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ON A CLASS
OF GENERALIZED FREDHOLM OPERATORS, IV

Abstract. In the present paper we investigate generalized Fredholm operators (see
(15), [16] and [17]) on a complex Hilbert space H. The main results of this paper read as
follows:

1. T € ®4(H) if and only if T = T} & T, where T} is a Fredholm operator such that
a(T1 — A) and B(T1 — ) are constant for |A| small and T5 is a finite-dimensional

nilpotent operator.
2. T € ®4(H) is not finite-dimensional, then

dist(0,08(T) \ {0}) = lim_7(T")'/",

where v¢(T) denotes the essential minimum modulus of T.

1. Preliminaries and notations
The present paper is a continuation of our previous papers [15], [16] and
[17]. Notations and definitions not explicitly given are taken from [15], [16]
and [17]. In this section, X always denotes a complex, infinite-dimensional
Banach space. £(X) denotes the Banach algebra of all bounded linear op-
erators on X. We will use the following notations:
F(X)={T € L(X): dimT(X) < oo},
K(X)={T € L(X): T is compact},
P(X)={T € L(X):T is Fredholm},
®,(X)={T € L(X):T is generalized Fredholm}.
Let T € ®(X).It is well-known (see [5]) that there are § > 0 and integers
¢1,¢2 > 0 such that

T - Mg d(X) for |A| <8,
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a(T - Al)=c; < a(T) for 0< || <6,

B(T—AI)=c2<B(T) for 0<|A| <6
and

o(T)— (T - M) = B(T) - B(T - AI) for |A| < 6.
We define the jump j(T) of T € ®(X) by
iT)=aT)-c1 (= B(T) - ca).

An operator T € £(X) is called an operator of Saphar type if T is relatively
regular and N(T) C oﬁl T™(X). By S(X) we denote the set of all operators

of Saphar type.
In [12] we have introduced the following concepts:

prr(T)={A€C:T-Al€S(X)},
ore(T) = C\ prr(T).
For properties of p,,(T) and o,,(T) see [8], [10], {12}, [13] and [14].
The following proposition is due to T. Kato [5].
PROPOSITION 1.1. For T € ®(X) we have
J(T)=0 <= T € §(X).
PRroPOSITION 1.2. Let T € ®,(X). Then:

(1) T(X) is closed for each n € N.
(2) IfTeS(X) thenT € ®(X) and j(T)= 0.
(8) There is an integer m > 0 such that
() N(T)NT™X) = N(T)nT™t*¥(X) for k > 0,
(ii) N(T™) 4+ T(X) = N(T™+F) + T(X) for k > 0,
(iii) N(T™) + T(X) is closed.
Proof. (1) follows from [15], Proposition 4.8 (b).

(2): Since N(T) € T(X) and dim N(T)NT(X) < oo ([15], Theorem
4.8 (a)), we have a(T) < oo. Theorem 3.22 in [16] shows that T € ®(X).
By Proposition 1.1 we get j(T) = 0.

(3): (i) and (ii) follow from Proposition 1.6 in [17]. To show (iii) take a
sequence (y,) in N(T™) + T(X) with y, — yo (n — 00). Then there are
sequences (2,) and (z,) such that

n=Tzn+2,, z, €X, 2,€N(T™) (n€N).

This gives
Ty, = T™ 2, - T™y  (n — ).
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By (1), T™t!(X) is closed, thus T™yo € T™+(X), hence T™yo = T™ 2
for some zp € X. It follows that yo — Tz9 € N(T™). Therefore yp € T(X) +
N(T™). ]

By definition, the minimum modulus y(T) of T € L£(X) is the supremum
of all real numbers vy > 0 such that

|Tz|| > v dist(z, N(T')) for all =z € X.
It is well known that
T(X) is closed <= ~(T)> 0.
ProrosiTION 1.3. Let T € L(X).
(1) T € L(X)™, then lim y(T™)Y/™ = dist(0, 0(T)).
(2) If T € ®(X) then nli_{r;:;?T")l/" ezists and is equal to the supremum
of all 6 > 0 such that T — AI € ®(X) and (T — AI) and B(T — AI)

" are constant on 0 < |A] < 4.
(3) If 0 is a pole of the resolvent (T — AI)~1, then

lim y(T™)Y™ = dist(0,(T) \ {0}).

n—oo

Proof. (1) Since T is invertible in £(X), y(T) = ||T~||~!. It follows that
Jim (T = nlirréo(||(T‘1)"||1/“)‘1 = r(T-1)~1. Then it is easy to see
that lim Y(T™Y™ = dist(0,0(T)).

(2) [3], Theorem 5.

(3) [1], Corollary 5.2. .

PROPOSITION 1.4. Let T € £(X) and U € L(X ). Then
7(0T) < ||UI(T)-
Proof. Since N(T)= N(UT), we get for ¢ ¢ N(UT) that

[UT=|| . 1o 7|l
dist(z, N(UT)) — dist(z, N(T))’
T

thus y(UT) < ||U|| Tst(z, N (D) forall z ¢ N(T). This shows that y(UT) <
U (T). =

REMARK. In [15] we have defined genaralized Fredholm operators only on
infinite-dimensional Banach spaces. For a finite-dimensional Banach space
X we define the class ®,(X) as in Definition 1.2 in [15]. In this case we have
®,(X) = L(X).
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2. Quasi-Fredholm operators
For the rest of this paper, H always denotes a complex, infinite-dimen-

sional Hilbert space.
For T € L(H) it is well-known that

T(H)is closed <= T is relatively regular.

Furthermore, we have
Te®(H) < T € ®,(H).
Quasi-Fredholm operators have been defined by J.P. Labrousse 7] as a
generalization of semi-Fredholm operators.

DEFINITION 2.1. T € L(H) is called a quasi-Fredholm operator if there is an
integer m > 0 such that

T™(H)NN(T)=T™* A N(T) forall k>0
and
T™"(H)NN(T) and T(H)+ N(T™) are closed.
We denote the set of all quasi-Fredholm operators on H by ¢q®(H ).
PRrorosITION 2.2. ®,(H) C ¢®(H).

Proof. Proposition 1.2 (1) and (3). ]

DEFINITION 2.3 (Kato’s decomposition). We say that T € £L(H) has a Kato
decomposition if there exist two closed, T-invariant subspaces H; and Ho
such that

(21) H=H1®H,, T|y €S(H1) and Ty, is nilpotent.

Notation. Let T € L(H). If there are closed, T-invariant subspaces H;
and H, of H with H = Hy @ H,, then we always denote the operators T|H1
and T| H, by Th1 and T3, respectively. In this case the operator T' can be
written in the form 7' = T) @ T,. We say that T has the Kato decomposition
(H1, H,) if the subspaces H; and Hj also satisfy (2.1).

REMARK. T. Kato has shown in [5] that each semi-Fredholm operator has
a Kato decomposition.

THEOREM 2.4. For T € L(H), Definitions 2.1 and 2.3 are equivalent.
Proof. [7], Théoréme 3.2.2. n

In [10] M. Mbekhta has characterized operators in ¢®(H) as follows:
THEOREM 2.5. For T € L(H) the following assertions are equivalent:
(1) T € q®(H).



Generalized Fredholm operators 585

(2) 0 is an isolated point of 0,,(T) and nll}rrgo A(T™M)Y™ ezists and is strictly
positive.

PROPOSITION 2.6. Let T € ®4(H) (C q®(H)). For each Kato decomposition
(H1, H3) of T we have

(2.2) Ty € ®(Hy), j(T1)=0 and T,c F(Hy).

Proof. By [17], Proposition 1.5, we have T; € ®,(H;) (¢ = 1,2). Since
T, € S(H,), we get from Proposition 1.2 (2) that Ty € ®(H;) and j(T1) = 0.
If dim Hy < oo, then it is clear that T, € F(Hz). If dim Hy = o0, then we
get T, € F(H;) from Theorem 3.7 in [16] as follows: T3 is nilpotent, thus
o(T,) = 06(T2) = {0}, hence T, is a Riesz operator and so T € F(H;). =
Now we are in a position to characterize operators in ®,(H).
THEOREM 2.7. For T € L(H) the following conditions are equivalent:
(1) Te ®,(H).
(2) T =T, ® Tz with Ty Fredholm and T finite-dimensional.
(3) T =Ty @ Tz with Ty Fredholm, j(T1) = 0 and T, finite-dimensional.
(4) T € ¢®(H), and (2.2) holds for each Kato decomposition (Hy, H,) of T .
(5) T € q®(H), and there is a Kato decomposition (Hy, H2) of T such that
(2.2) holds.
Proof. It follows from Proposition 2.2, Theorem 2.4 and Proposition 2.6
that (1) implies (2), (3), (4) and (5).
(3) “=" (2): Clear.
(4) “=" (5): Clear.
Now suppose that (2) or (5) holds. Then Tj is Fredholm and T is finite-

dimensional. Therefore, T} and T3 are generalized Fredholm. Then it follows
from [17], Proposition 1.5, that T € ®,(H). ]

Recall that an operator T € L(H) is said to have the single valued
eztension property (SVEP) in £ € C if for any analytic function f: D — H,
D is a neighbourhood of £, with (7' — AI)f(A) = 0 on D, we have f = 0.

ProrosiTiON 2.8. Let T € L(H). If T =T1 ® T, and £ € C, then
T has the SVEP in £ <= T, and Ty have the SVEP in €.

Proof. [2], Proposition 1.1.3. (]
THEOREM 2.9. Let T € ®,(H).
(1) If T =T & T, with Ty Fredholm and T, finite-dimensional, then

(i) T has the SVEP in 0 <= T has the SVEP in 0 < p(Th) <
00. In this case we have ind(Ty) < 0;
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(ii) T™ has the SVEP in 0 <= Tt has the SVEP in0 <= ¢(T1) <
oo. In this case we have ind(Ty) > 0.

(2) If T =Ty T, with Ty Fredholm, j(T1) = 0 and T, finite-dimensional,
then

(i) T has the SVEP in 0 <= o(Ty) =0 <= T is left invertible;
(ii) T* has the SVEP in 0 <> ((T1) =0 <= T is right invertible;
(iii) T and T* have the SVEP in 0 <= T is invertible.

Proof. (1) (i): Since T3 is finite-dimensional, T, has the SVEP (in each
& € C). From Proposition 2.8 we therefore derive that T has the SVEP in 0
if and only if Ty has the SVEP in 0. Theorem 2.5 in [17] gives

T: has the SVEP in 0 < p(T1) < oo.

If p(T1) < oo then we see from [4], Satz 104.6, that ind(77) < 0.
(1) (ii): From Proposition 2.8 and [17], Theorem 2.5, we get

T* has the SVEP in 0 <= T7 has the SVEP in 0 < ¢(T}) < o.

Use again [4], Satz 104.6, to derive ind(7Ty) > 0 if ¢(T}) < oo.
(2) (i): Since j(T1) = 0, we see from (1) and [17], Theorem 2.3 (1), that

T has the SVEP in 0 <= p(T1) < o
< a(T1) =0 <= T is left invertible.

(2) (ii): Similar.
(2) (iii) follows (i) and (ii) L]

3. The minimum modulus in C*-algebras

In this section, B always denotes a complex C*-algebra with identiy
e # 0. Without loss of generality, we assume |le|| = 1. Fix ¢t € B and define
the linear operator 7 € L(B) by

To=tb (b e B).
We define the minimum modulus 7(t) of t by
1) = (7).
ProrosITION 3.1. Let t € B and T € L(B) as above.
(1) e(t) = o(T).
(2) v(t*) = 4(T™) for each n € N.
(3) 7(#) = inf {a(}2]) \ {0}}.

(4) 7(1)? = 2(It)? = y(£t) = y(tt) = v(|*])* = v(")*.
(5) Ifue B then y(ut) < [lullv(2).
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Proof. (1) We only have to show that 0 € p(t) <= 0 € p(7). Take
0 € p(t), put s = t~1 and define the operator S € L(B) by Sb = sb (b € B).
Then, for each b € B,

TSb=1tsb=b=sth=STb,

thus S = 7! and 0 € p(7).

If0 € p(T), put s = T~1(e), then ts = TT"1(e) = e. Define the operator
S € L(B) by 8b = sb (b € B). It follows that 7S8b = tsb = b, thus S is a
right inverse of 7. Since 7 as a unique right inverse in £(B), it follows that
S = T7L. Therefore, e = 8T (e) = S(t) = st. Hence ts = e = st, thus
0 € p(t).

(2) Clear, since 7"b = t™b (n € N).

(3) and (4) follow from (0.6) and (0.7) in [11].

(5) follows from Proposition 1.4. n

Recall from [15] that the set of generalized invertible elments B9 of B is
given by

BY = {t € B: thereis s € B with tst =t and e — st — ts € B~1}.
By Proposition 3.9 in [15] we have:

if t € B9, then there is a unique s € B

(3.1) |
with tst = t, sts = s and ts = ts.

ProProsITION 3.2. Let t € BY and s € B such that (3.1) holds. Then:

(1) t and s are not quasinilpotent.
(2) 0 € p(t) or 0 is a pole of order 1 of (t — Xe)™L.
(3) Jim ()" exists and

Jim (%)M = dist(0, 0(6)\ {0} = (Jlim [ls""/") -
Proof. (1) and (2): [16], Proposition 2.7.

(3) In view of [16], Proposition 2.7, we only have to show that
lim (™)™ = dist(0, o(t)\{0}). By Proposition 3.1 we have y(t") = v(T™)

n—o0
(n €N),0 € p(7) or 0 is a pole of order 1 of (7 — A)~!. From Proposition
1.3 (1) and (3) we derive

lim y(t")7 = lim y(T")" = dist(0,0(T)\ {0}) = dist(0, o(&)\ {0}). m

n—oo

REMARK. If t € B9\ {0}, then o(¢) \ {0} is compact and #  since ¢ is not
quasinilpotent.
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4. Stability radii for operators in ®,(H)

A proof of the following result can be found in [6], [8] or [14].
ProposITION 4.1. If T € S(H) then

lim y(T™)Y™ = dist(0, o,.r(T)).

n—oo

Notation. We write ,C for the C*-algebra L(H)/K(H) and T for the
coset T + K(H) of T in £. Then we have o(T) = oo(T).
The essential minimum modulus v.(T) of T € L(H) is defined by

7e(T) = (D).
From Proposition 3.1 (4) we get
7e(T) = 1e(|T)) = inf {oa(|T]) \ {0}}-
ProrosiTiON 4.2. Let T € L(H).
(1) 7%(T) = max (T +K) 2 +(T).
(2) If T(H) is closed, then v.(T) = sup (T + F)>(T)> 0.
FeF(H)

Proof. (1) [11], Théoréme 1 and Théoréme 2.
(2) [11], Théoréme 7. [

For the next result recall from [15], Proposition 1.3, that if T' € ®,(H)
there is some § > 0 such that 7' — Al € ®(H) for 0 < |A| < . Furthermore,
by [16], (3.6), there is some S € L(H) with

(4.1) TST=T, STS=S, ST-TS¢€ F(H)
and, if T ¢ F(H),
(4.2) dist(0,09(T) \ {0}) = #(5) .

TueoREM 4.3. If T € ®,(H)\ F(H), then lim Ye(T™)'/* ezists, and
dist(0, 76(T)\ {0)) = lim 7o(T")/"
Proof. Since T ¢ F(H) and T(H) is closed, we have T ¢ K(H), thus

T € £% and T # 0. From Proposition 3.2 we get that hm Ye(TM)/™ =
lim v(T™)'/" exists, and

n—o0

lim_ (T = dist(0, o(T) \ {0}) = dist(0, oa(T) \ {0}). .
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COROLLARY 4.4. Let T € ®,(H)\ F(H) and S € L(H) such that (4.1)
holds. Then

Jim, (a9~ K0)'"" = [ Jim, ( int 5™ - K1)

= | lim (Fei?r{m 5™ = F”)I/n]—l = Jim (p:;?y)7(Tn B F))l/n'

Proof. Proposition 4.2, (4.2), Theorem 4.3 and [16], Corollary 3.13. m

CoOROLLARY 4.5. If T € L(H)\ F(H) is normal and if T(H) is closed, then
T € ®,(H) and there is some K € K(H) such that TK = KT and

dist(0,04(T) \ {0}) = 7e(T) = (T + K).

Proof. From [15], Remark 4.7 (c), we derive T € ®,(H ). It is shown in the
proof of Corollaire 3 in [11] that, if T is normal, then 7.(T") = 7.(T)" for
n € N. By Corollaire 3 (3.2) in [11}, thereis some K € K(H) with TK = KT
and 7.(T) = v(T + K). ]

REMARKS. (1) f T € F(H), then T € ®,(H) and T — A € ®(H) for each
A # 0. Thus o¢(T) \ {0} = 0.

(2)fT € L(H) is normal and T(H) is closed, then H = T(H)® N(T).
Therefore, 0 is a pole of order 1 of the resolvent (T' — AI)~! or 0 € p(T).
It is easy to see that for each n € N, y(T") = 4(T")". Hence we get from
Proposition 1.3 (3) that

(4.3) 7(T) = dist(0,0(T) \ {0}).
(3) In [16] we have defined the generalized Fredholm spectrum og,(T') for
T € L(H) as follows:
0g,(T)={Ae€C:T - A ¢ d,(H)}.

In view of Theorem 4.3 one might conjecture that if T € ®,(H) \ F(H),
then
Jim Ye(T™V™ = dist(0, og,(T)).

But this is not true in general. Take a projection P € L(H) with P ¢
®(H)UF(H). Then

(4.4) o(P) = ga(P) = {0,1}.
By Remark 1.7 (c) in [15], P, — P € ®,(H), hence o¢,(P) = 0, but
(4.5) 1 = dist(0,09(P) \ {0}) = nh_{g() ve(PM)Y™,

(4) If P € L(H) is an orthogonal projection and if P ¢ ®(H)U F(H),
then it follows from Corollary 4.5, (4.3), (4.4) and (4.5) that there is some
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K € K(H) with PK = KP and
Ye(P) = v(P)=v(P+ K) = 1.

Since ®,(H) C ¢®(H) (Proposition 2.2), we derive from Theorem 2.5
that if T € ®,(H), then there is some ¢ > 0 with

T-MMeS(H) for 0<|A|<e.
From [8], Corollaire 3.9, we get the following theorem:
THEOREM 4.6. If T € ®,(H) then

lim v(T™)Y™ = dist(0, o, (T) \ {0}).

n—oo
T e ®,(H),then thereis § > Osuch that T—AI € (H)for0 < |A| < §
([15], Proposition 1.3) and T — AI € S(H) for 0 < |A| < 8. Let d(T) be the
supremum of all € > 0 such that T—AI € ®(H) and (T —AI) and S(T - \I)
are constant for 0 < |A| < e.
Our next result is a generalization of Proposition 1.3 (2) in the Hilbert
space case.

THEOREM 4.7. If T € ®,(H) then
d(T) = lim y(T")/™.

Proof. Put d = lim y(T™)'/", D; = {A € C:0 < [\ < di}, dp = d(T)
and Dy = {A € C:0< |\ <dq}.

Let A € Dy. Then T — AI € ®(H) and j(T — AI) =0, hence T — Al €
S(H), by Proposition 1.1. This gives Dy C pre(T) and dy < dist(0, 0,+(T) \
{0}). Theorem 4.6 shows now that d; < d;.

It remains to show that d; < dz. By Theorem 4.6, Dy C p,.(T). In [18],
M.A. Shubin has shown that there is a holomorphic function F : Dy — L(H)
such that

(T = ADF(A)(T = M) =T — M forall A€ D;.

Since T — AI € ®(H) for 0 < |A| < dz (< dy), T — Al is invertible for A € D,
(C D). Therefore we get F(A) = (T — AI)~! for each A € Dy, thus

(T = \D)F()) = T = FO)(T - M) for A € D,.
Define the holomorphic functions Gy,G3 : Dy — L(H) by
Gi(A) = (T -ADF(A) -1 and Gy(A\)=FA) (T -XM)-1I.

Then we have

G1(A) = 0= Go()\) for each A € Ds.
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Since the mappings A — G:(j\) (i = 1,2) are holomorphic on Dy, it results
that
Gi(A\) =0 = Gy()) forall A€ D;.

Therefore, T — AT is invertible for each X € Dy, hence T — A\ € &(H) for
each A € D;. Since Dy C p.(T), it follows that j(T'— AI) = 0 for A € D;.
This shows that Dy C D3. Thus d; < d,. [

For our next result we need some additional notations. We denote the
algebra L(H)/F(H)by L, and we write T for the coset T+ F(H) of T in L.

If R € L(H) is relatively regular, then the set of all pseudo-inverses of
R is denoted by P(R).

Let T € ®,(H), R € ®(H) and TR — RT € F(H). Then, by [15],
Theorem 4.10, there is some § > 0 such that T—AR € ®(H) for 0 < |A| < 6.
Put

d(T,R)=sup{e>0:T - AR € ®(H) for 0< |A| < ¢}.

If T € F(H) (C ®,(H)), then T — AR = AR € £~ for each X # 0, hence
T — AR € ®(H) for each A # 0, thus d(T,R) = o0

The following theorem deals with the case where T' € ®,(H)\ F(H).
This result improves Theorem 4.10 in [15] (in the Hilbert space case).

THEOREM 4.8. Suppose that T € ®,(H)\F(H), R € ®(H) and TR~ RT €
F(H). Put (T,R) ={A € C: T — AR € ®(H)}. Then we have for each
U € P(R):
(1) UT,TU € &,(H)\ F(H).
(2) 06(UT) = 0o(TU) = C\ &(T, R).
(3) d(T,R) = lim 7((UT)")"/™ = lim 7.((TU)")"/
= dist(0,046(TU) \ {0}).

Proof. (1) Let U € P(R). Then H = (RU)(H)® (I - RU)(H) and (I -
UR)(H) = N(R). It follows that RU == UR hence U € ®(H). From

A~ A A A

TR = RT we get T = TRU = RTU thus UT = URTU = TU, hence
UT - TU € F(H). Since U € ®(H) C ®,(H), we see from [15], Theorem
4.5, that UT,TU € ®,(H). Since T # 0, we see from T = RTU = RUT
that TU # 0 # UT. This gives UT,TU ¢ F(H).
(2) From UT — TU € F(H), we derive UT = TU and so
os(UT) = o(UT) = o(TU) = a4(TU).
Let A € C. Then (observe that RU = UR = I)

A€ ®(T,R) < T-ARe€®(H) < T-ARe L™}
< RUT-AR=R(UT - M)e L
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<= UT-MeL' < UT-M¢€dH)
<= AeC\oa(UT).

(3) It follows from (2) that d(T', R) = dist(0,0(UT)\ {0}) =
dist(0,0(TU)\ {0}). Now use Theorem 4.3 and (1) to obtain

d(T,R) = n]_eréo 76((UT)n)1/n = nh—>n<}o 73((TU)")1/". -

COROLLARY 4.9. Let T and R as in Theorem 4.8. Then
~ -1
Jim (T r(B)™ < d(T, B) < Jim (T (Jim, 7e(B7)H") ™

Proof. Take U € P(R). Since TR = RT, UR = I = RU and TU = UT,
weget TU = UT, R € L' and U = R™!. From Proposition 3.1 we see that

1T7) = 4(F) = o0 ) < | B ()

= [|[R"|l7((TU)™)
for each n € N, thus
’)’e(Tn)l/n

T < 1@V YT (nen).

From Theorem 4.8 (3) we derive
lim y(T™)"/"r(R)™* < d(T, R).
Use again Proposition 3.1 to see that
Ye(TUYY) = 1(TT™) < TV (T™) = (0" lye(T™)V"

for each n € N. This gives

d(T,R) < r(U) Jim ve(T™)H™,
Theorem 3.10 in [16] shows that

dist(0,06(R) \ {0}) = r(U) L.
Since R € ®(H) C ®,(H)\ F(H), it follows from Theorem 4.3 that

Jim (R = dist(0, 00(R) \ {0D),

hence r(U) = (nh—.l& ve(RM)Y ") . This completes the proof. [

THEOREM 4.10. Let T € @(H)\ F(H), D = {A € C: |\ < lim_ (T}
and D = D\ {0}. Then there is a meromorphic function F : D — L(H)
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such that )
(4.6) (T - ADFAT-A)=T-AXI for A€ D.

Proof. By Theorem 2.7 there is a Kato decomposition (H,, Hs) of T with
Ty € ®(H,), j(Th) = 0, T, € F(H,), T; nilpotent and T = Ty @ T2. Take
m € NU {0} with TJ* = 0. We denote the identity on H; by I; (i = 1,2).
Since T ¢ F(H), H, # {0}.

Case 1: H, = {0}. Thus Hy = H and T =Ty € S(H) (Proposition 1.1).

Theorem 4.6 shows that D C p,.(T). It follows from [18] that there is a
holomorphic function F : D — L(H) with

(T —ADF(A\)(T - AI)=T - A foreach A€ D.

Case 2: Hy # {0}. M. Mbekhta has shown in the proof of [8], Corollaire
3.9, that
lim 7(T”)1/” = hm 'y(T")l/”

n—oo

Therefore, we get from Theorem 4.6 that D C p,.(T}). As in Case 1, we see
that there is a holomorphic function F; : D — L(H;) with

(T1 - /\Il)F()\)(Tl - AIl) = T] - )\Il for A e D.
Since T, is nilpotent we have T2 - }\12 € L(Hy)™ ! for each A # 0 and

(TQ—/\Iz) 1= Z /\k+1 = Z )‘k+1 for A -',é 0. Put Fg(/\) (Tg—x\[z)_l
k=0
for A # 0. Then 1t 1s clear that

(T2 = AL)Fa(A)(T2 = AL) = To — Al; on C)\ {0}

If we define the function F : D — L(H) by F()\) = Fi(A) @ F(}), then it
is clear that (4.6) holds. ]
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