

Christoph Schmoeger

ON A CLASS
OF GENERALIZED FREDHOLM OPERATORS, IV

Abstract. In the present paper we investigate generalized Fredholm operators (see [15], [16] and [17]) on a complex Hilbert space H . The main results of this paper read as follows:

1. $T \in \Phi_g(H)$ if and only if $T = T_1 \oplus T_2$, where T_1 is a Fredholm operator such that $\alpha(T_1 - \lambda)$ and $\beta(T_1 - \lambda)$ are constant for $|\lambda|$ small and T_2 is a finite-dimensional nilpotent operator.
2. If $T \in \Phi_g(H)$ is not finite-dimensional, then

$$\text{dist}(0, \sigma_\Phi(T) \setminus \{0\}) = \lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n},$$

where $\gamma_e(T)$ denotes the essential minimum modulus of T .

1. Preliminaries and notations

The present paper is a continuation of our previous papers [15], [16] and [17]. Notations and definitions not explicitly given are taken from [15], [16] and [17]. In this section, X always denotes a complex, infinite-dimensional Banach space. $\mathcal{L}(X)$ denotes the Banach algebra of all bounded linear operators on X . We will use the following notations:

$$\begin{aligned}\mathcal{F}(X) &= \{T \in \mathcal{L}(X) : \dim T(X) < \infty\}, \\ \mathcal{K}(X) &= \{T \in \mathcal{L}(X) : T \text{ is compact}\}, \\ \Phi(X) &= \{T \in \mathcal{L}(X) : T \text{ is Fredholm}\}, \\ \Phi_g(X) &= \{T \in \mathcal{L}(X) : T \text{ is generalized Fredholm}\}.\end{aligned}$$

Let $T \in \Phi(X)$. It is well-known (see [5]) that there are $\delta > 0$ and integers $c_1, c_2 \geq 0$ such that

$$T - \lambda I \in \Phi(X) \text{ for } |\lambda| < \delta,$$

MSC classification: 47A11.

Key words and phrases: Generalized Fredholm operators.

$$\begin{aligned}\alpha(T - \lambda I) &= c_1 \leq \alpha(T) \text{ for } 0 < |\lambda| < \delta, \\ \beta(T - \lambda I) &= c_2 \leq \beta(T) \text{ for } 0 < |\lambda| < \delta\end{aligned}$$

and

$$\alpha(T) - \alpha(T - \lambda I) = \beta(T) - \beta(T - \lambda I) \text{ for } |\lambda| < \delta.$$

We define the *jump* $j(T)$ of $T \in \Phi(X)$ by

$$j(T) = \alpha(T) - c_1 \quad (= \beta(T) - c_2).$$

An operator $T \in \mathcal{L}(X)$ is called an *operator of Saphar type* if T is relatively regular and $N(T) \subseteq \bigcap_{n=1}^{\infty} T^n(X)$. By $\mathcal{S}(X)$ we denote the set of all operators of Saphar type.

In [12] we have introduced the following concepts:

$$\begin{aligned}\rho_{rr}(T) &= \{\lambda \in \mathbb{C} : T - \lambda I \in \mathcal{S}(X)\}, \\ \sigma_{rr}(T) &= \mathbb{C} \setminus \rho_{rr}(T).\end{aligned}$$

For properties of $\rho_{rr}(T)$ and $\sigma_{rr}(T)$ see [8], [10], [12], [13] and [14].

The following proposition is due to T. Kato [5].

PROPOSITION 1.1. *For $T \in \Phi(X)$ we have*

$$j(T) = 0 \iff T \in \mathcal{S}(X).$$

PROPOSITION 1.2. *Let $T \in \Phi_g(X)$. Then:*

- (1) $T^n(X)$ is closed for each $n \in \mathbb{N}$.
- (2) If $T \in \mathcal{S}(X)$ then $T \in \Phi(X)$ and $j(T) = 0$.
- (3) There is an integer $m \geq 0$ such that
 - (i) $N(T) \cap T^m(X) = N(T) \cap T^{m+k}(X)$ for $k \geq 0$,
 - (ii) $N(T^m) + T(X) = N(T^{m+k}) + T(X)$ for $k \geq 0$,
 - (iii) $N(T^m) + T(X)$ is closed.

Proof. (1) follows from [15], Proposition 4.8 (b).

(2): Since $N(T) \subseteq T(X)$ and $\dim N(T) \cap T(X) < \infty$ ([15], Theorem 4.8 (a)), we have $\alpha(T) < \infty$. Theorem 3.22 in [16] shows that $T \in \Phi(X)$. By Proposition 1.1 we get $j(T) = 0$.

(3): (i) and (ii) follow from Proposition 1.6 in [17]. To show (iii) take a sequence (y_n) in $N(T^m) + T(X)$ with $y_n \rightarrow y_0$ ($n \rightarrow \infty$). Then there are sequences (z_n) and (x_n) such that

$$y_n = Tz_n + x_n, \quad z_n \in X, \quad x_n \in N(T^m) \quad (n \in \mathbb{N}).$$

This gives

$$T^m y_n = T^{m+1} z_n \rightarrow T^m y_0 \quad (n \rightarrow \infty).$$

By (1), $T^{m+1}(X)$ is closed, thus $T^m y_0 \in T^{m+1}(X)$, hence $T^m y_0 = T^{m+1} z_0$ for some $z_0 \in X$. It follows that $y_0 - Tz_0 \in N(T^m)$. Therefore $y_0 \in T(X) + N(T^m)$. \blacksquare

By definition, the *minimum modulus* $\gamma(T)$ of $T \in \mathcal{L}(X)$ is the supremum of all real numbers $\gamma \geq 0$ such that

$$\|Tx\| \geq \gamma \operatorname{dist}(x, N(T)) \text{ for all } x \in X.$$

It is well known that

$$T(X) \text{ is closed} \iff \gamma(T) > 0.$$

PROPOSITION 1.3. *Let $T \in \mathcal{L}(X)$.*

- (1) *If $T \in \mathcal{L}(X)^{-1}$, then $\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \operatorname{dist}(0, \sigma(T))$.*
- (2) *If $T \in \Phi(X)$ then $\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n}$ exists and is equal to the supremum of all $\delta > 0$ such that $T - \lambda I \in \Phi(X)$ and $\alpha(T - \lambda I)$ and $\beta(T - \lambda I)$ are constant on $0 < |\lambda| < \delta$.*
- (3) *If 0 is a pole of the resolvent $(T - \lambda I)^{-1}$, then*

$$\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \operatorname{dist}(0, \sigma(T) \setminus \{0\}).$$

P r o o f. (1) Since T is invertible in $\mathcal{L}(X)$, $\gamma(T) = \|T^{-1}\|^{-1}$. It follows that $\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \lim_{n \rightarrow \infty} (\|(T^{-1})^n\|^{1/n})^{-1} = r(T^{-1})^{-1}$. Then it is easy to see that $\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \operatorname{dist}(0, \sigma(T))$.

(2) [3], Theorem 5.

(3) [1], Corollary 5.2. \blacksquare

PROPOSITION 1.4. *Let $T \in \mathcal{L}(X)$ and $U \in \mathcal{L}(X)^{-1}$. Then*

$$\gamma(UT) \leq \|U\| \gamma(T).$$

P r o o f. Since $N(T) = N(UT)$, we get for $x \notin N(UT)$ that

$$\frac{\|UTx\|}{\operatorname{dist}(x, N(UT))} \leq \|U\| \frac{\|Tx\|}{\operatorname{dist}(x, N(T))},$$

thus $\gamma(UT) \leq \|U\| \frac{\|Tx\|}{\operatorname{dist}(x, N(T))}$ for all $x \notin N(T)$. This shows that $\gamma(UT) \leq \|U\| \gamma(T)$. \blacksquare

REMARK. In [15] we have defined generalized Fredholm operators only on infinite-dimensional Banach spaces. For a finite-dimensional Banach space X we define the class $\Phi_g(X)$ as in Definition 1.2 in [15]. In this case we have $\Phi_g(X) = \mathcal{L}(X)$.

2. Quasi-Fredholm operators

For the rest of this paper, H always denotes a complex, infinite-dimensional Hilbert space.

For $T \in \mathcal{L}(H)$ it is well-known that

$$T(H) \text{ is closed} \iff T \text{ is relatively regular.}$$

Furthermore, we have

$$T \in \Phi_g(H) \iff T^* \in \Phi_g(H).$$

Quasi-Fredholm operators have been defined by J.P. Labrousse [7] as a generalization of semi-Fredholm operators.

DEFINITION 2.1. $T \in \mathcal{L}(H)$ is called a *quasi-Fredholm operator* if there is an integer $m \geq 0$ such that

$$T^m(H) \cap N(T) = T^{m+k} \cap N(T) \text{ for all } k \geq 0$$

and

$$T^m(H) \cap N(T) \text{ and } T(H) + N(T^m) \text{ are closed.}$$

We denote the set of all quasi-Fredholm operators on H by $q\Phi(H)$.

PROPOSITION 2.2. $\Phi_g(H) \subseteq q\Phi(H)$.

P r o o f. Proposition 1.2 (1) and (3). ■

DEFINITION 2.3 (Kato's decomposition). We say that $T \in \mathcal{L}(H)$ has a *Kato decomposition* if there exist two closed, T -invariant subspaces H_1 and H_2 such that

$$(2.1) \quad H = H_1 \oplus H_2, \quad T|_{H_1} \in \mathcal{S}(H_1) \text{ and } T|_{H_2} \text{ is nilpotent.}$$

Notation. Let $T \in \mathcal{L}(H)$. If there are closed, T -invariant subspaces H_1 and H_2 of H with $H = H_1 \oplus H_2$, then we always denote the operators $T|_{H_1}$ and $T|_{H_2}$ by T_1 and T_2 , respectively. In this case the operator T can be written in the form $T = T_1 \oplus T_2$. We say that T has the *Kato decomposition* (H_1, H_2) if the subspaces H_1 and H_2 also satisfy (2.1).

REMARK. T. Kato has shown in [5] that each semi-Fredholm operator has a Kato decomposition.

THEOREM 2.4. For $T \in \mathcal{L}(H)$, Definitions 2.1 and 2.3 are equivalent.

P r o o f. [7], Théorème 3.2.2. ■

In [10] M. Mbekhta has characterized operators in $q\Phi(H)$ as follows:

THEOREM 2.5. For $T \in \mathcal{L}(H)$ the following assertions are equivalent:

$$(1) \quad T \in q\Phi(H).$$

(2) 0 is an isolated point of $\sigma_{rr}(T)$ and $\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n}$ exists and is strictly positive.

PROPOSITION 2.6. *Let $T \in \Phi_g(H)$ ($\subseteq q\Phi(H)$). For each Kato decomposition (H_1, H_2) of T we have*

$$(2.2) \quad T_1 \in \Phi(H_1), \quad j(T_1) = 0 \quad \text{and} \quad T_2 \in \mathcal{F}(H_2).$$

P r o o f. By [17], Proposition 1.5, we have $T_i \in \Phi_g(H_i)$ ($i = 1, 2$). Since $T_1 \in \mathcal{S}(H_1)$, we get from Proposition 1.2 (2) that $T_1 \in \Phi(H_1)$ and $j(T_1) = 0$. If $\dim H_2 < \infty$, then it is clear that $T_2 \in \mathcal{F}(H_2)$. If $\dim H_2 = \infty$, then we get $T_2 \in \mathcal{F}(H_2)$ from Theorem 3.7 in [16] as follows: T_2 is nilpotent, thus $\sigma(T_2) = \sigma_\Phi(T_2) = \{0\}$, hence T_2 is a Riesz operator and so $T_2 \in \mathcal{F}(H_2)$. ■

Now we are in a position to characterize operators in $\Phi_g(H)$.

THEOREM 2.7. *For $T \in \mathcal{L}(H)$ the following conditions are equivalent:*

- (1) $T \in \Phi_g(H)$.
- (2) $T = T_1 \oplus T_2$ with T_1 Fredholm and T_2 finite-dimensional.
- (3) $T = T_1 \oplus T_2$ with T_1 Fredholm, $j(T_1) = 0$ and T_2 finite-dimensional.
- (4) $T \in q\Phi(H)$, and (2.2) holds for each Kato decomposition (H_1, H_2) of T .
- (5) $T \in q\Phi(H)$, and there is a Kato decomposition (H_1, H_2) of T such that (2.2) holds.

P r o o f. It follows from Proposition 2.2, Theorem 2.4 and Proposition 2.6 that (1) implies (2), (3), (4) and (5).

(3) “ \Rightarrow ” (2): Clear.

(4) “ \Rightarrow ” (5): Clear.

Now suppose that (2) or (5) holds. Then T_1 is Fredholm and T_2 is finite-dimensional. Therefore, T_1 and T_2 are generalized Fredholm. Then it follows from [17], Proposition 1.5, that $T \in \Phi_g(H)$. ■

Recall that an operator $T \in \mathcal{L}(H)$ is said to have the *single valued extension property* (SVEP) in $\xi \in \mathbb{C}$ if for any analytic function $f : D \rightarrow H$, D is a neighbourhood of ξ , with $(T - \lambda I)f(\lambda) \equiv 0$ on D , we have $f \equiv 0$.

PROPOSITION 2.8. *Let $T \in \mathcal{L}(H)$. If $T = T_1 \oplus T_2$ and $\xi \in \mathbb{C}$, then*

$$T \text{ has the SVEP in } \xi \iff T_1 \text{ and } T_2 \text{ have the SVEP in } \xi.$$

P r o o f. [2], Proposition 1.1.3. ■

THEOREM 2.9. *Let $T \in \Phi_g(H)$.*

(1) *If $T = T_1 \oplus T_2$ with T_1 Fredholm and T_2 finite-dimensional, then*

(i) T has the SVEP in $0 \iff T_1$ has the SVEP in $0 \iff p(T_1) < \infty$. In this case we have $\text{ind}(T_1) \leq 0$;

(ii) T^* has the SVEP in 0 $\iff T_1^*$ has the SVEP in 0 $\iff q(T_1) < \infty$. In this case we have $\text{ind}(T_1) \geq 0$.

(2) If $T = T_1 \oplus T_2$ with T_1 Fredholm, $j(T_1) = 0$ and T_2 finite-dimensional, then

- (i) T has the SVEP in 0 $\iff \alpha(T_1) = 0 \iff T_1$ is left invertible;
- (ii) T^* has the SVEP in 0 $\iff \beta(T_1) = 0 \iff T_1$ is right invertible;
- (iii) T and T^* have the SVEP in 0 $\iff T_1$ is invertible.

Proof. (1) (i): Since T_2 is finite-dimensional, T_2 has the SVEP (in each $\xi \in \mathbb{C}$). From Proposition 2.8 we therefore derive that T has the SVEP in 0 if and only if T_1 has the SVEP in 0. Theorem 2.5 in [17] gives

$$T_1 \text{ has the SVEP in 0} \iff p(T_1) < \infty.$$

If $p(T_1) < \infty$ then we see from [4], Satz 104.6, that $\text{ind}(T_1) \leq 0$.

(1) (ii): From Proposition 2.8 and [17], Theorem 2.5, we get

$$T^* \text{ has the SVEP in 0} \iff T_1^* \text{ has the SVEP in 0} \iff q(T_1) < \infty.$$

Use again [4], Satz 104.6, to derive $\text{ind}(T_1) \geq 0$ if $q(T_1) < \infty$.

(2) (i): Since $j(T_1) = 0$, we see from (1) and [17], Theorem 2.3 (1), that

$$\begin{aligned} T \text{ has the SVEP in 0} &\iff p(T_1) < \infty \\ &\iff \alpha(T_1) = 0 \iff T_1 \text{ is left invertible.} \end{aligned}$$

(2) (ii): Similar.

(2) (iii) follows (i) and (ii) ■

3. The minimum modulus in C^* -algebras

In this section, \mathcal{B} always denotes a complex C^* -algebra with identity $e \neq 0$. Without loss of generality, we assume $\|e\| = 1$. Fix $t \in \mathcal{B}$ and define the linear operator $T \in \mathcal{L}(\mathcal{B})$ by

$$Tb = tb \quad (b \in \mathcal{B}).$$

We define the *minimum modulus* $\gamma(t)$ of t by

$$\gamma(t) = \gamma(T).$$

PROPOSITION 3.1. *Let $t \in \mathcal{B}$ and $T \in \mathcal{L}(\mathcal{B})$ as above.*

- (1) $\sigma(t) = \sigma(T)$.
- (2) $\gamma(t^n) = \gamma(T^n)$ for each $n \in \mathbb{N}$.
- (3) $\gamma(t) = \inf \{\sigma(|t|) \setminus \{0\}\}$.
- (4) $\gamma(t)^2 = \gamma(|t|)^2 = \gamma(t^*t) = \gamma(tt^*) = \gamma(|t^*|)^2 = \gamma(t^*)^2$.
- (5) If $u \in \mathcal{B}^{-1}$ then $\gamma(ut) \leq \|u\|\gamma(t)$.

Proof. (1) We only have to show that $0 \in \rho(t) \iff 0 \in \rho(T)$. Take $0 \in \rho(t)$, put $s = t^{-1}$ and define the operator $\mathcal{S} \in \mathcal{L}(\mathcal{B})$ by $\mathcal{S}b = sb$ ($b \in \mathcal{B}$). Then, for each $b \in \mathcal{B}$,

$$T\mathcal{S}b = tsb = b = stb = \mathcal{S}Tb,$$

thus $\mathcal{S} = T^{-1}$ and $0 \in \rho(T)$.

If $0 \in \rho(T)$, put $s = T^{-1}(e)$, then $ts = TT^{-1}(e) = e$. Define the operator $\mathcal{S} \in \mathcal{L}(\mathcal{B})$ by $\mathcal{S}b = sb$ ($b \in \mathcal{B}$). It follows that $T\mathcal{S}b = tsb = b$, thus \mathcal{S} is a right inverse of T . Since T as a unique right inverse in $\mathcal{L}(\mathcal{B})$, it follows that $\mathcal{S} = T^{-1}$. Therefore, $e = \mathcal{S}T(e) = \mathcal{S}(t) = st$. Hence $ts = e = st$, thus $0 \in \rho(t)$.

(2) Clear, since $T^n b = t^n b$ ($n \in \mathbb{N}$).

(3) and (4) follow from (0.6) and (0.7) in [11].

(5) follows from Proposition 1.4. \blacksquare

Recall from [15] that the set of *generalized invertible* elements \mathcal{B}^g of \mathcal{B} is given by

$$\mathcal{B}^g = \{t \in \mathcal{B} : \text{there is } s \in \mathcal{B} \text{ with } tst = t \text{ and } e - st - ts \in \mathcal{B}^{-1}\}.$$

By Proposition 3.9 in [15] we have:

$$(3.1) \quad \begin{aligned} \text{if } t \in \mathcal{B}^g, \text{ then there is a unique } s \in \mathcal{B} \\ \text{with } tst = t, st = s \text{ and } ts = ts. \end{aligned}$$

PROPOSITION 3.2. *Let $t \in \mathcal{B}^g$ and $s \in \mathcal{B}$ such that (3.1) holds. Then:*

- (1) *t and s are not quasinilpotent.*
- (2) *$0 \in \rho(t)$ or 0 is a pole of order 1 of $(t - \lambda e)^{-1}$.*
- (3) $\lim_{n \rightarrow \infty} \gamma(t^n)^{1/n}$ exists and

$$\lim_{n \rightarrow \infty} \gamma(t^n)^{1/n} = \text{dist}(0, \sigma(t) \setminus \{0\}) = \left(\lim_{n \rightarrow \infty} \|s^n\|^{1/n} \right)^{-1}.$$

Proof. (1) and (2): [16], Proposition 2.7.

(3) In view of [16], Proposition 2.7, we only have to show that $\lim_{n \rightarrow \infty} \gamma(t^n)^{1/n} = \text{dist}(0, \sigma(t) \setminus \{0\})$. By Proposition 3.1 we have $\gamma(t^n) = \gamma(T^n)$ ($n \in \mathbb{N}$), $0 \in \rho(T)$ or 0 is a pole of order 1 of $(T - \lambda)^{-1}$. From Proposition 1.3 (1) and (3) we derive

$$\lim_{n \rightarrow \infty} \gamma(t^n)^{1/n} = \lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \text{dist}(0, \sigma(T) \setminus \{0\}) = \text{dist}(0, \sigma(t) \setminus \{0\}). \blacksquare$$

REMARK. If $t \in \mathcal{B}^g \setminus \{0\}$, then $\sigma(t) \setminus \{0\}$ is compact and $\neq \emptyset$ since t is not quasinilpotent.

4. Stability radii for operators in $\Phi_g(H)$

A proof of the following result can be found in [6], [8] or [14].

PROPOSITION 4.1. *If $T \in \mathcal{S}(H)$ then*

$$\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \text{dist}(0, \sigma_{rr}(T)).$$

Notation. We write $\tilde{\mathcal{L}}$ for the C^* -algebra $\mathcal{L}(H)/\mathcal{K}(H)$ and \tilde{T} for the coset $T + \mathcal{K}(H)$ of T in $\tilde{\mathcal{L}}$. Then we have $\sigma(\tilde{T}) = \sigma_\Phi(T)$.

The *essential minimum modulus* $\gamma_e(T)$ of $T \in \mathcal{L}(H)$ is defined by

$$\gamma_e(T) = \gamma(\tilde{T}).$$

From Proposition 3.1 (4) we get

$$\gamma_e(T) = \gamma_e(|T|) = \inf \{\sigma_\Phi(|T|) \setminus \{0\}\}.$$

PROPOSITION 4.2. *Let $T \in \mathcal{L}(H)$.*

$$(1) \quad \gamma_e(T) = \max_{K \in \mathcal{K}(H)} \gamma(T + K) \geq \gamma(T).$$

$$(2) \quad \text{If } T(H) \text{ is closed, then } \gamma_e(T) = \sup_{F \in \mathcal{F}(H)} \gamma(T + F) \geq \gamma(T) > 0.$$

Proof. (1) [11], Théorème 1 and Théorème 2.

(2) [11], Théorème 7. ■

For the next result recall from [15], Proposition 1.3, that if $T \in \Phi_g(H)$ there is some $\delta > 0$ such that $T - \lambda I \in \Phi(H)$ for $0 < |\lambda| < \delta$. Furthermore, by [16], (3.6), there is some $S \in \mathcal{L}(H)$ with

$$(4.1) \quad TST = T, \quad STS = S, \quad ST - TS \in \mathcal{F}(H)$$

and, if $T \notin \mathcal{F}(H)$,

$$(4.2) \quad \text{dist}(0, \sigma_\Phi(T) \setminus \{0\}) = r(\tilde{S})^{-1}.$$

THEOREM 4.3. *If $T \in \Phi_g(H) \setminus \mathcal{F}(H)$, then $\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n}$ exists, and*

$$\text{dist}(0, \sigma_\Phi(T) \setminus \{0\}) = \lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n}.$$

Proof. Since $T \notin \mathcal{F}(H)$ and $T(H)$ is closed, we have $T \notin \mathcal{K}(H)$, thus $\tilde{T} \in \tilde{\mathcal{L}}^g$ and $\tilde{T} \neq \tilde{0}$. From Proposition 3.2 we get that $\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} = \lim_{n \rightarrow \infty} \gamma(\tilde{T}^n)^{1/n}$ exists, and

$$\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} = \text{dist}(0, \sigma(\tilde{T}) \setminus \{0\}) = \text{dist}(0, \sigma_\Phi(T) \setminus \{0\}).$$
■

COROLLARY 4.4. *Let $T \in \Phi_g(H) \setminus \mathcal{F}(H)$ and $S \in \mathcal{L}(H)$ such that (4.1) holds. Then*

$$\begin{aligned} \lim_{n \rightarrow \infty} \left(\max_{K \in \mathcal{K}(H)} \gamma(T^n - K) \right)^{1/n} &= \left[\lim_{n \rightarrow \infty} \left(\inf_{K \in \mathcal{K}(H)} \|S^n - K\| \right)^{1/n} \right]^{-1} \\ &= \left[\lim_{n \rightarrow \infty} \left(\inf_{F \in \mathcal{F}(H)} \|S^n - F\| \right)^{1/n} \right]^{-1} = \lim_{n \rightarrow \infty} \left(\sup_{F \in \mathcal{F}(H)} \gamma(T^n - F) \right)^{1/n}. \end{aligned}$$

Proof. Proposition 4.2, (4.2), Theorem 4.3 and [16], Corollary 3.13. ■

COROLLARY 4.5. *If $T \in \mathcal{L}(H) \setminus \mathcal{F}(H)$ is normal and if $T(H)$ is closed, then $T \in \Phi_g(H)$ and there is some $K \in \mathcal{K}(H)$ such that $TK = KT$ and*

$$\text{dist}(0, \sigma_{\Phi}(T) \setminus \{0\}) = \gamma_e(T) = \gamma(T + K).$$

Proof. From [15], Remark 4.7 (c), we derive $T \in \Phi_g(H)$. It is shown in the proof of Corollaire 3 in [11] that, if T is normal, then $\gamma_e(T^n) = \gamma_e(T)^n$ for $n \in \mathbb{N}$. By Corollaire 3 (3.2) in [11], there is some $K \in \mathcal{K}(H)$ with $TK = KT$ and $\gamma_e(T) = \gamma(T + K)$. ■

REMARKS. (1) If $T \in \mathcal{F}(H)$, then $T \in \Phi_g(H)$ and $T - \lambda I \in \Phi(H)$ for each $\lambda \neq 0$. Thus $\sigma_{\Phi}(T) \setminus \{0\} = \emptyset$.

(2) If $T \in \mathcal{L}(H)$ is *normal* and $T(H)$ is closed, then $H = T(H) \oplus N(T)$. Therefore, 0 is a pole of order 1 of the resolvent $(T - \lambda I)^{-1}$ or $0 \in \rho(T)$. It is easy to see that for each $n \in \mathbb{N}$, $\gamma(T^n) = \gamma(T)^n$. Hence we get from Proposition 1.3 (3) that

$$(4.3) \quad \gamma(T) = \text{dist}(0, \sigma(T) \setminus \{0\}).$$

(3) In [16] we have defined the *generalized Fredholm spectrum* $\sigma_{\Phi_g}(T)$ for $T \in \mathcal{L}(H)$ as follows:

$$\sigma_{\Phi_g}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \Phi_g(H)\}.$$

In view of Theorem 4.3 one might conjecture that if $T \in \Phi_g(H) \setminus \mathcal{F}(H)$, then

$$\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} = \text{dist}(0, \sigma_{\Phi_g}(T)).$$

But this is not true in general. Take a projection $P \in \mathcal{L}(H)$ with $P \notin \Phi(H) \cup \mathcal{F}(H)$. Then

$$(4.4) \quad \sigma(P) = \sigma_{\Phi}(P) = \{0, 1\}.$$

By Remark 1.7 (c) in [15], $P, I - P \in \Phi_g(H)$, hence $\sigma_{\Phi_g}(P) = \emptyset$, but

$$(4.5) \quad 1 = \text{dist}(0, \sigma_{\Phi}(P) \setminus \{0\}) = \lim_{n \rightarrow \infty} \gamma_e(P^n)^{1/n}.$$

(4) If $P \in \mathcal{L}(H)$ is an *orthogonal* projection and if $P \notin \Phi(H) \cup \mathcal{F}(H)$, then it follows from Corollary 4.5, (4.3), (4.4) and (4.5) that there is some

$K \in \mathcal{K}(H)$ with $PK = KP$ and

$$\gamma_e(P) = \gamma(P) = \gamma(P + K) = 1.$$

Since $\Phi_g(H) \subseteq q\Phi(H)$ (Proposition 2.2), we derive from Theorem 2.5 that if $T \in \Phi_g(H)$, then there is some $\varepsilon > 0$ with

$$T - \lambda I \in \mathcal{S}(H) \text{ for } 0 < |\lambda| < \varepsilon.$$

From [8], Corollaire 3.9, we get the following theorem:

THEOREM 4.6. *If $T \in \Phi_g(H)$ then*

$$\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \text{dist}(0, \sigma_{rr}(T) \setminus \{0\}).$$

If $T \in \Phi_g(H)$, then there is $\delta > 0$ such that $T - \lambda I \in \Phi(H)$ for $0 < |\lambda| < \delta$ ([15], Proposition 1.3) and $T - \lambda I \in \mathcal{S}(H)$ for $0 < |\lambda| < \delta$. Let $d(T)$ be the supremum of all $\varepsilon > 0$ such that $T - \lambda I \in \Phi(H)$ and $\alpha(T - \lambda I)$ and $\beta(T - \lambda I)$ are constant for $0 < |\lambda| < \varepsilon$.

Our next result is a generalization of Proposition 1.3 (2) in the Hilbert space case.

THEOREM 4.7. *If $T \in \Phi_g(H)$ then*

$$d(T) = \lim_{n \rightarrow \infty} \gamma(T^n)^{1/n}.$$

Proof. Put $d_1 = \lim_{n \rightarrow \infty} \gamma(T^n)^{1/n}$, $D_1 = \{\lambda \in \mathbb{C} : 0 < |\lambda| < d_1\}$, $d_2 = d(T)$ and $D_2 = \{\lambda \in \mathbb{C} : 0 < |\lambda| < d_2\}$.

Let $\lambda \in D_2$. Then $T - \lambda I \in \Phi(H)$ and $j(T - \lambda I) = 0$, hence $T - \lambda I \in \mathcal{S}(H)$, by Proposition 1.1. This gives $D_2 \subseteq \rho_{rr}(T)$ and $d_2 \leq \text{dist}(0, \sigma_{rr}(T) \setminus \{0\})$. Theorem 4.6 shows now that $d_2 \leq d_1$.

It remains to show that $d_1 \leq d_2$. By Theorem 4.6, $D_1 \subseteq \rho_{rr}(T)$. In [18], M.A. Shubin has shown that there is a holomorphic function $F : D_1 \rightarrow \mathcal{L}(H)$ such that

$$(T - \lambda I)F(\lambda)(T - \lambda I) = T - \lambda I \text{ for all } \lambda \in D_1.$$

Since $T - \lambda I \in \Phi(H)$ for $0 < |\lambda| < d_2$ ($\leq d_1$), $\tilde{T} - \lambda \tilde{I}$ is invertible for $\lambda \in D_2$ ($\subseteq D_1$). Therefore we get $\widetilde{F(\lambda)} = (\tilde{T} - \lambda \tilde{I})^{-1}$ for each $\lambda \in D_2$, thus

$$(\tilde{T} - \lambda \tilde{I})\widetilde{F(\lambda)} = \tilde{I} = \widetilde{F(\lambda)}(\tilde{T} - \lambda \tilde{I}) \text{ for } \lambda \in D_2.$$

Define the holomorphic functions $G_1, G_2 : D_1 \rightarrow \mathcal{L}(H)$ by

$$G_1(\lambda) = (T - \lambda I)F(\lambda) - I \quad \text{and} \quad G_2(\lambda) = F(\lambda)(T - \lambda I) - I.$$

Then we have

$$\widetilde{G_1(\lambda)} = \tilde{0} = \widetilde{G_2(\lambda)} \text{ for each } \lambda \in D_2.$$

Since the mappings $\lambda \mapsto \widetilde{G_i}(\lambda)$ ($i = 1, 2$) are holomorphic on D_1 , it results that

$$\widetilde{G_1}(\lambda) = \widetilde{0} = \widetilde{G_2}(\lambda) \text{ for all } \lambda \in D_1.$$

Therefore, $\tilde{T} - \lambda \tilde{I}$ is invertible for each $\lambda \in D_1$, hence $T - \lambda I \in \Phi(H)$ for each $\lambda \in D_1$. Since $D_1 \subseteq \rho_{rr}(T)$, it follows that $j(T - \lambda I) = 0$ for $\lambda \in D_1$. This shows that $D_1 \subseteq D_2$. Thus $d_1 \leq d_2$. \blacksquare

For our next result we need some additional notations. We denote the algebra $\mathcal{L}(H)/\mathcal{F}(H)$ by $\widehat{\mathcal{L}}$, and we write \widehat{T} for the coset $T + \mathcal{F}(H)$ of T in $\widehat{\mathcal{L}}$.

If $R \in \mathcal{L}(H)$ is relatively regular, then the set of all pseudo-inverses of R is denoted by $\mathcal{P}(R)$.

Let $T \in \Phi_g(H)$, $R \in \Phi(H)$ and $TR - RT \in \mathcal{F}(H)$. Then, by [15], Theorem 4.10, there is some $\delta > 0$ such that $T - \lambda R \in \Phi(H)$ for $0 < |\lambda| < \delta$. Put

$$d(T, R) = \sup \{ \varepsilon > 0 : T - \lambda R \in \Phi(H) \text{ for } 0 < |\lambda| < \varepsilon \}.$$

If $T \in \mathcal{F}(H)$ ($\subseteq \Phi_g(H)$), then $\widehat{T} - \lambda \widehat{R} = \lambda \widehat{R} \in \widehat{\mathcal{L}}^{-1}$ for each $\lambda \neq 0$, hence $T - \lambda R \in \Phi(H)$ for each $\lambda \neq 0$, thus $d(T, R) = \infty$.

The following theorem deals with the case where $T \in \Phi_g(H) \setminus \mathcal{F}(H)$. This result improves Theorem 4.10 in [15] (in the Hilbert space case).

THEOREM 4.8. *Suppose that $T \in \Phi_g(H) \setminus \mathcal{F}(H)$, $R \in \Phi(H)$ and $TR - RT \in \mathcal{F}(H)$. Put $\Phi(T, R) = \{ \lambda \in \mathbb{C} : T - \lambda R \in \Phi(H) \}$. Then we have for each $U \in \mathcal{P}(R)$:*

- (1) $UT, TU \in \Phi_g(H) \setminus \mathcal{F}(H)$.
- (2) $\sigma_{\Phi}(UT) = \sigma_{\Phi}(TU) = \mathbb{C} \setminus \Phi(T, R)$.
- (3) $d(T, R) = \lim_{n \rightarrow \infty} \gamma_e((UT)^n)^{1/n} = \lim_{n \rightarrow \infty} \gamma_e((TU)^n)^{1/n}$
 $= \text{dist}(0, \sigma_{\Phi}(TU) \setminus \{0\})$.

Proof. (1) Let $U \in \mathcal{P}(R)$. Then $H = (RU)(H) \oplus (I - RU)(H)$ and $(I - UR)(H) = N(R)$. It follows that $\widehat{R}\widehat{U} = \widehat{I} = \widehat{U}\widehat{R}$, hence $U \in \Phi(H)$. From $\widehat{T}\widehat{R} = \widehat{R}\widehat{T}$ we get $\widehat{T} = \widehat{T}\widehat{R}\widehat{U} = \widehat{R}\widehat{T}\widehat{U}$, thus $\widehat{U}\widehat{T} = \widehat{U}\widehat{R}\widehat{T}\widehat{U} = \widehat{T}\widehat{U}$, hence $UT - TU \in \mathcal{F}(H)$. Since $U \in \Phi(H) \subseteq \Phi_g(H)$, we see from [15], Theorem 4.5, that $UT, TU \in \Phi_g(H)$. Since $\widehat{T} \neq \widehat{0}$, we see from $\widehat{T} = \widehat{R}\widehat{T}\widehat{U} = \widehat{R}\widehat{U}\widehat{T}$ that $\widehat{T}\widehat{U} \neq \widehat{0} \neq \widehat{U}\widehat{T}$. This gives $UT, TU \notin \mathcal{F}(H)$.

(2) From $UT - TU \in \mathcal{F}(H)$, we derive $\widetilde{U}\widetilde{T} = \widetilde{T}\widetilde{U}$ and so

$$\sigma_{\Phi}(UT) = \sigma(\widetilde{U}\widetilde{T}) = \sigma(\widetilde{T}\widetilde{U}) = \sigma_{\Phi}(TU).$$

Let $\lambda \in \mathbb{C}$. Then (observe that $\widehat{R}\widehat{U} = \widehat{U}\widehat{R} = \widehat{I}$)

$$\begin{aligned} \lambda \in \Phi(T, R) &\iff T - \lambda R \in \Phi(H) \iff \widehat{T} - \lambda \widehat{R} \in \widehat{\mathcal{L}}^{-1} \\ &\iff \widehat{R}\widehat{U}\widehat{T} - \lambda \widehat{R} = \widehat{R}(\widehat{U}\widehat{T} - \lambda \widehat{I}) \in \widehat{\mathcal{L}}^{-1} \end{aligned}$$

$$\begin{aligned} &\iff \hat{U}\hat{T} - \lambda\hat{I} \in \hat{\mathcal{L}}^{-1} \iff UT - \lambda I \in \Phi(H) \\ &\iff \lambda \in \mathbb{C} \setminus \sigma_{\Phi}(UT). \end{aligned}$$

(3) It follows from (2) that $d(T, R) = \text{dist}(0, \sigma(UT) \setminus \{0\}) = \text{dist}(0, \sigma(TU) \setminus \{0\})$. Now use Theorem 4.3 and (1) to obtain

$$d(T, R) = \lim_{n \rightarrow \infty} \gamma_e((UT)^n)^{1/n} = \lim_{n \rightarrow \infty} \gamma_e((TU)^n)^{1/n}. \quad \blacksquare$$

COROLLARY 4.9. *Let T and R as in Theorem 4.8. Then*

$$\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} r(\tilde{R})^{-1} \leq d(T, R) \leq \lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} \left(\lim_{n \rightarrow \infty} \gamma_e(R^n)^{1/n} \right)^{-1}.$$

Proof. Take $U \in \mathcal{P}(R)$. Since $\hat{T}\hat{R} = \hat{R}\hat{T}$, $\hat{U}\hat{R} = \hat{I} = \hat{R}\hat{U}$ and $\hat{T}\hat{U} = \hat{U}\hat{T}$, we get $\tilde{T}\tilde{U} = \tilde{U}\tilde{T}$, $\tilde{R} \in \hat{\mathcal{L}}^{-1}$ and $\tilde{U} = \tilde{R}^{-1}$. From Proposition 3.1 we see that

$$\begin{aligned} \gamma_e(T^n) &= \gamma(\tilde{T}^n) = \gamma(\tilde{T}^n \tilde{U}^n \tilde{R}^n) \leq \|\tilde{R}^n\| \gamma((\tilde{T}\tilde{U})^n) \\ &= \|\tilde{R}^n\| \gamma_e((TU)^n) \end{aligned}$$

for each $n \in \mathbb{N}$, thus

$$\frac{\gamma_e(T^n)^{1/n}}{\|\tilde{R}^n\|^{1/n}} \leq \gamma_e((TU)^n)^{1/n} \quad (n \in \mathbb{N}).$$

From Theorem 4.8 (3) we derive

$$\lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n} r(\tilde{R})^{-1} \leq d(T, R).$$

Use again Proposition 3.1 to see that

$$\gamma_e((TU)^n) = \gamma(\tilde{T}^n \tilde{U}^n) \leq \|\tilde{U}^n\| \gamma(\tilde{T}^n) = \|\tilde{U}^n\| \gamma_e(T^n)^{1/n}$$

for each $n \in \mathbb{N}$. This gives

$$d(T, R) \leq r(\tilde{U}) \lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n}.$$

Theorem 3.10 in [16] shows that

$$\text{dist}(0, \sigma_{\Phi}(R) \setminus \{0\}) = r(\tilde{U})^{-1}.$$

Since $R \in \Phi(H) \subseteq \Phi_g(H) \setminus \mathcal{F}(H)$, it follows from Theorem 4.3 that

$$\lim_{n \rightarrow \infty} \gamma_e(R^n)^{1/n} = \text{dist}(0, \sigma_{\Phi}(R) \setminus \{0\}),$$

hence $r(\tilde{U}) = \left(\lim_{n \rightarrow \infty} \gamma_e(R^n)^{1/n} \right)^{-1}$. This completes the proof. \blacksquare

THEOREM 4.10. *Let $T \in \Phi_g(H) \setminus \mathcal{F}(H)$, $D = \{\lambda \in \mathbb{C} : |\lambda| < \lim_{n \rightarrow \infty} \gamma_e(T^n)^{1/n}\}$ and $\dot{D} = D \setminus \{0\}$. Then there is a meromorphic function $F : D \rightarrow \mathcal{L}(H)$*

such that

$$(4.6) \quad (T - \lambda I)F(\lambda)(T - \lambda I) = T - \lambda I \text{ for } \lambda \in \dot{D}.$$

Proof. By Theorem 2.7 there is a Kato decomposition (H_1, H_2) of T with $T_1 \in \Phi(H_1)$, $j(T_1) = 0$, $T_2 \in \mathcal{F}(H_2)$, T_2 nilpotent and $T = T_1 \oplus T_2$. Take $m \in \mathbb{N} \cup \{0\}$ with $T_2^m = 0$. We denote the identity on H_i by I_i ($i = 1, 2$). Since $T \notin \mathcal{F}(H)$, $H_1 \neq \{0\}$.

Case 1: $H_2 = \{0\}$. Thus $H_1 = H$ and $T = T_1 \in \mathcal{S}(H)$ (Proposition 1.1). Theorem 4.6 shows that $D \subseteq \rho_{rr}(T)$. It follows from [18] that there is a holomorphic function $F : D \rightarrow \mathcal{L}(H)$ with

$$(T - \lambda I)F(\lambda)(T - \lambda I) = T - \lambda I \text{ for each } \lambda \in D.$$

Case 2: $H_2 \neq \{0\}$. M. Mbekhta has shown in the proof of [8], Corollaire 3.9, that

$$\lim_{n \rightarrow \infty} \gamma(T^n)^{1/n} = \lim_{n \rightarrow \infty} \gamma(T_1^n)^{1/n}.$$

Therefore, we get from Theorem 4.6 that $D \subseteq \rho_{rr}(T_1)$. As in Case 1, we see that there is a holomorphic function $F_1 : D \rightarrow \mathcal{L}(H_1)$ with

$$(T_1 - \lambda I_1)F_1(\lambda)(T_1 - \lambda I_1) = T_1 - \lambda I_1 \text{ for } \lambda \in D.$$

Since T_2 is nilpotent, we have $T_2 - \lambda I_2 \in \mathcal{L}(H_2)^{-1}$ for each $\lambda \neq 0$ and $(T_2 - \lambda I_2)^{-1} = - \sum_{k=0}^{\infty} \frac{T_2^k}{\lambda^{k+1}} = - \sum_{k=0}^{m-1} \frac{T_2^k}{\lambda^{k+1}}$ for $\lambda \neq 0$. Put $F_2(\lambda) = (T_2 - \lambda I_2)^{-1}$ for $\lambda \neq 0$. Then it is clear that

$$(T_2 - \lambda I_2)F_2(\lambda)(T_2 - \lambda I_2) = T_2 - \lambda I_2 \text{ on } \mathbb{C} \setminus \{0\}.$$

If we define the function $F : \dot{D} \rightarrow \mathcal{L}(H)$ by $F(\lambda) = F_1(\lambda) \oplus F_2(\lambda)$, then it is clear that (4.6) holds. ■

References

- [1] H. Bart, D. C. Lay, *The stability radius of a bundle of closed linear operators*, Studia Math. 66 (19980), 307–320.
- [2] I. Colojoară, C. Foiaș, *Theory of generalized spectral operators*, Gordon and Breach (1968).
- [3] K.-H. Förster, M. A. Kaashoek, *The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator*, Proc. Amer. Math. Soc. 49 (1975), 123–131.
- [4] H. Heuser, *Funktionalanalysis*, 3rd ed. Teubner (1991).
- [5] T. Kato, *Perturbation theory for nullity, deficiency and other quantities of linear operators*, J. Analyse Math. 6 (1958), 261–322.
- [6] V. Kordula, V. Müller, *The distance from the Apostol spectrum*, Proc. Amer. Math. Soc. 124 (1996), 3055–3061.

- [7] J. P. Labrousse, *Les opérateurs quasi-Fredholm, une généralisation des opérateurs semi-Fredholm*, Rend. Circ. Math. Palermo 29 (1980), 161–258.
- [8] M. Mbekhta, *Résolvant généralisé et théorie spectrale*, J. Operator Theory 21 (1989), 69–105.
- [9] M. Mbekhta, *Perturbations of quasi-Fredholm operators*, Proc. R. Ir. Acad. 90 A, 215–225 (1990).
- [10] M. Mbekhta, *Generalized spectrum and a problem of Apostol*, Proc. Amer. Math. Soc. 118 (1993), 857–859.
- [11] M. Mbekhta, R. Paul, *Sur la conorme essentielle*, Studia Math. 117 (1996), 243–252.
- [12] Ch. Schmoeger, *Relatively regular operators and a spectral mapping theorem*, J. Math. Anal. Appl. 175 (1993), 315–320.
- [13] Ch. Schmoeger, *On operators of Saphar type*, Port. Math. 51 (1994), 617–628.
- [14] Ch. Schmoeger, *The stability radius of an operator of Saphar type*, Studia Math. 113 (1995), 169–175.
- [15] Ch. Schmoeger, *On a class of generalized Fredholm operators*, I. Demonstratio Math. 30 (1997), 829–842.
- [16] Ch. Schmoeger, *On a class of generalized Fredholm operators*, II. Demonstratio Math. 31 (1998), 705–722.
- [17] Ch. Schmoeger, *On a class of generalized Fredholm operators*, III. Demonstratio Math. 31 (1998), 723–733.
- [18] M. A. Shubin, *On holomorphic families of subspaces of a Banach space*, Mat. Issled. 5 (1970), 153–165 (in Russian); English transl.: *Integral Equations Operator Theory*, 2 (1979), 407–420.

MATHEMATISCHES INSTITUT I
 UNIVERSITÄT KARLSRUHE
 D-76128 KARLSRUHE, GERMANY
 E-mail address: christoph.schmoeger@math.uni-karlsruhe.de

Received March 3, 1997.