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ON SOME NEW PROPERTIES
OF THE EXPONENTIAL DISTRIBUTION

1. Introduction

In 1960-1970, there appeared many papers in which the density of finite
products of continuous random variables with distributions of type gamma,
beta, normal, Bessel and others were defined.

The first aim of this paper is to show how to present the density function
of a random variable with an exponential distribution as a density of a finite
product of independent random variables X where k € {1,...,n}.

We have proved the convergence of the series 3°1° In X (¥) (formula (11))
to In X, with the probability one. This result will be used to represent
the density of a r.v. X as a density of an infinite product r.v.’s X(*) (for-
mula (18)).

The presentation of a r.v. with a gamma distribution, in the form of
a infinite product of r.v.’s with the same distributions, was used by Lu
and Richards [10], to define square of the Vandermonde determinant with
random elements.

Further we have applied the modified Rogozin [16] and Mieshalkin-
Rogozin [15] theorems to evaluate the difference of some distribution func-
tions from the difference of their characteristic functions.

We consider the exponential distribution of a r.v. X with the density
function

(1) fx(z|a) = a lexp(-z/a), >0, a>0,
where a is a scaling parameter.

In a way similar to Zolotarev [18], we use the Mellin transform Mx(s) =
EX?5, where s is complex, which gives
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(2) M.(s)=a5T(s+1), Res> —1.

The r.v.X can be replaced by a finite (Theorem 1) or an infinite product
(Theorem 3), or as the series of Theorem 4.

2. The case of a finite product
Applying the formula 8.335 from [3]

_ 1I-n nz—0,5 - k-1
(3) I'(nz)=(27)72 n !;[lr(z-{-——n >,n€N,

to the gamma function in (2), we can after some simplifications rewrite (2)
as

(4) Mx(s) = ﬁ [as/"(Qr)l-""n#l‘(s -; k)] = kljlgk(s)-

k=1

To each factor gi(s) of the finite product [];_, gx(s) we shall use the inverse
Mellin transform. The result can be represented as
c+ioo
fx, (z|la,n) = 5 C_Sioo:z:'s'lgk(s)ds, Res > -1.

Because ¢ = Res > —1, then assuming ¢ = 0 we obtain

k
- " k-1 _z _
(5)  fx.(z|e,n)= (an)k/nr(g)w exp( na)’ k=1,...,n.
It is easy to check that, for each ¥ = 1,2,...,n the condition

lo fe(X|a)dz = 1 holds. Therefore, by the non-negativity of the integral
function, we conclude that the formula (5) has defined the probability den-
sity function of r. v. X on the interval [0, c0), and consequently that each
factor gi(s), k = 1,2,...,7n of the product [],_; gk(s) is the Mellin trans-
form of the r. v. X with the density (5).

Since the finite product of the Mellin transform of independent random
variables is equal to the Mellin transform of the product of these r.v.’s

©) [T Mx.(s) = Mpps 5,9
k=1
and, by (4), we have
(7) Mx(s) = ] Mx,(s),
k=1

then it follows that from (6) and (7) that
®) Mx(s) = MIpr_ x,(9)
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If we now apply, the inverse Mellin transform to both sides of the last
relation, we obtain the following stochastic equality

(9) X 2] X,
k=1

which means that we have proved the following theorem.

THEOREM 1. The density of the exponential distribution of a r. v. X
formula (1) is equal to the density of a product [[,_, X) of independent
and nonnegative r.v.’s Xy, k = 1,2,...,n with generalized gamma distribu-
tions defined by (5), with a scaling parameter (na)'/* and with the shape
parameter equal to k, respectively.

Let us apply the formula (3) to the gamma function in (4) putting
there nyz = (s + k)/n. We obtain then Mx(s) as a double finite product

Tzt HZ:=1 9k,k,(s), and using (5) we obtain

n  n
(10) X =TT I Xem-

k=1 k1=1

These decompositions can be repeated consecutively.

3. Convergence with probability one
Consider the following series 3_7° In X(*) where r.v. X(¥) has the density

1 -
fX(k)(:lI|a,k) - 2k—1a—%1-\—1 <§)$2k 1_4 exp(—z2k4‘1a_1),

(11)
z € (0,00).
We shall prove the following

THEOREM 2. The series 3.1° In X(¥) is convergent to In X with probabil-
ity one, where X is r. v. with the density function (1).

Proof. Let us recall the Marcinkiewicz-Zygmund [13] and Loéve [9] the-
orems: if r. v.’s are independent and the series Y 7" EZk, Y 7 Var Zj are
convergent then > 1° Z; is convergent to r. v. Z with probability one and

(12) Y Ez.=EZ, ) VarZ=VarZ.
1 1

Let us compute Eln X(¥), We have Eln X(¥) = Sgo Inzfxw (z|a, k)dz.

Making the following change of variable 22" = 4au we obtain In X =
27*[In(4a) + ln u]. Next making use of the formula 3,4,352,1 from [3] we
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obtain
2=k oSoln e exp(—u)du = 27FT(2 Hy(27Y),
therefore ’
f: Eln X(®) = i2'k[ln(4a) 4+ (27
1 1

=2In2+ha+(-C-2In2)=ha-C,
where C is Euler-Mascheron constant, and % (z) = d/dzInT(z) is psi func-
tion of Euler. Finally we obtain

(13) Y ElnX® =In(4a) + $(27) =lna - C.
1
For the computation of ) ° Eln? X*) see Appendix. Because
Y (ElmX®)? =" 47%(In(40) ~ C - 2In2)’ =37 (lna - C)?
1 1

therefore Varln X = 72/6 = 3°7° Varln X(¥.

Finally, the following equivalence theorem holds: for series of indepen-
dent r.v.’s convergence in pr., convergence of laws and a.s. convergence are
equivalent.

4. The case of an infinite product
Applying the Knar formula 8,324 from [3]

(14) T(z+1)=4° ﬁ [r(% + g—k)r—l (%)] Rez > —1.

k=1
to the gamma function in (2), we can rewrite (2) as

- grnfl 2 \noi ()] . T
(15)  Mx(s)=]] [(4a) / r(§ + 27>F (§>] =[] hx(s)-
k=1 k=1
We now apply the inverse Mellin transform to every factor hg(s).
c+ioo
_ —s-1
fxw(zla, k) = i c_Sioo.'zz = hi(s)ds, Res> -1.

Since Res > —1 we can assume ¢ = (0 and we obtain

16 B e ey (-2
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It is easy to check that, for each k € N the condition {;° fx (z|a, k)dz = 1

holds. Therefore since f)(f)(arla,k) > 0 we conclude that the formula (16)
has defined the probability density function of the r. v. X(¥) on the interval
[0,00) as the two-parametric gamma distribution. Finally we shall prove
that J]5° h(s) is the Mellin transform of [ ooy X(¥).

Since M, (it) = ¢in x(t), where @ x(t) is characteristic function of X, we
have also (infinite convolutions [12] 3.7)

(17) emx(t) = ]_:_[hk(it) = III P xr (1) = ‘PET 1nX(k)(t)

= ®@m H:=1 X (k) (t)

So from one to one correspondence of the characteristic functions and r.v.’s,
it follows that

xg 1 X,
11

Thus, we have proved the following theorem:

THEOREM 3. The density of the random variable X with the ezponential
density (formula (1)) is equal to the density of an infinite product [[5_, X®
of independent random variables X¥) with two-parameter gamma densities
defined by (16) with a scaling parameter (4a)1/2k respectively and a param-
eter of shape 2~ respectively, so

o0
(18) x2J[x®.
1

In this case we shall apply the Knar (14) formula to both the gamma

2
functions in (15) and we replace (4a)!/ 2* by (4a)2*2*1. Applying, to each
factor of the obtained product the inverse Mellin transform we obtain the
density functions of r.v.’s X x, and the result can be described as

(19) xg ﬁx(k) = ﬁ ﬁ x (k) (k1)
1

k=1 k=1

We can repeat this method any number of times.

5. Infinite convolution of distribution functions (d.f.’s)

1
Let us consider the sequence of factors u, = [[7(1 — iat) " 2%. It is easy
to check that the factors of the product u, are the characteristic functions
of the two parameter r.v’.s A(x) with density function given by the following
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formula (20)
o Ko~ Dalelok) = a”F T T exp(—za™)
>0, keEN

the d.f’.s of which are Fi(z). The sequence u, is uniformly convergent in
each finite interval, to the characteristic function

(21) ¢x(t) = (1= iat)™!
of the density function (1). The latter property is a sufficient and necessary
for the infinite convolution Fy * Fo*.. .+ F *... = H;x’ xF,, to be convergent

[12, Theorem (3.6.2)] to d.f. F(z) = S‘foo alexp(—ya~1)dy. As it was
shown by Titchmarsh [17] and Markushewitsch [14] the latter convergence
is uniform in sense of theory of infinite products [12, formula after non
numerable formula after (3.7.3)].

Therefore

(22) ex(t) = [[exq, @) = P X (1)

From (22) it follows that
(23) XEY X
k=1

THEOREM 4. The density of the ezponential distribution of a r.v. X (for-
mula (1)) is equal to the density of an infinite sum ) 7" X(x) of independent
and nonnegative r.v.’s X(). The two parameter r.v.’s X4y have densities
determined by formula (20).

6. The modified Rogozin theorem for exponential distribution

Next our aim is to determine an estimation of supremum of the difference
between the two d.f.’s F(z) and G(z) if the sup | f(¢) — ¢g(t)| is known, where
f(t) and g(t) are the corresponding characteristic functions. We shall assume
that F(z) is the d.f. of an exponential distribution (formula 1) and G(z) is
unknown, d.f. (see below). This problem was treated for the first time by
Gnedenko and Kolmogorov [2] where they gave an estimation of such a
difference, using the integral STT |f(t) — g(t)|/tdt. Next, Dyson showed [1]
that it is not possible to determine, for any § > 0 such an ¢ > 0 being
dependent on § only, that sup, |F(z) — G(z)| < é results from sup, | f(t) —
g(t)| < e. A full solution of this problem was given by Rogozin [16]. In my
paper, F(z) = 1 —exp(—2/a) and for G(z) we adopt the d.f. of a finite sum
of n r.v.’s with densities given by formula (20).
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Let us take any number v from the interval (0,0.1] (v could be chosen
from the interval (0,1) but then the difference of two d.f.’s may be greater
than unity, what makes the estimation trivial). Let us divide the interval
[0,00) for M + 1 intervals [14]

[Oa al), [a’l, a2), LS [aM—-haM)’ [aMa OO)

of the same lengths a; — a;—; = y/cfori = 1,2,...,M, ap = 0 where c is
the supremum of the density (1), so ¢ = 1/a, a; and aps are chosen in such
a way that

F(a1) <0,57,F(anp) > 1-0,57.
Applying the method of Rogozin [16] to the intervals on halfline we obtain

(24)  sup|F(2) = Py g, (@) < N()le+ 16c(xyT) 7] + 37.

and N(7) = 2M is function 7y dependent on F(z), decreasing and — oo
when v — 0. As an estimation of 2M Rogozin accept

(25) M=[(F(1-7/2)- F(7/2))(er)7'] + 1,

where [A] is the integer part of A.
Let us calculate the value of 2M for the exponential distribution function

F(z)=1-exp (%) =y, s0z=-aln(l-y)=Fl(y)
and finally
[FH(1-7/2) = F7'(v/2)(a7) ' + 1 =77 In(2/7 = 1) + 1,7 € (0,01).
Then the supremum of LHS of (24) can be expressed as
(26) sup 11— exp(~z/a) = Fy» , ()
< 2[142/7In(2/y - 1)|(16/(royT) + 1) + 37

what proves the following:
THEOREM 5. If the absolute value of the difference of two characteristic
functions: ¢ x(t) determined by formula (21) and P3m x (t) where X (i) ~
1 [

Ty(z|a, k) (formula (20)) satisfies the condition
(27) lex(t)— ey X(,,)(t)l <é€ forn>mny and |t|<T

then the supremum of the absolute value of the difference of the correspond-
ing distribution functions fulfils the inequality (26), where v is any number
from the interval (0,0.1) and T where ezistence see text after formula (33).
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For ilustration we present values of the first factor of the RHS of (26),
N(y)=1+42/vIn(2/y — 1) in the table below:

~ 0,001 0,01 [0,02]0,03]0,04]0,05]0,06]0,07]0,08]0,00]0,1
N(7)| 15202 | 1060 | 461 | 281 | 196 | 148 | 117 |96 |80 |69 |60

As it is seen from (26) the second factor of the RHS, for fixed a and 7,
depends on € and on T (see text after formula (33)).

7. The modified Mieszalkin-Rogozin theorem

Five years later Mieszalkin and Rogozin published a paper [15] extending
the results from [16]. We shall use here the theorem 1 from the paper [15] in
a somewhat modified form, concerning functions determined in the interval
[0, 00).

Let us assume that d.f. F(z) and a function of bounded variation (f.b.v.)
G(z) = FE: X(k)(:z:) fulfil the following conditions:

Cl. F(0)=G(0)=0

C2. G'(z) exists for any z > 0 and |G'(z)| < A <

C3. lox(t) = oy>= x,,, (W < efor [t| <T, where ¢(t), pyo= x,, (1), 9(2)
are the characteristic functions of F(z) and G(z) correspondingly.
Then for A,T,e> 0 and L > %, the following inequality holds

(28) |F(z) - G(X)| < 16(In(LT) + 2737~ + 1)} |eIn(LT) + —’14: + 7(L)],

where
(29) Y(E) = var G{e)oge <o = S0P VAT GW)asysorL
The G(z) = 1 — exp(—£) is a f.b.v, so var G(z) = 1, and
sup var G(y)e<y<a+r = sup[G(z + L)z — G(2)]
(30) = sup exp,(~z/a)[~ exp(~ /)]
=1-exp(—L/a).

Thus (L) = exp(—L/a). From the condition (C2) we have |G'(z)| < L =
A, so the R.H.S side of (28) becomes the estimation of the unknown d.f.

5t x0, (@)
(31)  supl1 - exp(~2/a) - s x, (2)]

< 16[In(LT) + 273771 + 1] - [eIn(LT) + (aT)! + exp(-L/e)),
where LT > 2 and for the choise of T see text after formula (33).
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We known that
(32) Px(t) - ¢5° x,(0) = 0.

Because of the fact that two functions of L.H.S of (31) are absolutely con-
tinuous it follows from the Riemann-Lebesgue lemma [12] that

(39) Jlim (0x(8) = @52, () = 0.

Then the two cases are possible:

1. for some sup, of the LHS of (C3) is larger than ¢, and then there exists
such T > 0 that for |t| < T the inequality (31) is fulfiled

2. for all n the supremum over ¢t of the LHS of (C3) is < €, and then for
any T > 0 the inequality (31) is fulfiled.

This ends our proof.

8. Appendix

Let us compute Y ° E In? X(k) - Making the same change of previous
variable we obtain
In? X = 47*[In*(4a) + 2In(4a)Inu + 4?] and
Eln’X) = 2k"1a‘1/2F‘1(2_1)[J,£1) + J,(cz) + J,(cs)], where
IV = n?(40)8*% {2 u=1/2 exp(—u)du = 87%2,/a In(4a)T(271)
J,(CZ) = 2In{4a) {; Inuu~/? exp(—u)du = 87%2,/a2In(4a)$(27?!) (formula

[3.4.352,4])

J® = 8=k2 /aT(271)[$2(271) + £(2, —271)] (formula [3.4.353,2])
where £(2,-2"1) =4y °(2n-1)"2 =x?/2+¥(27 ) =72/2- C - 2In2.
We obtain

o0
ZEhﬁ Xy
1

- f: 4k [1n2(4a) +2In(da)p(2™Y) + ¥2(27 1) + 4§:(2n - 1)2]
1 1

=3"In(4a) + v(2~1)? + 72/6 = 3" (lna — C)* + 7?/6.
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