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THE H A D A M A R D INEQUALITIES 
FOR s -CONVEX FUNCTIONS IN THE SECOND SENSE 

Abstract . We derive some inequalities of Hadamard's type for s-cdnvex functions in 
the second sense and give some applications connected with special means. 

1. Introduction 
In the paper [11] the following class of functions was considered. 

DEFINITION 1.1. Let s e (0,1]. A real valued function on an interval I C 
[0, oo) is s-convex in the second sense provided 

(1.1) /(cm + ßv) < aaf(u) + ß'f{v) 
for all u, ν G I and α, β > 0 with a + β = 1. This is denoted by / e Κj. 

This definition of s-convexity was considered by Breckner [1], where the 
problem of whether rationally s-convex functions are s-convex was explored. 

We record here some of the results from [11] about s-convex functions. 

THEOREM 1 . 2 . Let 0 < s < 1. If f E K\ then f is nonnegative. 

Indeed one can put u = ν = χ and a = β = 1/2 in (1.1) to get f(x) > 0. 
Recall that a function / : [0, oo) —• [0, oo) is a φ-function if /(0) = 0 and 

/ is nondecresing and continuous. 

THEOREM 1.3 [11, Corollary 2]. If Φ is a convex φ-function and f is a 
φ-function in Κ% then the composition Φ ο f belongs to In particular 
Φ3 e K2

S. 

There are, however, «/»-functions in K^ which are neither of the form 
Φ(η5) nor Φ3 for any convex ^-function Φ ([11], Example 3]). 
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For a convex function in an interval I, Hadamard's inequalities are 

6 

/((a + 6)/2) < J f{x) dx/(b -a)< (f(a) + f(b))/2 
α 

for o, b € I with a < b. 

Some generalizations and applications of these inequalities are given in 
the papers [2-10] and the book [12], which gives further references. 

In this paper we prove some inequalities like Hadamard's for s-convex 
functions in the second sense. We give some applications for numerical in-
equalities involving special means. The integrals exist because of the fol-
lowing result, which is analogous to the local Lipschitz property of convex 
functions. 

THEOREM 1.4. Let f be a function on [A, 6] which is s-convex in the second 

sense. Then for a < y < ζ < b we have 

(1.2) |/(2/) - f(z)I < (z - y)> max (f(b)/(b - y)'J{a)/{z - a ) s ) 

50 the f is locally Holder continuous of order s on (a, b). Thus f is Riemann 

integrable on [a, 6]. 

P r o o f . Put t:= (z - y)/(b - y) so that ζ = (1 - t)y + tb and by (1.1) 

/(ζ) < (1 - t)3f(y) + t'f(b) < f(y) + t'f(b). 

Thus /(z ) - f(y) < f f ( b ) = ( (z - y)'/(b - y)°) f(b). 

Similarly we have f(y) — f(z) < (z - y)sf(a)/(z — a}3 by choosing t so 
that y = ta+ (1 — t)z. That establishes (1.2) and the other assertions follow 
easily. 

In the case where / actually takes on its least possible value, 0, we have 
monotonicity on either side of the zero. 

THEOREM 1.5. Let f be a function on [A, 6] which is s-convex in the second 

sense. If /(c) = 0 for some c € [a, 6] then f(x) < f(y) ifc<x<y<b and 

f{x) > f{y) if a < χ < y < c. 

P r o o f . If c < χ < y < b then f(x) < tsf{c) + (1 - t)'f{y) by (1.1) if 
χ = i c + (1 — t)y. So f(x) < (1 - t ) ' f ( y ) < f(y). The inequality on the other 
side of c is similar. 

2. Hadamard 's Inequality 
Our first result is a generalization of Hadamard's Inequalities which re-

duces to it in the case s = 1. 
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THEOREM 2 . 1 . Let f be a s-convex function in the second sense on an in-
terval I C [0, oo) and let a, b € I with a < b. Then 

b 
(2.1) 2 ' - V ( ( a + b)/2) < \ f(x) dx/(b - a) < (/(a) + f(b))/(s + 1). 

a 

Ρ r ο o f. As / is s-convex on I we have 

f(ta + (1 - t)b) < t'f(a) + (1 - t)'f(b) 

for all t € [0,1]. Integrating this inequality we get 
ι ι ι 
j f(ta + (1 - t)b) dt < f(a) j t3dt + f(b) j ( l - t)' dt = (/(a) + f(b))/(s + 1) 
0 0 0 

and the second inequality in (2.1) follows. 

To prove the first inequality, observe that for all x, y € I we have 

(2-2) f((x + y)/2)<(f(x) + f(y))/2°. 

Then put ι := ta + (1 — t)b and y := tb + (1 — t)a to get 

/((a + 6)/2) < (/(ίο + (1 - t)b) + }{tb + (1 - t)a))/2'. 
Integrating this inequality we get the first part of (2.1). 

REMARK 2.2. For any s € (0,1] the second inequality in (2.1) is sharp. 

Indeed by Theorem 1.3 the function f(x) := xs is s-convex on [0,1] and 
we have $J i 4 dx = 1 /{s + 1) = (/(0) + /(l))/(a + 1). 

3. The mapping Η and its properties 
Let / G Ζ/1 [a, 6] and define 

1 6 
(3.1) H(t) := \ f(tx + (1 - t)(a + b)/2) dx 

b — a J 
a 

fot t 6 [0,1]. 

THEOREM 3 . 1 . Let f be a s-convex function in the second sense on an in-
terval [a, 6]. Then Η is s-convex on [0,1] and ifO < t < 1 then 

(3.2) Η(t) > 2 ' " 7 ( ( a + b)/2). 

Proof . Let t ly t2 € [0,1] and α, β > 0 with a + β = 1. Then 
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H(ati + ßt2) 
b 

= j f[(ah + ßt2)x + (1 - (αίχ + ßt2))(a + b)/2)\ dx/(b - a) 
a 

6 
= \ f(a[tlX + (1 - t i)(a + b)/2] + ß[t2x + (1 - t2)(a + 6)/2]) dx/(b - a) 

a 

b 
< \[a'f(tlX + (1 - f i)(a + b)/2) + ß'f(t2x + (1 - t2)(a + b)/2)) dx/{b - a) 

a 

= a'H(t1) + ßaH(t2) 

which shows that Η is s-convex in the second sense. 
Now let t e (0,1]. Put u := tx + (1 - i)(o + 6)/2 to get 

H(t) = \f(u)du/(p-q) 

where ρ := tb+ (1 - ί)(α + 6)/2 and q:=ta + ( l - t)(a + b)/2. 
Applying (2.1) we get 

\ f(u) du/(p -q)> r-ifttp + q)/2) = 2 ' " 1 /((a + b)/2) 

and the inequality (3.2) follows. 
For t = 0 we use Theorem 1.2 which says that f((a + b)/ 2 ) > 0 . Define 

b 
H\(t) := ta J f(x) dx/(b - α) + (1 - t)sf{{a + 6)/2) 

a 

and 

H2{t) := [f{ta + (1 - t)(a + b)/2) + f(tb + (1 - t)(a + b)/2)}/(s + 1) 

THEOREM 3 .2 . Let f be a s-convex function in the second sense on an in-
terval [a, b}. Then for 0 < t < 1 

(3.3) H(t) < ΠΪΪ^Η^,Η^)). 

P r o o f . Applying the second half of (2.1) we have 

j f(u) du <(f(p) + f(q))/(s + 1) 
ρ 

= (f{tb + (1 - t)(a + b)/2) + f(ta + (1 - t){a + b)/2))/{s + 1) 
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while for t = 0 it again reduces to Theorem 1.2 which says that / ( (a + 6)/2) 
> 0. 

For Η2, we have 

f(tx + (1 - f)(a + 6)/2) < t'f(x) + (1 - t ) 7 ( ( a + b)/2) 

and integrating this inequality we get the remaining inequality needed for 
(3.3). 

On the other hand if we let Η := max(i/i, H2) then we can also get 
bounds. 

THEOREM 3.4 . Let f be a s-convex function in the second sense on an in-
terval [0,6]. If Η := max.(H\, H2) for 0 < t < 1 we have then 

H(t) < t>(f(a) + f(b))/(s + 1) + (1 - * r 2 / ( ( a + 6)/2)/(s + 1). 

Proof . We have 
H2(t) < ( f / ( a ) + (1 - t ) 7 ( ( a + 6)/2) + 47(6) 

+ ( l - t ) 7 ( ( a + 6)/2))/(5 + l) 
= t>(f(a) + f(b))/{s + 1) + (1 - t)'2f((a + b)/2)/(s + 1). 

On the other hand, by (2.1) we know that 
b 
S / ( x ) d x / ( 6 - a ) < ( / ( a ) + /(6))/(* + l) 
a 

and 

(1 - t)sf((a + b)/2) < (1 - t)'2f((a + b)/2)/(s + 1) 

for 0 < t < 1 so that 

tfi(i) < ta(f(a) + f(b))/(s + 1) + (1 - ty2f((a + b)/2)/(s + 1) 

as required. 

REMARK 3.2. If / is a convex function on [o, 6] and Η is as above, then we 
get 

inf{tf (i) : t Ε [0,1]} = H{0) = / ( (a + b)/2) 

and 
6 

sup{H{t) : t e [0,1]} = H( 1) = j f(x) dx/(b - o) 
α 

which recovers some results from [4] (see also [5] and [9]). 
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Also we get the inequalities 
b 

H(t) < min \ /(x) dx/(b - a) + (1 - t)f((a + b)/2), 
α 

[f(ta + (1 - t)(a + b)/2) + f{tb + (1 - t)(a + b)/2)]/2) 

and 
H(t) < t(f(a) + f(b))/2 + (1 - t)f((a + 6)/2) 

for all t G [0,1], which complement the results from [9]. 

4. The function F and its properties 
Assume that / is Lebesque integrable on [a,b]. Consider the function 

defined by 
6 b 

F(t) := \ J f(tx + (1 - t)y) dx dy/(b - a)2 

a a 
for t 6 [0,1]. The following result can be proved similarly to Theorem 3.1. 

THEOREM 4.1 . Let f be s-convex in the second sense on [o, 6]. Then F is 
also s-convex in the second sense and F( 1 / 2 + t) = F{ 1 / 2 — t) for t € [ 0 ,1 ] . 

Now we prove some inequalities regarding this double integral. 

THEOREM 4.2 . Let f be s-convex in the second sense on [a, 6]. Then for 
t 6 [0,1] we have: 

b b 
(4.1) 2l~sF{t) >\\f({x + y)/2)dxdy/(b-a)2> 

a a 
•>»-1 (4.2) F(t) > 2s'1 max{H(t), H{ 1 - t)), 

6 
( 4 . 3 ) F(t) < (ts + (1 - t)s) J /(x) dx/{b - a) 

a 

and 

(4.4) F{t) < (f{a) + f{ta + (1 - t)b) + f{b) + f{tb + (1 - t)a))/{s + l)2 . 

P r o o f . Since / is s-convex in the second sense we have 

(/(fx + (1 - t)y) + f(ty + (1 - t)x))/2" > f((x + y)/2) 

for all t € [0,1] and x, y G [a,b]. Integrating over [a,6]2 we get 
bb bb 
j \ (f(tx + (1 - t)y) + f(ty + (1 - t)x))/2s dxdy>\\ f((x + y)/2) dx dy 
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and as 
bb bb 

j \ f ( t x + (1 - t ) y ) dxdy = \ \ f ( t y + (1 - t)x) dx dy 

a a a a 

this yields (4.1). 
Now for y e [o, 6] define 

b 

Hy(t) := j f { t x + (1 - t ) y ) dx/(b - a) 
a 

so that, as in Theorem 3.1 we have 

Hy(t) = \ f ( u ) d u / ( p - q ) 
ρ 

where ρ := tb + (1 — t)y and q := ta + (1 — t)y. Applying Hadamard's 
inequality we get 

J f ( u ) du/(p - q ) > 2°~1f((p + q)/2) = 2 f { t { a + b)/2 + (1 - t ) y ) 
ρ 

and integrating over y € [a,b} we find F(t) > 2°~ 1ff( l - t). Since F(t) = 
F{ 1 - t) we get (4.2). 

To get (4.3) we integrate the inequality 

f ( t x + ( l - t ) y ) < f f ( x ) + ( l - t y f ( y ) 

over [a,6]2. 
Now observe that, in the notation above, we have 

ι 
Hy{t) = S f ( u ) du/(p - q ) < ( f ( t b + (1 - t ) y ) + f ( t a + (1 - t ) y ) ) / ( s + 1) 

ρ 

so that integrating over [a, 6] we get 
b 

F(t) < \ ( f ( t b + (1 - t ) y ) + f ( t a + (1 - t ) y ) ) d y / ( ( s + 1 ) ( 6 - a ) ) . 
a 

As above we have 
b 

5 f ( t b + (1 - t ) y ) dy/(b - a) < ( f ( b ) + f(tb + (1 - t ) a ) ) / ( s + 1) 
α 

and 
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6 

\ f(ta + (1 - t)y) dy/(b - a) < (/(a) + f{tb + (1 - i)a))/(s + 1) 
a 

and we add those inequalities to get (4.4). 

5. Applications 
Suppose that / is a concave function on an interval [a, 6] which is also 

5-convex in the second sense. Then we have 
6 b 

(5 .1 ) \ f(x) dx/(b -a)< f((a + b)/2) < 2l~s \ f(x) dx/(b - A) a a 

which suggests that we need conditions which guarantee that / has those 
properties. 

THEOREM 5.1. Let Φ be a φ-function on [0, oo) which is twice differentiable 
on (Ο ,οο) . / / 0 < s < 1 and 

0 < Φ{ί)Φ"{ί) < (1 - s)[«f'(i)]2 

for all t then Φ3 is a concave function which is also s-convex in the second 
sense. 

P r o o f . Note that if Φ(ί) φ 0 then Φ"(ϊ) > 0, so Φ is convex. By Theorem 
1.3 the function g := ΦΛ is s-convex in the second sense. Then 

g"(t) = 8[Φ(ί)γ-2[Φ(ί)Φ"(ί) - (1 - 5)(Φ'(ί))2] < 0 

which shows that g is also concave. 

COROLLARY 5.2. Let s e ( 0 , 1 ) . Then for 1 < ρ < l/s the function g(x) := 
xps is concave and s-convex in the second sense on [Ο,οο). 

Now if we choose / ( f ) := tps for 1 < ρ < l/s then we have for 0 < a < b 

0 < (Vs+1 - ap3+1)/((b - a)(ps + 1)) < ((a + b)/2)p3 

< 21 - s(f>p s + 1 - a
p , + 1 ) / ( ( 6 - a){ps + 1)) 

so that using (2.1) to get 

(6P'+i _ 0
p s + 1 ) / ( ( p s + 1)(6 - a)) < (aps + bPs)/(s + 1) 

we see that in the notation above 
b 

H(t) = ( j ( t x + (1 - t)(a + b)/2)psdx)/{b - a) 
a 

= [(tb+(l-t)(a + b)/2)p3+1 

- (ta + (1 - t)(a + 6)/2)p s + 1]/((ps + 1)ί(6 - a)) 
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for all ί 6 (0 ,1 ] . T h u s u s i n g t h e r e s u l t s of S e c t i o n 3 w e h a v e t h e i nequa l i t i e s : 

2 , - 1 ( ( a + b)/2)ps 

< [(<6 + (1 — i ) ( a + b)/2)ps+1 

- ( ία + (1 - t)(a + b)/2)p'+1]/((ps + l)t(b - a ) ) 

< mw.(ta(W3+1 - ap*+1)/((ps + 1 )(b - a)) + (1 - i)4((a + b)/2)p\ 

[(ία + (1 - ί ) ( α + b)/2))p' + (ί& + (1 - ί ) ( α + b)/2))p']/(s + 1) 

a n d 

m a x { « ' ( r + 1 - ap3+1)/({ps + 1 )(b - a)) + (1 - ί ) ' ( ( α + b)/2)»>, 

[(to, + ( 1 - t)(a + b)/2))ps + (tb + (1 - ί ) ( α + b ) / 2 ) f a ) / ( s + 1 )} 

< t'(ap3 + V")/{s + 1) + ( 1 - i ) J 2 ( ( o + b)/2)p'/{s + 1) 

for 0 < ί < 1, 0 < s < 1 a n d 1 < ρ < 1 / s . 
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