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ON A CLASS 
OF GENERALIZED FREDHOLM OPERATORS, IV 

A b s t r a c t . In the present paper we investigate generalized Fredholm operators (see 
[15], [16] and [17]) on a complex Hilbert space H. The main results of this paper read as 
follows: 

1. T € $g(H) if and only if T = T\ © T2, where T\ is a Fredholm operator such that 
at{T\ — A) and /?(Ti — A) are constant for |A| small and T2 is a finite-dimensional 
nilpotent operator. 

2. If T € $>g(H) is not finite-dimensional, then 

d i s t ( 0 , < 7 $ ( r ) \ { 0 } ) = lim 7 e ( T n ) 1 / n , 
n—>00 

where te(T) denotes the essential minimum modulus of T. 

1. Preliminaries and notations 
The present paper is a continuation of our previous papers [15], [16] and 

[17]. Notations and definitions not explicitly given are taken from [15], [16] 
and [17]. In this section, X always denotes a complex, infinite-dimensional 
Banach space. C{X) denotes the Banach algebra of all bounded linear op-
erators on X . We will use the following notations: 

F(X) = {Te £(X) : d imT(X) < 00}, 
K(X) = {T € C{X): T is compact}, 
*(X) = {Te C{X) : T is Fredholm}, 

*g(X) = {T € C(X): T is generalized Fredholm}. 

Let T € It is well-known (see [5]) that there are 6 > 0 and integers 
ci,c2 > 0 such that 

T - X l e * ( X ) for |A| < 6, 
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a(T - XI) = ci < a(T) for 0 < |A| < S, 
P(T - XI) = c2 < 0(T) for 0 < |A| < S 

and 
a(T) - a(T - XI) = /3(T) - /3(T - XI) for |A| < S. 

We define the jump j(T) of T £ $(X) by 

j(T) = a(T) - d (= (3(T) - c2). 

An operator T € C(X) is called an operator of Saphar type if T is relatively 
oo 

regular and N(T) Ç f) Tn(X). By S(X) we denote the set of all operators 
n=l 

of Saphar type. 
In [12] we have introduced the following concepts: 

prr(T) = {X € C : T - XI € <5(X)}, 
arr(T) = C \ prr(T). 

For properties of prr(T) and <rrr(r) see [8], [10], [12], [13] and [14]. 
The following proposition is due to T. Kato [5]. 

P R O P O S I T I O N 1 . 1 . For T e we have 

j(T) = 0 <=• TeS(X). 
P R O P O S I T I O N 1 . 2 . Let T E Then: 

(1) Tn(X) is closed for each n€ N. 
(2) If Te S(X) then T G 9(X) and j(T) = 0. 
(3) There is an integer m > 0 such that 

(i) N(T) n Tm(X) = N(T) n Tm+k(X) for k> 0, 
(ii) N(Tm) + T(X) = N(Tm+k) + T(X) for k > 0, 

(iii) N(Tm) + T(X) is closed. 
Proof . (1) follows from [15], Proposition 4.8 (b). 

(2): Since N(T) Ç T(X) and dim N(T) n T(X) < oo ([15], Theorem 
4.8 (a)), we have a(T) < oo. Theorem 3.22 in [16] shows that T e $(X). 
By Proposition 1.1 we get j(T) = 0. 

(3): (i) and (ii) follow from Proposition 1.6 in [17]. To show (iii) take a 
sequence (yn) in N(Tm) + T(X) with yn —• yo (n -* oo). Then there are 
sequences (zn) and (xn) such that 

yn = Tzn + Zn t X, xneN(Tm) (n G N). 

This gives 
Tmyn = Tm+1zn -»• Tmy0 (noo). 
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By (1), T m + 1 ( X ) is closed, thus Tmy0 G Tm+1(X), hence Tmy0 = Tm+1z0 

for some z0eX. It follows that y0 - Tz0 G N(Tm). Therefore y0 € T(X) + 
N(Tm). u 

By definition, the minimum modulus 7(T) of T G C{X) is the supremum 
of all real numbers 7 > 0 such that 

||Tx|| > 7 d i s t ( x , N ( T ) ) for all x G X. 

It is well known that 

T{X) is closed 7(T) > 0. 

PROPOSITION 1 .3 . Let T e C{X). 

(1) I f T e a X ) - 1 , then Urn 1{Tnfln = dist(0, a{T)). n—^oo 
(2) IfT G then lim 7(T71)1/71 exists and is equal to the supremum n—•oo 

of alls > 0 such that T - XI G and a{T - A I ) and (3(T - XI) 
are constant on 0 < |A| < 6. 

( 3 ) If 0 is a pole of the resolvent ( T — A / ) - 1 , then 

Urn 7 ( r n ) 1 / 7 1 = dist(0, <T(T) \ {0}). n—•oo 

P r o o f . (1) Since T is invertible in C(X), 7(T) = 1 1 | — I t follows that 
lim 7 ( T n ) 1 / n = lim ( | | (T - 1 ) n | | 1 / n ) - 1 = r - r r - 1 ) " 1 . Then it is easy to see n—• 00 n—• 00 

that lim 7 (T n ) 1 / n = dist(0, or(T)). 
(2) [3], Theorem 5. 
(3) [1], CoroUary 5.2. • 

PROPOSITION 1 . 4 . Let T G C{X) and U G C(X)-1. Then 

7(DT) < ||C/||7(T). 

P r o o f . Since N(T) = N(UT), we get for x # N(UT) that 

IIPTxl ^ | T , | 
d i s t { x , N ( U T ) ) ~ 11 11 dist(x, iV(T))' 

thus 7 (UT) < ||£/|| j ^ ^ L ^ for all x £ N(T). This shows that -y(UT) < 
QlSll X) iV I i J J 

R E M A R K . In [15] we have defined genaralized Fredholm operators only on 
infinite-dimensional Banach spaces. For a finite-dimensional Banach space 
X we define the class as in Definition 1.2 in [15]. In this case we have 

= C(X). 
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2. Quasi-Fred holm operators 
For the rest of this paper, H always denotes a complex, infinite-dimen-

sional Hilbert space. 
For T e C(H) it is well-known that 

T(H) is closed T is relatively regular. 

Furthermore, we have 

T G *g(H) T* G 9g(H). 

Quasi-Fredholm operators have been defined by J.P. Labrousse [7] as a 
generalization of semi-Fredholm operators. 

DEFINITION 2 . 1 . T E C{H) is called a quasi-Fredholm operator if there is an 
integer m > 0 such that 

Tm(H) n N(T) = Tm+k n N(T) for all k > 0 

and 
Tm(H)nN(T) and T(H) + N(Tm) are closed. 

We denote the set of all quasi-Fredholm operators on H by q$(H). 

PROPOSITION 2 . 2 . $ < , ( # ) C q$(H). 

P r o o f . Proposition 1.2 (1) and (3). • 

DEFINITION 2 . 3 (Kato's decomposition). We say that T € C(H) has a Kato 
decomposition if there exist two closed, T-invariant subspaces H\ and H2 
such that 

(2.1) H = HI © H2, T\HI e S(HI) and T\H2 is nilpotent. 

Notat ion. Let T 6 £(H). If there are closed, T-invariant subspaces H\ 
and H2 of H with H = H\® H2, then we always denote the operators T\Hi 

and T\H2 by T\ and T2, respectively. In this case the operator T can be 
written in the form T = T\ © T2 • We say that T has the Kato decomposition 
(H I ,H2) if the subspaces Hi and H2 also satisfy (2.1). 

R E M A R K . T. Kato has shown in [5] that each semi-Fredholm operator has 
a Kato decomposition. 

T H E O R E M 2.4. For T € C(H), Definitions 2.1 and 2.3 are equivalent. 

P r o o f . [7], Theoreme 3.2.2. • 

In [10] M. Mbekhta has characterized operators in q$(H) as follows: 

T H E O R E M 2 . 5 . For T (E C{H) the following assertions are equivalent: 

(1) Teq*(H). 
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(2) 0 is an isolated point of arr(T) and lim -/(T71)1/™ exists and is strictly n—t-oo 
positive. 

P R O P O S I T I O N 2.6. Let T e $g(H) ( C q$(H)). For each Kato decomposition 
(H\,H2) ofT we have 

(2.2) r i € $ ( J T i ) , j{T1) = 0 and T2 € F(H2). 

Proo f . By [17], Proposition 1.5, we have T{ 6 9 ¡(HI) (i = 1,2). Since 
TI e S(HI), we get from Proposition 1.2 (2) that TX € $ ( # i ) and j(TX) = 0. 
If dim H2 < oo, then it is clear that T2 € T(H2). If dim #2 = oo, then we 
get T2 G T(H2) from Theorem 3.7 in [16] as follows: T2 is nilpotent, thus 
A(T2) = <J$(T2) — {0}, hence T2 is a Riesz opera to r and so T2 6 ^(H-I). M 

Now we are in a position to characterize operators in $g(H). 
T H E O R E M 2 . 7 . For T € ¿•(H) the following conditions are equivalent: 

( 1 ) r e * , ( * ) . 
(2) T — T\®T2 with T\ Fredholm and T2 finite-dimensional. 
(3) T = Ti © T2 with Ti Fredholm, j(Tx) = 0 and T2 finite-dimensional. 
(4) T 6 q$(H), and (2.2) holds for each Kato decomposition (Hi, H2) ofT. 
(5) T € q$(H), and there is a Kato decomposition (HI,H2) ofT such that 

(2.2) holds. 

P r o o f . It follows from Proposition 2.2, Theorem 2.4 and Proposition 2.6 
that (1) implies (2), (3), (4) and (5). 

(3) "=>" (2): Clear. 
(4) (5): Clear. 
Now suppose that (2) or (5) holds. Then 2\ is Fredholm and T2 is finite-

dimensional. Therefore, Ti and T2 are generalized Fredholm. Then it follows 
from [17], Proposition 1.5, that T € $g(H). u 

Recall that an operator T G C(H) is said to have the single valued 
extension property (SVEP) in £ € € if for any analytic function / : D —» H, 
D is a neighbourhood of with (T — XI)f(X) = 0 on D, we have / = 0. 

P R O P O S I T I O N 2 . 8 . Let T e C(H). IfT = TX@T2 and F E E , then 

T has the SVEP in f Ti and T2 have the SVEP in 

P r o o f . [2], Proposition 1.1.3. • 
T H E O R E M 2 . 9 . LetT e $g(H). 

(1) IfT — Ti®T2 with Ti Fredholm and T2 finite-dimensional, then 
(i) T has the SVEP in 0 Tx has the SVEP in 0 ^ p(Tx) < 

oo. In this case we have ind(Ti) < 0; 
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(ii) T* has the SVEP in 0 7\* has the SVEP in 0 q(Tx) < 
oo. In this case we have ind(Ti) > 0. 

(2) IfT — T\®T2 with T\ Fredholm, j(T\) = 0 and T? finite-dimensional, 
then 
(i) T has the SVEP in 0 a(Tx) = 0 Tx is left invertible; 

(ii) T* has the SVEP in 0 ¡3(TX) = 0 Tx is right invertible; 
(iii) T and T* have the SVEP in 0 T\ is invertible. 

P r o o f . (1) (i): Since T^ is finite-dimensional, T2 has the SVEP (in each 
£ G €). From Proposition 2.8 we therefore derive that T has the SVEP in 0 
if and only if Tx has the SVEP in 0. Theorem 2.5 in [17] gives 

7i has the SVEP in 0 p(Tx) < 00. 

If p(Ti) < 00 then we see from [4], Satz 104.6, that ind(Ta) < 0. 
(1) (ii): From Proposition 2.8 and [17], Theorem 2.5, we get 

T* has the SVEP in 0 Ta* has the SVEP in 0 q(Tx) < 00. 

Use again [4], Satz 104.6, to derive ind(7i) > 0 if q(Tx) < 00. 
(2) (i): Since j(Tx) = 0, we see from (1) and [17], Theorem 2.3 (1), that 

T has the SVEP in 0 ^ p{Tx) < 00 

a(Tx) = 0 Ti is left invertible. 

(2) (ii): Similar. 
(2) (iii) follows (i) and (ii) • 

3. The minimum modulus in C*-algebras 
In this section, B always denotes a complex C*-algebra with identiy 

e / 0. Without loss of generality, we assume ||e|| = 1. Fix t G B and define 
the linear operator T € £(B) by 

Tb = tb (be B). 

We define the minimum modulus 7 ( t ) of t by 

7 CO = 7 ( T ) . 

PROPOSITION 3 . 1 . Lett g B and T G C(B) as above. 
(1) a(t) = a(T). 
(2) j(tn) = 7 ( T n ) for each n G N. 
(3) 7 ( 0 = in f{a( | / | ) \{0}} . 
(4) 7 { t ? = 7( l* l ) 2 = l i f t ) = lit?) = 7 ( l *1 ) 2 = lit*?-
(5) I f u G B-1 then -y(ut) < | |u||7(0-
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P r o o f . (1) We only have to show that 0 G p(t) <=> 0 G p(T). Take 
0 G p(t), put s = i - 1 and define the operator S G £(B) by Sb = sb (b € B). 
Then, for each b G B, 

TSb = tsb = b = stb = STb, 

thus S = T " 1 and 0 G p(T). 
If 0 G p(T), put s = T _ 1 ( e ) , then ts = T T _ 1 ( e ) = e. Define the operator 

S G £ ( £ ) by Sb = sb (b e B). It follows that TSb = tsb = b, thus S is a 
right inverse of T . Since T as a unique right inverse in £(B), it follows that 
5 = T - 1 . Therefore, e = ST(e) = S(t) = si. Hence ts = e — st, thus 
0 G p(t). 

(2) Clear, since Tnb = tnb (n G N). 
(3) and (4) follow from (0.6) and (0.7) in [11]. 
(5) follows from Proposition 1.4. • 

Recall from [15] that the set of generalized invertible elments Bg of B is 
given by 

B9 = {t G B : there is s G B with tst = t and e - st - ts G B'1}. 

By Proposition 3.9 in [15] we have: 

if i G B9, then there is a unique s G B 
\ ) 

with tst = t, sts = s and ts = ts. 

PROPOSITION 3 . 2 . Let t G B9 and s G B such that ( 3 . 1 ) holds. Then: 

(1) t and s are not quasinilpotent. (2) 0 G p(t) or 0 is a pole of order 1 of (t — Ae) - 1 . 
(3) lim 7 ( t n f l n exists and n—t-oo 

Urn 7(tn)1/n = dist(0, a{t) \ {0} = ( Urn | K H 1 ' " ) " 1 . n—»-oo \n—*oo / 

P r o o f . (1) and (2): [16], Proposition 2.7. 
(3) In view of [16], Proposition 2.7, we only have to show that 

Jim^ 7 { t n f ! n = dist(0, ff(i)\{0}). By Proposition 3.1 we have 7( i n ) = 7 (T") 

(n G N), 0 G p(T) or 0 is a pole of order 1 of (T - A) - 1 . From Proposition 
1.3 (1) and (3) we derive 

Km 7( i n ) x / n = J i r ^ 7 (T T l ) 1 / n = dist(0, a(T) \ {0}) = dist(0, <r(t) \ {0}). • 

R E M A R K . If t G B9 \ {0}, then a(t) \ {0} is compact and / 0 since t is not 
quasinilpotent. 



588 Ch. S c h m o e g e r 

4. Stability radii for operators in $ g (H) 
A proof of the following result can be found in [6], [8] or [14]. 

P R O P O S I T I O N 4 . 1 . I f T e S ( H ) then 

Umo7(Tn)1/n = dist(0, <7tt(T)). 

Notation. We write £ for the C*-algebra C ( H ) / K { H ) and f for the 
coset T + IC(H) of T in C. Then we have o(T) = <r*(T). 

The essential minimum modulus 7e(T) of T G £ ( H ) is defined by 

7 e(T) = 7 ( F ) . 

From Proposition 3.1 (4) we get 

le{T) = 7e(|T|) = inf {(T$(|r|) \ {0}}. 

PROPOSITION 4.2. Let T G C(H). 

( 1 ) 7 e ( T ) = m ^ H ) 1 ( T + K ) > 7(T). 

( 2 ) I f T ( H ) is closed, then 7 e ( T ) = s u p 7 ( T + f ) > 7 ( T ) > 0 . FEF(H) 

Proo f . (1) [11], Théorème 1 and Théorème 2. 
(2) [11], Théorème 7. • 

For the next result recall from [15], Proposition 1.3, that if T G $g(H) 
there is some 6 > 0 such that T — XI G $ ( # ) for 0 < |A| < 6. Furthermore, 
by [16], (3.6), there is some S G £{H) with 

( 4 . 1 ) TST = T , ST S = S, S T - T S e ? { H ) 

and, if T £ T ( H ) , 

(4.2) dist(0, <r$(T) \ {0}) = r ( 5 ) - 1 . 

T H E O R E M 4 . 3 . I f T G * g ( H ) \ F ( H ) , then H M ^ e ( T n y / n exists, and 

dist(0,a*(T)\ {0}) = n]imo7e(Tn)1/n. 

P r o o f . Since T $ T(H) and T(H) is closed, we have T $ K{H), thus 
f G £ 9 and f é 5. From Proposition 3.2 we get that lim 7 e ( T n f l n = 

n—•oo 

lim 7 ( f n ) 1 / " exists, and 
n—+00 

lim 7 e(T") 1 / n = dist(0, o{T) \ {0}) = dist(0, CT$(T) \ {0}). • 
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COROLLARY 4 . 4 . Let T G $g(H) \ T{H) and S G £(H) such that ( 4 . 1 ) 
holds. Then 

lim ( max j(Tn - K))1/n = Urn ( inf 115" - K\\) 71-KX> \KeK.(H\ / v ' ) .n->oo W p r / m " "/ 'KelC(H) 

. 1/n 
-KelC(H) 

"I / 
= [ Urn ( inf | |5 n - F\\) } = lim ( sup j(Tn - F)) Ln-+oo V " 'V n-foo ^ p-g^tf) / IIS" - i<'ll 

P r o o f . Proposition 4.2, (4.2), Theorem 4.3 and [16], Corollary 3.13. • 

COROLLARY 4.5. IfT G C(H)\Jr(H) is normal and ifT(H) is closed, then 
T e$g(H) and there is some K G IC(H) such that TK = KT and 

dist(0, a*(T) \ {0}) = 7 e ( T ) = 7 ( T + K). 

P r o o f . From [15], Remark 4.7 (c), we derive T G §g{H). It is shown in the 
proof of Corollaire 3 in [11] that , if T is normal, then 7 e ( T n ) = 7 e (T)" for 
n G N. By Corollaire 3 (3.2) in [11], there is some K G K(H) with TK = KT 
and 7e(i1) = ^(T + K). m 

R E M A R K S . ( 1 ) If T G F(H), then T G $a(H) and T - XI e $(H) for each 
A 0. Thus o<t,{T) \ {0} = 0. 

(2) If T G £(H) is normal and T(H) is closed, then H = T(H) © N(T). 
Therefore, 0 is a pole of order 1 of the resolvent (T — A / ) - 1 or 0 G p(T). 
It is easy to see that for each n G N, 7 ( T n ) = 7 ( T ) n . Hence we get from 
Proposition 1.3 (3) that 

(4.3) l{T) = dist(0, CT(T) \ {0}). 

(3) In [16] we have defined the generalized Fredholm spectrum c$g(T) for 
T e£(H) as follows: 

a*g(T) = {\eC:T-\I?$g(H)}. 

In view of Theorem 4.3 one might conjecture that if T G \ F(H), 
then 

lim 7e(T'n)1/ 'n = dis t(0,a$ (T)). n—t-oo " 
But this is not true in general. Take a projection P G £{H) with P $ 
$(H)liT(H). Then 
(4.4) <7(P) = <7*(P) = {0,1}. 

By Remark 1.7 (c) in [15], P,I - P G *g(E), hence <r®,(P) = 0, but 

(4.5) 1 = dist(0, <r*(P) \ {0}) = lim 7 e ( P n ) 1 / n . n—•oo 
(4) If P G C{H) is an orthogonal projection and if P g $ ( # ) U ^ ( i f ) , 

then it follows from Corollary 4.5, (4.3), (4.4) and (4.5) that there is some 
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K G IC(H) with PK = KP and 

le{P) = 1{P) = 1{P + K) = l. 

Since $g(H) C q$(H) (Proposition 2.2), we derive from Theorem 2.5 
that if T G $g(H), then there is some e > 0 with 

T-XIe S(H) for 0 < |A| < e. 

From [8], Corollaire 3.9, we get the following theorem: 

T H E O R E M 4 . 6 . IfT G $a(H) then 

U i n 7 ( r n ) 1 / n = dist(0, <rrr(T) \ {0}). 

If r e then there is 6 > 0 such that T-XI G $(JT) forO < |A| < 6 
([15], Proposition 1.3) and T - XI G S(H) for 0 < |A| < 6. Let d(T) be the 
supremum of all e > 0 such that T - XI g $ ( # ) and a(T-XI) and f3(T-XI) 
are constant for 0 < |A| < e. 

Our next result is a generalization of Proposition 1.3 (2) in the Hilbert 
space case. 

T H E O R E M 4 . 7 . IfT e $g(H) then 

d ( T ) = U m 7 ( N 1 / N . n—• oo 

Proof . Put dx = lim 7 < T n f l n , = {A G C : 0 < |A| < dr}, d2 = d(T) 
n—*oo 

and D2 = {X G C : 0 < |A| < d2}. 
Let A G D2. Then T - XI G 9(H) and j(T - XI) = 0, hence T - XI G 

S(H), by Proposition 1.1. this gives D2 C prr(T) and d2 < dist(0, arr(T) \ 
{0}). Theorem 4.6 shows now that d2 < d\. 

It remains to show that d\ < d2. By Theorem 4.6, D\ C prr(T). In [18], 
M.A. Shubin has shown that there is a holomorphic function F : D\ —» C(H) 
such that 

(T - XI)F(X)(T — XI) = T — XI for all X e D1. 

Since T - XI G $ ( # ) for 0 <JA| < d2 (< d x ) , f - XI is invertible for A G D2 

(C Di). Therefore we get F(X) = ( f - A/)"1 for each A G D2, thus 

( f - XI)F(X) = 1 = F(X)(T - XI) for A G D2. 

Define the holomorphic functions G\,G2 : D\ —̂• £(H) by 

Gi(A) = ( r - XI)F(X) - I and G2(X) = F(X)(T - XI) - I. 

Then we have 
Gi(A) = 0 = G2(A) for each A G D2. 
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Since the mappings A A) (i = 1,2) are holomorphic on D\, it results 
that 

Gi(A) = 0 = G2(A) for aH A G D\. 

Therefore, T — XI is invertible for each A G hence T - XI € 9(H) for 
each Xe Di. Since D\ C p„(T), it follows that j(T - XI) - 0 for A € A -
This shows that Dx C D2. Thus dx < d2. • 

For our next result we need some additional notations. We denote the 
algebra C(H)/F(H) by £ , and we write T for the coset T + T(H) of T in C. 

If R G C(H) is relatively regular, then the set of all pseudo-inverses of 
R is denoted by V(R). 

Let T G 9g(H), R G 9(H) and TR - RT G H). Then, by [15], 
Theorem 4.10, there is some 6 > 0 such that T-XR G 9(H) for 0 < |A| < 6. 
Put 

d(T, R) = sup {E > 0 : T - XR G 9(H) for 0 < |A| < e}. 

If T G .F(f f ) (C $g(H)), then T - XR = XR e C'1 for each A ^ 0, hence 
T-XRe 9(H) for each A / 0, thus d(T, R) = oo. 

The following theorem deals with the case where T G 9g(H) \ F(H). 
This result improves Theorem 4.10 in [15] (in the Hilbert space case). 

T H E O R E M 4 . 8 . Suppose that T G 9g(H) \ T(H), R G 9(H) and TR-RTe 
T(H). Put $ (T , R) = {A G C : T - XR G 9(H)}. Then we have for each 
U G V(R): 

(1) UT,TUe 9g(H)\F(H). 
(2) a<s>(UT) = a$(TU) = C \ 9(T, R). 
(3) d ( T , £ ) = lim 7 e(( tfT) '1)1 / '1 = lim le((TU)nfln 

7i—•oo n—»00 
= dist(0,£T$(TC/)\{0}). 

P r o o f . (1) Let U G P ( i i ) . Then H = (RU)(H) © (J - £ [ / ) ( # ) and (I -
UR)(H) = N(R). It follows that RU = J = UR, hence U G 9(H). From 
T f l = RT we get f = TRU = RTU, thus UT = C/^TU = TV, hence 
UT-TU G F(H). Since U G $ ( # ) C we see from [15], Theorem 
4.5, that UT,TU G 9g(H). Since f ^ 0, we see from f = RTU = RUT 
that TU± 0 / tfT. This gives UT,TU £ F(H). 

(2) From UT-TU € /"(JT), we derive f / T = TU and so 

CT$(i7r) = a(UT) = a(TU) = <t9(TU). 

Let A G C. Then (observe that RU = UR = J ) 

Xe9(T,R) T-XRe 9(H) f - XR G 
RUT - XR = R(UT - XI) e JO'1 
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UT-XI € C'1 UT- XI e $(#) 
x ec\(T<t(UT). 

(3) It follows from (2) that d(T, R) = d i s t ( 0 , a ( f / T ) \ {0}) = 
dist(0, cr(TU) \ {0}). Now use Theorem 4.3 and (1) to obtain 

d(T,R) = lim le((UT)n)^n = Um le((TU)nf'n. u n—*oo n—kx> 
COROLLARY 4.9. Let T and R as in Theorem 4.8. Then 

lim fe(Tn)l/nr(R)~1 < d(T,R) < Um je(Tn)^n ( Um 7e(ir)1/n)_1. n—t-oo n—•oo \n—>00 / 

P r o o f . Take U <E V(R\. Since TR = RT, UR — I = RU and TU = UT, 
we get TU = UT, R 6 £ _ 1 and U = R'1. From Proposition 3.1 we see that 

7e(Tn) = 7 ( f n ) = 7 ( T n U n R n ) < \\Rn\\j((TU)n) 
= \\Rn\\fe((TUr) 

for each n € N, thus 

< 7J(TU)n)1/n (n e N). 

H^nyi/n - <e" > > ^ > 

From Theorem 4.8 (3) we derive 

Um 7 e{Tnf'nr(R)-1 < d(T, R). n—>00 

Use again Proposition 3.1 to see that 

7e((T£/)n) = 7 ( T n U n ) < \\Unh(Tn) = | |£AB | |7 e(rn)1 /n 

for each n £ N . This gives 

d(T, R) < r(U) Um 7 e ( T n ) ^ n . 71—t-OO 
Theorem 3.10 in [16] shows that 

dist(0, a$(R) \ {0}) = r(U)~l. 

Since R e $(JT) C $g(H) \ F(H), it foUows from Theorem 4.3 that 

Um f e ( R n ) l / n = d i s t ( 0 , M R ) \ M ) , n—+00 

hence r(U) = ( Um 7 e ( R n ) 1 ^ n ^ . This completes the proof. • 

THEOREM 4.10. LetT e $g(H)\F(H), D = {Xe C : |A| < H M > 7 ( R B ) 1 / N } 

and D — D \ {0}. Then there is a meromorphic function F : D —• C(H) 
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such that 

( 4 . 6 ) ( T - XI)F(X)(T - X I ) = T - X I for X £ D. 

P r o o f . By Theorem 2.7 there is a Kato decomposition (H\,H2) of T with 
T\ G $(Hi), j(Ti) = 0, T2 G F(H2), T2 nilpotent and T = 0 T2. Take 
m G N U {0} with T2

m = 0. We denote the identity on Hi by (i = 1,2). 
Since T £ T(H), Hx ± {0}. 

Case 1: H2 = {0}. Thus Hi = H and T = Tx G S{H) (Proposition 1.1). 
Theorem 4.6 shows that D C prr{T). It follows from [18] that there is a 
holomorphic function F : D —• C(H) with 

(T - XI)F(X)(T - X I ) — T - XI for each A G D. 

Case 2: H2 ^ {0}. M. Mbekhta has shown in the proof of [8], Corollaire 
3.9, that 

Hm 7 ( r » ) 1 / B = Hm 
n—KX> n—* oo 

Therefore, we get from Theorem 4.6 that D C pTr{T\). As in Case 1, we see 
that there is a holomorphic function F\ : D —»• C{H\) with 

(Ti - AJ 1 ) f (A)(r i - Xh) = 71! - Ah for A G D. 

Since T2 is nilpotent, we have T2 — A I 2 G C(H2)~l for each A / 0 and 
OO rpk m —1 rpk 

(:T2-XI2)-1 = - J2 j f e = - E TSiT f o r A ^ P u t = ( ^ - A / i ) " 1 

k=o k=o 
for A ̂  0. Then it is clear that 

(T2-XI2)F2(X)(T2-XI2) = T 2 - X I 2 on <C\{0} . 

If we define the function F : D £(H) by F(A) = f \ (A) 0 ^ ( A ) , then it 
is clear that (4.6) holds. • 
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