

R. A. Mahmoud

ON PREIRRESOLUTE MULTIVALUED FUNCTIONS

In this paper, the author establishes some new characterizations of the preirresolute multifunctions due to Popa et al. [11]. Also, other properties have been presented and some results in [11] are improved.

1. Introduction

Recently, Popa et al. [11] defined both upper and lower-preirresolute multifunctions as a generalization of preirresoluteness of single-one due to Reilly and Vamanamurthy [13], in 1985. Several of their characterizations and properties have been studied in [11]. Therefore, this paper is devoted to present other new characterizations of preirresolute-multifunctions. Moreover, some basic topological properties have been investigated and known results in [11], we have succeeded to strengthen them. The relationship between preirresolute-multifunctions with preclosed graphs have been discussed.

2. Preliminaries

The topological spaces or simply spaces which will be used here are (X, τ) and (Y, σ) without any separation axioms and whenever such properties are needed they will be explicitly assumed. By $f : (X, \tau) \rightarrow (Y, \sigma)$ and $F : (X, \tau) \rightarrow (Y, \sigma)$ we will represent a single and a multivalued function or simply a function and a multifunction, respectively. For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, the upper and lower inverse of a subset B of Y are denoted by $F^+(B)$ and $F^-(B)$ respectively, that is, $F^+(B) = \{x \in X : F(x) \subseteq B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. If W is subset of X , the closure and the interior of W with respect to τ are

Key words and phrases. Upper-preirresolute, lower-preirresolute and preirresolute multifunctions, preclosed graphness of multifunctions.

1991 *AMS Classification Codes:* 54C8 and 54C60.

denoted by $\tau\text{-cl}(W)$ and $\tau\text{-int}(W)$, respectively. $W \subseteq X$ is said to be preopen [6] if $W \subset \tau\text{-int}(\tau\text{-cl}(W))$. While, the semi-openness concept was given by $W \subseteq \tau\text{-cl}(\tau\text{-int}(W))$ [5]. The family of all preopen (resp. semi-open) sets in (X, τ) will be denoted as usual by $PO(X, \tau)$ (resp. $SO(X, \tau)$). But for any point $p \in X$, $PO(X, p) = \{W \in PO(X, \tau) : p \in W\}$. The class $PO(X, p)$ and all of its super sets is the usual preneighbourhood system of p and will be denoted by $\text{pre-}N(p)$. A complement of a preopen set is preclosed [6], equivalently, $\tau\text{-cl}(\tau\text{-int}(W)) \subseteq W$. Therefore [3] the preclosure operator of any $W \subseteq X$ is denoted by $\text{precl}(W)$, and it is the intersection of all preclosed sets contains W . The authors in [13] denoted the class τ^α , with respect to (X, τ) which contains the sets having both properties of semi- and preopenness. In (X, τ) , $W \subseteq X$ is called α -set, if $W \subseteq \tau\text{-int}(\tau\text{-cl}(\tau\text{-int}(W)))$ as in [9]. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is preirresolute [13] if the inverse image of each preopen in (Y, σ) is preopen in (X, τ) . Preirresoluteness of f is equivalent with $f(\text{precl}(A)) \subseteq \text{precl}(f(A))$, for each $A \subseteq X$ and $\text{precl}(f^{-1}(B)) \subseteq f^{-1}(\text{precl}(B))$ for each $B \subseteq Y$. Following Popa [11] et al. a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is said to be upper-preirresolute (resp. lower-preirresolute) at a point $p \in X$ if for each $W \in PO(Y, \sigma)$ such that $F(p) \subseteq W$ (resp. $F(p) \cap W \neq \emptyset$) there exists $H \in PO(X, p)$ such that for each $h \in H$, $F(h) \subseteq W$ (resp. $F(h) \cap W \neq \emptyset$). If F is upper-preirresolute (resp. lower-preirresolute) at all points of its domain, then it is called upper-preirresolute (resp. lower-preirresolute). But $F : (X, \tau) \rightarrow (Y, \sigma)$ is strongly lower (resp. strongly upper) [10] semi-continuous, if for any $B \subseteq Y$, $F^-(B) \in \tau$ (resp. $F^+(B) \in \tau$). A space (X, τ) is said to be strongly compact [7] if every preopen cover of X admits a finite subcover. While, in (X, τ) any $W \subseteq X$ is called α -paracompact [14] if every of its open cover has an X -open X -locally finite refinement which covers W . Therefore, $F : (X, \tau) \rightarrow (Y, \sigma)$ is punctually α -paracompact [12] (punctually α - p -regular [11]) if for each $p \in X$, $F(p)$ is α -paracompact (α - p -regular). A subset W of a space (X, τ) is α - p -regular, if for any $p \in W$ and any preopen set H containing p , there exists $U \in \tau$ such that $p \in U \subseteq \tau\text{-cl}(U) \subseteq H$ [11].

3. Characterizations

Several characterizations of upper and lower-preirresoluteness have been given in [11] and we show a bit more.

DEFINITION 1. A multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is called preirresolute at a point $p \in X$ if for each pair $W_i \in PO(Y, \sigma)$, $i = 1, 2$ such that $F(p) \subseteq W_1$ and $F(p) \cap W_2 \neq \emptyset$, there exists $H \in PO(X, p)$ with $F(H) \subseteq W_1$, such that for any $h \in H$, $F(h) \cap W_2 \neq \emptyset$.

Therefore, $F : (X, \tau) \rightarrow (Y, \sigma)$ is preirresolute if it has the above property at any point $p \in X$.

PROPOSITION 1. *Any preirresolute multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ at any $p \in X$ is both upper and lower-preirresolute at the same point.*

THEOREM 1. *For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:*

- (i) *F is preirresolute at any $p \in X$.*
- (ii) *For any $W_1, W_2 \in PO(Y, \sigma)$ such that $F(p) \subseteq W_1$ and $F(p) \cap W_2 \neq \emptyset$, we have $p \in \tau\text{-int}(\tau\text{-cl}(F^+(W_1) \cap F^-(W_2)))$.*
- (iii) *For each $W_1, W_2 \in PO(Y, \sigma)$ having $F(p) \subseteq W_1$, $F(p) \cap W_2 \neq \emptyset$ and for any $U \in \tau(p)$, there exists $\phi \neq G \in \tau$ with $G \subseteq U$, $F(G) \subseteq W_1$ and $F(G) \cap W_2 \neq \emptyset$ for each $g \in G$.*

Proof. (i) \rightarrow (ii): Take any $W_i \in PO(Y, \sigma)$, $i = 1, 2$ with $F(p) \subseteq W_1$ and $F(p) \cap W_2 \neq \emptyset$. By hypothesis, there exists $H \in PO(Y, p)$ such that $F(H) \subseteq W_1$ and $F(h) \cap W_2 \neq \emptyset$ for each $h \in H$. Thus, $p \in H \subseteq F^+(W_1)$ and $p \in H \subseteq F(W_2) \neq \emptyset$. Hence $p \in H \subseteq F^+(W_1) \cap F^-(W_2)$. Preopenness of H implies that $p \in \tau\text{-int}(\tau\text{-cl}(H)) \subseteq \tau\text{-int}(\tau\text{-cl}(F^+(G_1) \cap F^-(G_2)))$.

(ii) \rightarrow (iii): Assume $W_1, W_2 \in PO(Y, \sigma)$ be such that $F(p) \subseteq W_1$ and $F(p) \cap W_2 \neq \emptyset$. Notice that (ii) gives $p \in \tau\text{-int}(\tau\text{-cl}(F^-(W_1) \cap F^-(W_2)))$. Letting also $U \in \tau(p)$ we have $\phi \neq U \cap \tau\text{-int}(F^+(W_1) \cap F^-(W_2)) \subseteq U \cap (\tau\text{-int}(F^+(W_1)) \cap \tau\text{-int}(F^-(W_2))) = G$ which is open and contains in U with $G \subseteq \tau\text{-int}(F^+(W_1))$ and also $G \subseteq \tau\text{-int}(F^-(W_2)) \subseteq F^-(W_2)$. Therefore, $F(G) \subseteq W_1$ and $F(g) \cap W_2 \neq \emptyset$ for each $g \in G$. (iii) \rightarrow (i): Immediately, since $\tau(p) \subseteq PO(X, p)$.

LEMMA 1 [1]. *In a space (X, τ) , $\text{precl}(A) = A \cup \tau\text{-cl}(\tau\text{-int}(A))$, for any $A \subseteq X$.*

Although the mentioned statements (i)–(iv) in the next theorem are studied in [11] separately in both upper and lower-preirresoluteness, they will be investigated here, together with others more general. Namely we have:

THEOREM 2. *The following statements are equivalent for $F : (X, \tau) \rightarrow (Y, \sigma)$:*

- (i) *F is preirresolute.*
- (ii) *For any pair $W_1, W_2 \in PO(Y, \sigma)$, $F^+(W_1) \cap F^-(W_2) \in PO(X, \tau)$.*
- (iii) *For each preclosed sets $S_1, S_2 \subseteq Y$, $F^-(S_1) \cup F^+(S_2)$ is preclosed.*
- (iv) *For every $B_i \in P(Y)$, $i = 1, 2$. $\tau\text{-cl}(\tau\text{-int}(F^-(B_1) \cup (B_2))) \subseteq F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2))$.*
- (v) *$\text{precl}(F^-(B_1) \cup F^+(B_2)) \subseteq F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2))$, for any $B_1, B_2 \subseteq Y$.*

- (vi) $F^-(\text{preint}(B_1)) \cap F^+(\text{preint}(B_2)) \subseteq \text{preint}(F^-(B_1) \cap F^+(B_2))$ for each $B_i \in PO(Y, \sigma)$, $i = 1, 2$.
- (vii) For any $p \in X$ and each $N \in \text{pre-}N(F(p))$, then for every $W \in PO(Y, \sigma)$ such that $W \cap F(p) \neq \emptyset$, $(F^+(N) \cap F^-(W)) \in \text{pre-}N(p)$.
- (viii) For each $p \in X$ and any $N \in \text{pre-}N(F(p))$, then for any $W \in PO(Y, \sigma)$ such that $W \cap F(p) \neq \emptyset$. There is $N^* \in \text{pre-}N(p)$ with $F(N^*) \subseteq N$ and $F(n) \cap W \neq \emptyset$ for each $n \in N^*$.

Proof. (i) \rightarrow (ii) For any $W_1, W_2 \in PO(Y, \sigma)$ and let $p \in F^+(W_1) \cap F^-(W_2)$. Thus $F(p) \subseteq W_1$ and $F(p) \cap W_2 \neq \emptyset$. Since F is preirresolute then Theorem 1 gives, $p \in \tau\text{-int}(\tau\text{-cl}(F^+(W_1) \cap F^-(W_2)))$. Hence (ii) follows directly.
(ii) \rightarrow (iii): Follows immediately.

(iii) \rightarrow (iv): Let B_1, B_2 be any subsets of Y . Then $\text{precl}(B_i)$, $i = 1, 2$ are preclosed. By (iii), $F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2))$ is also preclosed in (X, τ) , i.e. $\tau\text{-cl}(\tau\text{-int}(F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2)))) \subseteq F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2))$. Since $F^+(B_2) \subseteq F^+(\text{precl}(-B_2))$ and $F^-(B_1) \subseteq F^-(\text{precl}(B_1))$ so $\tau\text{-cl}(\tau\text{-int}(F^-(B_1) \cup F^+(B_2))) \subseteq \tau\text{-cl}(\tau\text{-int}(F^-(\text{precl}(B_1)) \cup F^+(\text{precl}(B_2)))) \subseteq F^-(\text{precl}(B_1) \cup F^+(\text{precl}(B_2)))$.

(iv) \rightarrow (v): By the meaning of preclosure of any set as the above lemma shows.

(v) \rightarrow (vi): From the relation between preclosure (resp. upper) with preinterior (resp. lower) of any set (resp. multifunction).

(vi) \rightarrow (vii): Let $p \in X$ and $N \in \text{pre-}N(F(p))$. Then there exists $W^* \in PO(Y, \sigma)$ such that $F(p) \subseteq W^* \subseteq N$. Since, W is also preopen with $F(p) \cap W \neq \emptyset$, therefore $p \in F^+(W^*) \cap F^-(W^*) = F^+(\text{preint}(W^*)) \cap F^-(\text{preint}(W)) \subseteq \text{preint}(F^+(W^*) \cap F^-(W)) \subseteq \text{preint}(F^+(N) \cap F^-(W)) \subseteq F^+(N) \cap F^-(W)$. Hence the conclusion follows.

(vii) \rightarrow (viii): Immediately by taking $N^* = F^+(N) \cap F^-(W)$.

(viii) \rightarrow (i): It is evidently from the hypothesis. This completes the proof.

THEOREM 3. For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) F is upper (resp. lower) preirresolute.
- (ii) $F^+(W)$ (resp. $F^-(W)$) $\in PO(X, \tau)$, for each $W \in PO(Y, \sigma)$.
- (iii) For any $p \in X$ and each $W \in PO(Y, \sigma)$ such that $F(p) \subseteq W$ (resp. $F(p) \cap W \neq \emptyset$), there exists $H \in PO(X, p)$ having $F(H) \subseteq W$ (resp. $F(h) \cap W \neq \emptyset$ for every $h \in H$).
- (iv) $F^-(W)$ (resp. $F^+(W)$) is preclosed, for each $W \in PO(Y, \sigma)$.
- (v) $\tau\text{-cl}(\tau\text{-int}(F^-(W))) \subseteq F^-(W)$ (resp. $(\tau\text{-cl}(\tau\text{-int}(F^+(W)))) \subseteq F^+(W)$), for each $W \in PO(Y, \sigma)$.

Proof. Here, the proof will be given with respect to the lower-preirresolute (the upper one follows similarly).

(i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (iv) have been investigated in [11].

(iv) \leftrightarrow (v): Follows directly by preclosedness of $F^+(W)$.

(v) \rightarrow (i): Take any $p \in X$ and any $W \in PO(Y, \sigma)$ such that $F(p) \cap W \neq \emptyset$. By hypothesis, $F^-(W)$ is a preopen set containing p . Taking $H = F^-(W)$, the result follows directly and this complete the proof.

THEOREM 4. *The following statements are equivalent for a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$.*

(i) *F is lower preirresolute.*

(ii) $F(\tau\text{-cl}(\tau\text{-int}(H))) \subseteq F(H)$, for each $H \in PO(X, \tau)$.

(iii) $F(\text{precl}(H)) \subseteq F(H)$, for each $H \in PO(X, \tau)$.

P r o o f. (i) \leftrightarrow (ii): By the equivalence of (i) and (v) of the above theorem and by considering $W = F(H)$.

(ii) \rightarrow (iii): Since $\text{precl}(H) = H \cup (\tau\text{-cl}(\tau\text{-int}(H)))$ [1], hence the required hold.

(iii) \rightarrow (i): Take $p \in X$ and any $W \in PO(Y, \sigma)$ having $F(p) \cap W \neq \emptyset$. Then $p \in F^-(W)$. By hypothesis, $F(\text{precl}(F^+(Y - W))) \subseteq F(F^+(Y - W)) \subseteq Y - W$. Therefore, $\text{precl}(F^+(Y - W)) \subseteq F^+(Y - W)$. This shows that $(F^+(Y - W))$ is preclosed set in (X, τ) what in turn implies that $F^-(W) \in PO(X, \sigma)$. Putting $H = F^-(W)$, $H \in PO(X, p)$ and $F(h) \cap W \neq \emptyset$ for every $h \in H$. Hence F is lower preirresolute.

Now we shall present two characterizations of upper and lower-preirresoluteness via the preclosure multifunction which is denoted by $(\text{precl } F) : (X, \tau) \rightarrow (Y, \sigma)$ for any multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ and defined as $(\text{precl } F)(X) = \text{precl}(F(x))$, for each $x \in X$ [11].

Two next Theorems are formulated in [11], and we offer their proofs.

LEMMA 2 [11]. *Let $F : (X, \tau) \rightarrow (Y, \sigma)$ be a punctually α -paracompact and punctually α - p -regular-multifunction. Then, $(\text{precl } F)^+(W) = F^+(W)$ for every $W \in PO(X, \sigma)$.*

THEOREM 5. *If $F : (X, \tau) \rightarrow (Y, \sigma)$ is both punctually α -paracompact and punctually α - p -regular-multifunction. Then it is upper-preirresolute iff $(\text{precl } F) : (X, \tau) \rightarrow (Y, \sigma)$ is so.*

P r o o f. Take any $p \in X$ and $(\text{precl } F)(p) \subseteq W \in PO(Y, \sigma)$. By Lemma 2, $p \in F^+(W)$ and the upper-preirresoluteness of F means that, there is $H \in PO(X, p)$ with $F(H) \subseteq W$. But for any $h \in H$ which is both α -paracompact and α - p -regular, Lemma (3.2) in [11] gives that there exists $V \in \sigma$ having $\bar{F}(h) \subseteq V \subseteq \sigma\text{-cl}(V) \subseteq W$. Hence for any $h \in H$ $(\text{precl } F)(h) \subseteq \text{precl}(V) \subseteq \sigma\text{-cl}(V) \subseteq W$. So, $(\text{precl } F)(V) \subseteq W$. Thus $(\text{precl } F)$ is upper-preirresolute. Conversely, let $p \in X$ and $W \in PO(X, \tau)$ be such that $F(p) \subseteq W$ i.e. $p \in F^+(W) = (\text{precl } F)^+(W)$, as in the above lemma shows.

Hence $(\text{precl } F)(p) \subseteq W$. By hypothesis, there exists $H \in PO(X, p)$ with $(\text{precl } F)(H) \subseteq W$ and so $F(H) \subseteq W$. Therefore, F is upper-preirresolute.

LEMMA 3 [11]. *For a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, $(\text{precl } F)^-(W) = F^-(W)$, for any $W \in PO(Y, \sigma)$.*

THEOREM 6. *A multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is lower-preirresolute iff $(\text{precl } F) : (X, \tau) \rightarrow (Y, \sigma)$ is so.*

Proof. Necessity. Let $p \in X$ and $W \in PO(Y, \sigma)$ be such that $(\text{precl } F)(p) \cap W \neq \emptyset$ i.e. $p \in (\text{precl } F)^-(W)$. Lemma 3 shows that $p \in F^-(W)$ and this means that $F(p) \cap W \neq \emptyset$. Lower-preirresoluteness of F implies that there exists $H \in PO(X, p)$ having $F(h) \cap W \neq \emptyset$, for every $h \in H$. So, $(\text{precl } F)(h) \cap W \neq \emptyset$ for every $h \in H$. Hence, $(\text{precl } F)$ is lower-preirresolute. Sufficiency. Take any $p \in X$ and $W \in PO(Y, \sigma)$ with $F(p) \cap W \neq \emptyset$, therefore $p \in (\text{precl } F)^-(W)$ (see above lemma), i.e. $(\text{precl } F)(p) \cap W \neq \emptyset$. By hypothesis of $(\text{precl } F)$ there exists $H \in PO(X, p)$ such that for every $h \in H$, $(\text{precl}(h)) \cap W \neq \emptyset$ for every $h \in H$. Hence F is a lower-preirresolute.

4. Other properties

THEOREM 7. *The composition of two lower (resp. upper) preirresolute multifunctions is so as well.*

Proof. Let $F : (X, \tau) \rightarrow (Y, \sigma)$ and $F^*(Y, \sigma) \rightarrow (Z, \delta)$ be two lower-preirresolute multifunctions and $W \in PO(Z, \delta)$. Observe that $(F^* \circ F)(W) = F(F^*(W)) \in PO(X, \tau)$ (see Theorem (3.4) in [11]). Hence, $(F^* \circ F)$ is lower-preirresolute. The upper-one is satisfies by a similar argument.

These equivalencies throughout the previous theorem help to establish the following connection between three types of multifunctions.

THEOREM 8. *An upper-preirresolute multifunction which is strongly lower-semicontinuous is preirresolute.*

Proof. Let $F : (X, \tau) \rightarrow (Y, \sigma)$ be multifunction with hypothesis above, $p \in X$ and $W_1, W_2 \in PO(Y, \sigma)$ with $p \in F^+(W_1)$. Upper-preirresoluteness of F means that there exists $H \in PO(X, p)$ and $F(H) \subseteq W_1$, such that $p \in H \subseteq \tau\text{-int}(\tau\text{-cl}(H)) \subseteq \tau\text{-int}(\tau\text{-cl}(F^+(W_1)))$. As was chosen arbitrary in $F^+(W_1)$, then it follows that $F^+(W_1) \subseteq \tau\text{-int}(\tau\text{-cl}(F^+(W_1)))$ i.e. $F^+(W_1) \in PO(X, \tau)$. Since F is strongly lower-semicontinuous, then $F^-(W_2) \in \tau$ and therefore $F^+(W_1) \cap F^-(W_2)$ is preopen in (X, τ) . Hence F is preirresolute.

The next results may be considered as a strengthening one direction of Theorems (3.7) and (3.8) in [11].

LEMMA 4 [8]. *If $W \in PO(X, \tau)$ and $V \in SO(X, \tau)$, then $W \cap V \in PO(V, \tau/V)$.*

THEOREM 9. *If $\{H_i : i \in I\}$ is a semi-open cover of X and a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is upper (resp. lower) preirresolute. Then for each $i \in I$ the restriction multifunctions $F/H_i : (H_i, \tau/H_i) \rightarrow (Y, \sigma)$ are also upper (resp. lower) preirresolute.*

P r o o f. Let $p \in H_i \in SO(X, \tau_i)$ for any $i \in I$ and let $W \in PO(Y, \sigma)$ be such that $(F/H_i)(p) \subseteq W$. The upper preirresoluteness of F implies that there exists $G \in PO(X, p)$ such that $F(G) \subseteq W$. Put $H = G \cap H_i \in PO(H_i, p)$ (see above lemma). Then $(F/H_i)(H) = F(H) \subseteq W$ and hence for each $i \in I$, F/H_i is upper-preirresolute. While the proof of the second part follows analogously as in the first one, taking in the consideration the meaning of the lower-preirresoluteness.

The following theorem is an improvement in the second direction of Theorems (3.7) and (3.8) in [11].

LEMMA 5 [2]. *In (X, τ) , if $V \subseteq G \in PO(X, \tau)$ such that $V \in PO(G, \tau/G)$. Then $V \in PO(X, \tau)$.*

THEOREM 10. *Assume that $X = \bigcup_{i \in I} G_i$, $G_i \in PO(X, \tau)$ for each $i \in I$ and a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is such that the restriction $F/G_i : (G_i, \tau/G_i) \rightarrow (Y, \sigma)$, $i \in I$ are upper (resp. lower) preirresolute. Then F is upper (resp. lower) preirresolute.*

P r o o f. We will present the proof for the lower-case, while for the upper-one it follows similarly. Let $p \in X$ and $W \in PO(X, \tau)$ be such that $F(p) \cap W \neq \emptyset$. Then there is $i \in I$, such that $p \in G_i$. Since $F(p) = (F/G_i)(p)$, this gives $(F/G_i)(p) \cap W \neq \emptyset$. By lower-preirresoluteness of F/G_i , there exists $H \in PO(G_i, p)$ having $(F/G_i)(h) \cap W \neq \emptyset$ for each $h \in H$. The above lemma shows that $H \in PO(X, \tau)$ and so $F(h) \cap W \neq \emptyset$ for every $h \in H$. Hence F is lower-preirresolute.

As a consequence of Theorems 9 and 10 the following equivalence will be established.

THEOREM 11. *Assume that $\{W_i : i \in I\}$ is a cover of X by α -sets. Then a multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is upper (resp. lower) preirresolute iff the restriction multifunction $F/W_i : (W_i, \tau/W_i) \rightarrow (Y, \sigma)$ is, for each $i \in I$ also upper (resp. lower) preirresolute.*

P r o o f. It follows by above Theorems 9 and 10 and the fact that $\tau^\alpha = SO(X, \tau) \cap PO(X, \tau)$ due to Reilly and Vamanamurthy [13].

LEMMA 6 [4]. *Let H be an open subset of a space (X, τ) and let $S \subseteq H$. Then $S \in PO(X, \tau)$ iff $S \in PO(H, \tau/H)$.*

The next result is considered as a corollary of the above theorem and its proof is clear by the previously Lemma 6.

COROLLARY 1. *If $\{\bigcup_i : i \in I\}$ is an open cover of X . A multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is upper (resp. lower) preirresolute iff for each $i \in I$ $F/\bigcup_i : (\bigcup_i, \tau/\bigcup_i) \rightarrow (Y, \sigma)$ is upper (resp. lower) preirresolute.*

References

- [1] D. Andrijevic, *On the topology generated by preopen sets*, Math. Vesnik, 39 (1987), 367–376.
- [2] R. H. Atia, S. N. El-Deeb and I. A. Hasanein, *A note on strong compactness and S-closedness*, Mat. Vesnik 6 (19) (34) (1982), 23–28.
- [3] S. N. El-Deeb and I. A. Hasanein, A. S. Mashhour and T. Noiri, *On P-regular spaces*, Bull. Math. Soc. Sci. Math. R. S. Romanie 3 (1982).
- [4] M. Ganster, *Preopen sets and resolvable spaces*, Kyungpook. Math. J. 24 (2) (1987), 135–143.
- [5] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly 70 (1963), 36–41.
- [6] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein and T. Noiri, *Strongly compact spaces*, Delta J. Sci. 8(1) (1984), 30–46.
- [8] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, *A note on semi-continuity and precontinuity*, Indian J. Pure and Appl. Math. 13 (10) (1982).
- [9] O. Njastad, *On some classes of nearly open sets*, Pacific J. Math. 15 (1965), 961–970.
- [10] V. Popa, *Strongly continuous multifunctions* (Romanian), Bull. Saint. Tehn. Inst. Politehn. “Traian Vuai” Timisoara 27 (41) (1982), 5–7.
- [11] V. Popa, Y. Küçük and T. Noiri, *On upper and lower preirresolute multifunctions*, To appear in Pure and Appl. Math. Vol. (46).
- [12] V. Popa, T. Noiri, *Some properties of irresolute multifunctions*, Matemat. Vesnik 43 (1991), 11–17.
- [13] I. L. Reilly, M. K. Vamanamurthy, *On α -continuity in topological spaces*, Acta Math. Hung. 45 (1–2) (1985), 27–32.
- [14] J. D. Wine, *Locally paracompact spaces*, Glasnik Math. 10 (30) (1975), 351–357.

DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCE
 MENOUIFA UNIVERSITY, EGYPT

Received December 29, 1997; revised version March 8, 1999.