
To prove the first inequality, observe that for all z, y € I we have

(2.2) fllz+9)/2) < (f(z) + f(¥))/2°.
Then put z :=ta+ (1 —t)b and y :=tb+ (1 — t)a to get
f((a+18)/2) < (f(ta+ (1 - £)b) + f(tb+ (1 - t)a))/2°.
Integrating this inequality we get the first part of (2.1).
REMARK 2.2. For any s € (0, 1] the second inequality in (2.1} is sharp.
Indeed by Theorem 1.3 the function f(z) := z* is s-convex on [0, 1] and
we have {3 2* dz = 1/(s + 1) = (£(0) + f(1))/(s + 1).

3. The mapping H and its properties
Let f € L'[a,b] and define

(3.1) H(t) :=

)(a + b)/2)dz

fot t € [0,1].

THEOREM 3.1. Let f be a s-convex function in the second sense on an in-
terval [a,b]. Then H is s-convez on [0,1] and if 0 <t <1 then

(3.2) H(t) > 2°71f((a + b)/2).
Proof. Let ¢, t; € [0,1] and «, 8 > 0 with a + 8 = 1. Then
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H(aty + ft2)

b
= [ fl(at1 + Bta)z + (1 - (ats + Bt2))(a + b)/2)] dz/(b - a)

flaftiz + (1 - t1)(a + b)/2] + Blt2z + (1 - t2)(a + b)/2}) dz/(b - a)

< Me'f(tiz + (1 - t1)(a +8)/2) + B° f(taz + (1 — t2)(a + b)/2)] dz/(b - a)

P O R b O

=a’H(t;) + B H(t2)

which shows that H is s-convex in the second sense.
Now let t € (0,1]. Put u:=tz + (1 —t)(a + b)/2 to get

H(t)=|f(u)du/(p-q)

where p:=tb+ (1 —t)(a+ b)/2 and q :=ta + (1 — t)(a + b)/2.
Applying (2.1) we get

{fw)du/(p—q) 2 2°7 f((p+9)/2) = 227" f((a + b)/2)
q

and the inequality (3.2) follows.
For t = 0 we use Theorem 1.2 which says that f((a + b)/2) > 0. Define

b
Hy(t) = t* | f(z)dz/(b - a) + (1 — 1)*f((a + b)/2)

and
Ho(t) :=[f(ta+ (1 —t)(a+b)/2) + f(tb+ (1 —t)(a+ b)/2)]/(s+ 1)

THEOREM 3.2. Let f be a s-conver function in the second sense on an in-
terval [a,b). Then for0<t<1

(3.3) H(t) < min(Ha(t), Ha(t)).

Proof. Applying the second half of (2.1) we have
q

| f(w)du < (F(p) + £(@))/(s+ 1)

P

=(f(tb+ (1 -t)(a+b)/2) + f(ta+ (1 -t)(a+b)/2))/(s+1)
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while for ¢ = 0 it again reduces to Theorem 1.2 which says that f((a +b)/2)
> 0.
For H,, we have
fltz+ (1 -t)(a+b)/2) <t*f(z) + (1 - t)° f((a +b)/2)

and integrating this inequality we get the remaining inequality needed for
(3.3).

On the other hand if we let H := max(H;, H;) then we can also get
bounds.

THEOREM 3.4. Let f be a s-convex function in the second sense on an in-
terval [a,b]. If H := max(H, H;) for 0 <t <1 we have then

H(t) <t*(f(a) + £(5))/(s + 1) + (1 = t)°2f((a + b)/2)/(s + 1).

Proof. We have
Ha(t) < (£°f(a) + (1 —t)°f((a +0)/2) + t° f(b)
+(1-t)°f((a+b)/2))/(s+ 1)
=t°(f(a) + F(8))/(s + 1) + (1 — )*2f((a + b)/2)/(s + 1).
On the other hand, by (2.1) we know that

b
[ f(2)dz/(b—a) < (f(a) + F(B))/(s + 1)

and
(1-t)*f((a+8)/2) < (1 -1)°2f((a +b)/2)/(s + 1)
for 0 <t < 1 so that
Hyi(t) <¢*(f(a) + f(B))/(s + 1) + (1 - £)°2f((a + b)/2) /(s + 1)
as required.

REMARK 3.2. If f is a convex function on [a,b] and H is as above, then we
get
inf{H(t):te[0,1]} = H(0) = f((a+ b)/2)

and
b

sup{H(t): t € [0,1]} = H(1) = Sf(:c)d:c/(b -a)

which recovers some results from [4] (see also [5] and [9]).
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Also we get the inequalities
b
H(t) < min (t {£(z)dz/(b—a)+ (1 - t)f((a+)/2),

[f(ta+ (1 - t)(a+b)/2) + f(tb+ (1 - t)(a +)/2))/2)
and

H(t) < t(f(a) + F(9))/2+ (1 - t)f((a +b)/2)
for all t € [0, 1], which complement the results from [9).

4. The function F and its properties

Assume that f is Lebesque integrable on [a,b]. Consider the function
defined by
bb

Ft):={{f(tz+ (1 - t)y) dz dy/(b - o)’

for t € [0,1]. The following result can be proved similarly to Theorem 3.1.

THEOREM 4.1. Let f be s-convez in the second sense on [a,b]. Then F is
also s-convez in the second sense and F(1/2+t) = F(1/2~1) fort € (0,1].

Now we prove some inequalities regarding this double integral.

THEOREM 4.2. Let f be s-convez in the second sense on [a,b]. Then for
t € [0,1] we have:

bbd
(4.1) 2170 F(t) > || f((z + v)/2) dz dy/(b - a)?,
(4.2) F(t) > 2°" ' max(H(t), H(1 - t)),
b
(4.3) F(t) < (*+(1-1)°)| f(z)dz/(b - a)

a

and
(4.4) F(t) < (f(a) + f(ta+ (1 —t)b) + f(b) + f(tb+ (1 — t)a))/(s + 1)°.
Proof. Since f is s-convex in the second sense we have

(fltz+ (1= t)y) + flty + (1 - )))/2° 2 f((z + ¥)/2)
for all t € [0,1] and z, y € [a, b]. Integrating over [a,b]? we get
bb
H fltz+ (1 = t)y) + f(ty + (1 - t)z))/2° dzdy > || f((z + v)/2) dz dy

aa
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and as
bb bd
[{rtz+ @ -ty)dzdy = f(ty + 1 - t)z) dzdy

this yields (4.1).
Now for y € [a, b] define

b
Hy(t):=|ftz + (1 - t)y) dz/(b - a)
so that, as in Theorem 3.1 we have
Hy(t) = [ f(u)du/(p - q)
P

where p := tb+ (1 — t)y and q := ta + (1 — t)y. Applying Hadamard’s
inequality we get

| flw)du/(p—q) > 2271 f((p+ 9)/2) = 2°7 f(t(a + b)/2+ (1 — t)y)
r

and integrating over y € [a,b] we find F(t) > 2°"'H(1 — t). Since F(t) =
F(1 —t) we get (4.2).
To get (4.3) we integrate the inequality

fltz + (1= t)y) < f(z) + (1 -1)°f(y)

over [a, b]2.
Now observe that, in the notation above, we have

Hy(t) = { f(w)du/(p - q) < (f(tb+ (1= t)y) + f(ta + (1 — t)y))/(s + 1)

so that integrating over [a, b] we get

b
F(t) < (£t + (1 - t)y) + f(ta+ (1 - t)y)) dy/((s + 1)(b - a))-

a

As above we have

b
70+ (1 - t)y)dy/(b—a) < (F(b) + f(tb+ (1—t)a)) /(s + 1)

a

and
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b

[ flta+ (1 - t)y) dy/(b—a) < (f(a) + f(tb+ (1 —t)a)) /(s +1)

a

and we add those inequalities to get (4.4).

5. Applications
Suppose that f is a concave function on an interval [a,b] which is also
s-convex in the second sense. Then we have

(5.1) Sf )dz/(b—a) < f((a+b)/2) < 2"§f )dz/(b - a)

which suggests that we need conditions which guarantee that f has those
properties.

THEOREM 5.1. Let & be a ¢-function on [0,00) which is twice differentiable
n (0,00). If0<s<1 and

0 < (t)d"(t) < (1 — s)[@'(t)]?

for allt then $° is a concave function which is also s-convez in the second
sense.

Proof. Note that if $(t) # 0 then $"(¢t) > 0, so & is convex. By Theorem
1.3 the function g := &* is s-convex in the second sense. Then

g"(t) = s[@(t)]*~2[B(t)8"(t) — (1 - s)(#'(1))*] < O
which shows that g is also concave.

COROLLARY 5.2. Let s € (0,1). Then for 1 < p < 1/s the function g(z) :=
zP* is concave and s-convez in the second sense on [0, 00).

Now if we choose f(t) :=tP* for 1 <p < 1/s then we have for 0 <a < b
0 < (P°+! —a”*1)/((b - a)(ps + 1)) < ((a +b)/2)%
<2872 (BPF — aP ) /((b - a)(ps + 1))
so that using (2.1) to get
(Pt —aP*)/((ps + 1)(b - @) < (@ + %) /(s + 1)
we see that in the notation above

b
H(t) = (§(tx +(1-t)(a+ b)/2)”’dz)/(b ~a)

= [(tb+ (1 - t)(a + b)/2)P**!
— (ta+ (1 —t)(a+b)/2)"*'}/((ps + 1)t(b — a))



Hadamard inequalities 695

for all t € (0, 1]. Thus using the results of Section 3 we have the inequalities:

2" Y((a +b)/2)"
< [(td+ (1 — t)(a+ b)/2)P**!
— (ta+ (1 — t)(a+ b)/2)P**1)/((ps + 1)t(b - a))
< min(t* (P — aP**1)/((ps + 1)(b — a)) + (1 — t)*((a + b)/2)P*,
[(ta+ (1 —t)(a+b)/2))P* + (tb+ (1 — t)(a + b)/2))P°]/(s + 1)
and
max{t* (b — aP**1)/((ps + 1)(b — a)) + (1 — )*((a + b)/2)"*,
[(ta+ (1 —t)(a+b)/2))P* + (tb+ (1 - t)(a+b)/2))P°]/(s + 1)}
<@ +67°)/(s+ 1)+ (1 —t)*2((a + b)/2)P° /(s + 1)

for0<t<1l,0<s<land1<p<1/s.
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