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ON SOME N E W PROPERTIES 
OF THE E X P O N E N T I A L DISTRIBUTION 

1. Introduction 
In 1960-1970, there appeared many papers in which the density of finite 

products of continuous random variables with distributions of type gamma, 
beta, normal, Bessel and others were defined. 

The first aim of this paper is to show how to present the density function 
of a random variable with an exponential distribution as a density of a finite 
product of independent random variables Xk where k 6 {1, . . . ,n}. 

We have proved the convergence of the series (formula (11)) 
to In X , with the probability one. This result will be used to represent 
the density of a r.v. X as a density of an infinite product r.v.'s X^ (for-
mula (18)). 

The presentation of a r.v. with a gamma distribution, in the form of 
a infinite product of r.v.'s with the same distributions, was used by Lu 
and Richards [10], to define square of the Vandermonde determinant with 
random elements. 

Further we have applied the modified Rogozin [16] and Mieshalkin-
Rogozin [15] theorems to evaluate the difference of some distribution func-
tions from the difference of their characteristic functions. 

We consider the exponential distribution of a r.v. X with the density 
function 

(1 ) fx(x\a) — a - 1 e x p ( — x / a ) , x > 0 , a > 0 , 

where a is a scaling parameter. 
In a way similar to Zolotarev [18], we use the Mellin transform Mx(s) = 

EXS, where s is complex, which gives 
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(2) Mx(s) = a s r ( s + 1), Res > - 1 . 

The r.v.X can be replaced by a finite (Theorem 1) or an infinite product 
(Theorem 3), or as the series of Theorem 4. 

2. The case of a finite product 
Applying the formula 8.335 from [3] 

(3) r ( n s ) = ( 2 7 r ) I i i n ^ - 0 ' 5 f [ v ( x + ,n € N, 
k=1 ^ 71 ' 

to the gamma function in (2), we can after some simplifications rewrite (2) 
as 

(4) Mx(s)= n L ^ ^ n ^ r f ^ ) ] = j j 
fc=l L V n / J 1.-1 fc=1 

To each factor gk(s) of the finite product IIfc=i 5fc(s) we shall use the inverse 
Mellin transform. The result can be represented as 

^ c+ioo 
fxk(x\a,n) = — \ x~s_1 gk(s)ds, R e s > - 1 . 

2ni c—too 

(5) fxk(x\a,n) = " 1 exp ( - — ), k = l,...,n. 

Because c = Res > —1, then assuming c = 0 we obtain 
k • 

(an)k/nT(±)~ nat 

It is easy to check that , for each k — 1,2, . . . , n the condition 
fk(X\a)dx = 1 holds. Therefore, by the non-negativity of the integral 

function, we conclude that the formula (5) has defined the probability den-
sity function of r. v. Xk on the interval [0, oo), and consequently that each 
factor <7fc(s), k = 1 , 2 , . . . , n of the product n * = i 9k{s) is the Mellin trans-
form of the r. v. Xk with the density (5). 

Since the finite product of the Mellin transform of independent random 
variables is equal to the Mellin transform of the product of these r.v.'s 

n 

(6) = 
k= 1 

and, by (4), we have 
n 

(7) Mx(s)=Y[MXk(s), 
k=1 

then it follows that from (6) and (7) that 

(8) M x ( s ) = M I [ : ^ X k ( s ) . 
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If we now apply, the inverse Mellin transform to both sides of the last 
relation, we obtain the following stochastic equality 

(9) X 'A f [ Xk, 
k=1 

which means that we have proved the following theorem. 

T H E O R E M 1. The density of the exponential distribution of a r. v. X 
formula (1) is equal to the density of a product N"=i ° f independent 
and nonnegative r.v. 's Xk, k = 1 , 2 , . . . , n with generalized gamma distribu-
tions defined by (5), with a scaling parameter (naand with the shape 
parameter equal to k, respectively. 

Let us apply the formula (3) to the gamma function in (4) putting 
there n\x = (s + k)/n. We obtain then Mx{s) as a double finite product 
I l L i I K i - i a n d u s i n § (5) w e obtain 

n i%\ 

k= ifc1=i These decompositions can be repeated consecutively. 

3. Convergence with probability one 
Consider the following series In X ^ where r.v. X ^ has the density 

fxW(x\a,k) = 2fc-1a"ir-1 expi-^^a"1), 

x e (o, oo). 

We shall prove the following 

T H E O R E M 2. The series ^-J 5 0 In X^^ is convergent to In X with probabil-
ity one, where X is r. v. with the density function (1). 

P r o o f . Let us recall the Marcinkiewicz-Zygmund [13] and Loeve [9] the-
orems: if r. v.'s are independent and the series EZk, °VarZfc are 
convergent then Zk is convergent to r. v. Z with probability one and 

00 oo 
(12) Y^ E Z * = E Z 1 E Y a r Z k = V a r Z k -

1 1 

Let us compute . E l n X ^ . We have ElnX^ = lnxfX(k)(x\a,k)dx. 
Making the following change of variable a;2' —> Aau we obtain In X — 

2 - fc[ln(4a) + lnu]. Next making use of the formula 3,4,352,1 from [3] we 
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obtain 

therefore 

2~k \ In exp(—u)du = 2~kT(2~1)ip(2~1), 

l l 
= 2 In 2 + In a + (-C - 2 In 2) = In a - C , 

where C is Euler-Mascheron constant, and tp(x) = d/dx\nT(x) is psi func-
tion of Euler. Finally we obtain 

00 
(13) J 2 E l n X W = ln(4a) + TP(2~1) = In a — C. 

1 

For the computation of E l i a-2 x ( k ) 

see Appendix. Because 
00 oo 

^ ( £ l n X ^ ) 2 = ] T 4 - f c ( l n ( 4 a ) - C - 2 1 n 2 ) 2 = S ^ l n a - C ) 2 1 l 
therefore Var lnX = tt2/6 = Varln X^k\ 

Finally, the following equivalence theorem holds: for series of indepen-
dent r.v.'s convergence in pr., convergence of laws and a.s. convergence are 
equivalent. 

4. The case of an infinite product 
Applying the Knar formula 8,324 from [3] 

(14) r ( s + 1) = 4* n [ r ( 3 + ( l ) ] > > 

to the gamma function in (2), we can rewrite (2) as 

(15) Mx ( s ) = J J [ ( 4 « ) s / 2 f c r ( ^ + ^ ) r _ 1 Q ) ] = J I M - ) -

We now apply the inverse Mellin transform to every factor hk(s). 
J c+too 

fX(k)(x\a, k) = —- I x-3-1 hk(s)ds, Res > —1. 
2TTI J 

c—too 
Since Res > —1 we can assume c = 0 and we obtain 

(16) fxw(x\a,k) = 
2 ^ (1 ) ' 

exp -
4a 
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It is easy to check that, for each k € N the condition fX(k)(x\a, k)dx = 1 
holds. Therefore since fj£\x\a, k) > 0 we conclude that the formula (16) 
has defined the probability density function of the r. v. on the interval 
[0, oo) as the two-parametric gamma distribution. Finally we shall prove 
that n r hk(s) is the Mellin transform of n ooi 

Since Mx(it) = ¥>in x(0> where <fix(t) is characteristic function of X, we 
have also (infinite convolutions [12] 3.7) 

oo oo 
<Pln x(t) = = n ^ n ^ ^ W = In *<*>(*) 

(17) i l ^ 
= VinTTr xwi*)-

So from one to one correspondence of the characteristic functions and r.v.'s, 
it follows that 

00 

1 
Thus, we have proved the following theorem: 

T H E O R E M 3. The density of the random variable X with the exponential 
density (formula (1)) is equal to the density of an infinite product Hfc=i 
of independent random variables Xwith two-parameter gamma densities 
defined by (16) with a scaling parameter ( 4 a ) 1 / 2 respectively and a param-
eter of shape 2fc_1 respectively, so 

00 
(18) X = 

1 

In this case we shall apply the Knar (14) formula to both the gamma 
k 2 

functions in (15) and we replace (4a)1/2 by (4a)2fc2*i . Applying, to each 
factor of the obtained product the inverse Mellin transform we obtain the 
density functions of r.v.'s Xk,ki and the result can be described as 

00 oo oo 
(19) X ± Y [ X W = n 

1 k— 1 k\ — 1 

We can repeat this method any number of times. 

5. Infinite convolution of distribution functions (d.f.'s) 
Let us consider the sequence of factors un = r i i ( l — iott)-^. It is easy 

to check that the factors of the product un are the characteristic functions 
of the two parameter r.v'.s A(̂ ) with density function given by the following 
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formula (20) 

(20) X ( f c ) ~ = « " ^ r - 1 ( 2 - V " * " 1 exp(—xa - 1) , 
X > 0 , k e N 

the d.f'.s of which are Fk(x). The sequence un is uniformly convergent in 
each finite interval, to the characteristic function 

(21) ^ ( o = ( i - iatr1 

of the density function (1). The latter property is a sufficient and necessary 
for the infinite convolution Fi * F2 * . . . * Fn *... = *Fn to be convergent 
[12, Theorem (3.6.2)] to d.f. F(x) = j f ^ a " 1 exp(-ya~1)dy. As it was 
shown by Titchmarsh [17] and Markushewitsch [14] the latter convergence 
is uniform in sense of theory of infinite products [12, formula after non 
numerable formula after (3.7.3)]. 

Therefore 
00 (22) (̂o = iwo = 

From (22) it follows that 
00 

(23) I = 
k=1 

THEOREM 4 . The density of the exponential distribution of a r.v. X (for-
mula (1)) is equal to the density of an infinite sum of independent 
and nonnegative r.v.'s X^y The two parameter r.v.'s X(k) have densities 
determined by formula (20). 

6. The modified Rogozin theorem for exponential distribution 
Next our aim is to determine an estimation of supremum of the difference 

between the two d.f.'s F(x) and G{x) if the sup | f(t) — g(t)\ is known, where 
f(t) and g(t) are the corresponding characteristic functions. We shall assume 
that F(x) is the d.f. of an exponential distribution (formula 1) and G(x) is 
unknown, d.f. (see below). This problem was treated for the first time by 
Gnedenko and Kolmogorov [2] where they gave an estimation of such a 
difference, using the integral \_T \ f(t) — g(t)\/tdt. Next, Dyson showed [1] 
that it is not possible to determine, for any 6 > 0 such an O 0 being 
dependent on 6 only, that sup .̂ |-F(a;) — Cr(a:)| < S results from supt | f(t) — 
g(t)\ < e. A full solution of this problem was given by Rogozin [16]. In my 
paper, F(x) = 1 — exp(—x/a) and for G(x) we adopt the d.f. of a finite sum 
of n r.v.'s with densities given by formula (20). 
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Let us take any number 7 from the interval (0,0.1] (7 could be chosen 
from the interval (0,1) but then the difference of two d.f.'s may be greater 
than unity, what makes the estimation trivial). Let us divide the interval 
[0,00) for M + 1 intervals [14] 

[0, ai), [ai, a 2 ) , . . . , [aM-i, om), [«m, 00) 

of the same lengths a* — a t_i = 7/c for i = 1 ,2 , . . . , M, ao = 0 where c is 
the supremum of the density (1), so c = 1/a, ai and clm are chosen in such 
a way that 

F(a i ) < 0 , 5 7 , F ( a M ) > l - 0 , 5 7 . 
Applying the method of Rogozin [16] to the intervals on halfline we obtain 

(24) sup (3) - F^OOI < jV(7)[e + 1 GcfaT)-1] + 3 7 . 

and iV(7) = 2M is function 7 dependent on F(x), decreasing and —>• 00 
when 7 —• 0. As an estimation of 2M Rogozin accept 

(25) M = [ ( F - ^ l - 7/2) - F - 1 (7/2)) (a 7 ) - 1 ] + 1, 

where [A] is the integer part of A. 

Let us calculate the value of 2M for the exponential distribution function 

F(x) = 1 — exp ^ — = y, so x = —aln(l — y) = F_1(y) 

and finally 

[F-\ 1 - 7/2) - JF"1(7/2)](a7)"1 + 1 = 7 " 1 ln(2/7 - 1) + 1 , 7 G (0,01). 

Then the supremum of LHS of (24) can be expressed as 
(26) sup |1 — exp(-x/a) - F^* x (x) 

x ik) 

< 2[1 + 2/7ln(2/7 - l)](16/(jra7r) + d ) + 3 7 

what proves the following: 
THEOREM 5. If the absolute value of the difference of two characteristic 

functions: <px(t) determined by formula (21) and ip^n x(k) (i) where X^k) ~ 
r2(a;|Q,k) (formula (20)) satisfies the condition 

(27) |<px(t) ~ x^jWI < for n> ni and |i| < T 

then the supremum of the absolute value of the difference of the correspond-
ing distribution functions fulfils the inequality (26), where 7 is any number 
from the interval (0,0.1) and T where existence see text after formula (33). 
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For ¡lustration we present values of the first factor of the RHS of (26), 
jV(7) = 1 + 2/7111(2/7 - 1) in the table below: 

7 0,001 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 
N( 7 ) 15202 1060 461 281 196 148 117 96 80 69 60 

As it is seen from (26) the second factor of the RHS, for fixed a and 7 , 
depends on e and on T (see text after formula (33)). 

7. The modified Mieszalkin-Rogozin theorem 
Five years later Mieszalkin and Rogozin published a paper [15] extending 

the results from [16]. We shall use here the theorem 1 from the paper [15] in 
a somewhat modified form, concerning functions determined in the interval 
[0,oo). 

Let us assume that d.f. F(x) and a function of bounded variation (f.b.v.) 
G(x) = F^" (x) fulfil the following conditions: 

CI. .F(O)1 = G(0) = 0 
C2. G'(x) exists for any x > 0 and |G"(x)| < A < 00 
C3. |<px{t) - X ( 4 )( i) | < £ for \t\ < T, where <p(t), cp^ X ( 4 )(i) , 9(t) 

are the characteristic functions of F(x) and G(x) correspondingly. 
Then for A,T, e > 0 and L > the following inequality holds 

(28) | F ( x ) - G(X)| < 16(ln(XT) + 2"37r-1 + l ) " 1 

where 

(29) 

eln(LT) + — + f(L) 

l{L) = varG(x)o<i<oo - sup v^G(y)x<y<x+L. 
X 

The G(x) = 1 — e x p ( - ^ ) is a f.b.v, so var G(x) = 1, and 

sup varG(j/)a;<j,<x+L = sup[G(a; + L)x - G(a;)] 
X 

= supexpx(—x/a)[— exp(—L/a)] 
= 1 — exp (—L/a). 

Thus 7 (L) = exp (-L/a). From the condition (C2) we have |G'(x)| < ^ = 
A, so the R.H.S side of (28) becomes the estimation of the unknown d.f. 

(31) s u p | l - e x p ( - z / a ) - F £ » X ( J O ( x ) | 

< 16pn(IT) + 2-37r"1 + l ]" 1 • [eln(XT) + (aT)" 1 + e x p ( - i / a ) ] , 

where LT > 2 and for the choise of T see text after formula (33). 
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We known that 

(32) ¥>*(*)-¥>£*»(<)) = 0. 

Because of the fact that two functions of L.H.S of (31) are absolutely con-
tinuous it follows from the Riemann-Lebesgue lemma [12] that 

(33) - <PY,\ X k ( i ) ) = 

Then the two cases are possible: 
1. for some sup t of the LHS of (C3) is larger than en and then there exists 

such T > 0 that for |t| < T the inequality (31) is fuffiled 
2. for all n the supremum over t of the LHS of (C3) is < e„ and then for 

any T > 0 the inequality (31) is fulfiled. 
This ends our proof. 

8. Appendix 
Let us compute E \n 2 X ^ ) • Making the same change of previous 

variable we obtain 
In2 X = 4- f c[ln2(4a) + 21n(4a)lnu + u2] and 
£ l n 2 = 2 * - 1 a - 1 / 2 r - 1 ( 2 " 1 ) [ 4 1 ) + j f + 4 3 ) ] , where 
4 1 } = ln2(4a)8~ fc W1'2 exp(~u)du = 8 - f c 2 v ^ l n 2 ( 4 a ) r ( 2 - 1 ) 
4 2 ) = 2 ln(4a) In uu-1/2 exp(—u)du = 8" f c2v/^21n(4a)V'(2-1) (formula 

[3.4.352,4]) 
4 3 ) = 8~ f c2-v/ar(2_1)[V'2(2_1) + f(2, - 2 " 1 ) ] (formula [3.4.353,2]) 
where £(2, - 2 - 1 ) = 4 E ~ ( 2 n - l ) " 2 = TT2/2 + ^ ( 2 " x ) = TT2/2 - C - 2In 2. 
We obtain 

00 
5 > i n 2 x f c 

1 
oo 

= ln2(4a) + 21n(4a)^(2- 1 ) + V 2 ( 2 " 1 ) + 4 j ] ( 2 n - l)2 

l l 
= 3 - 1 [ ln(4a) + V(2 - 1)]2 + TT2/6 = 3_1(]ii a - C)2 + TT2/6. 
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