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ON MULTIVALUED f-NONEXPANSIVE MAPS

Abstract. In this paper we prove coincidence and common fixed points results for
single-valued maps f and multivalued f-nonexpansive maps with star-shaped weakly com-
pact domains in Banach spaces, which extend the theorems of [3], [6], [8] and others. More-
over weak convergence and strong convergence results for coincidence point sets have also
been proved, extending a result in [1].

1. Introduction

For contraction maps there is the classical Banach-Caccioppoli fixed
point result which asserts that every single-valued contraction selfmap of
a complete metric space has a unique fixed point. A number of generaliza-
tions of this result have appeared in the literature. Among others Jungck
[5] extended this result to single-valued f-contraction maps. Extensions of
the Banach Contraction Principle to multivalued mappings were initiated
independently by Markin [9] and Nadler [10}. Jungck’s result was extended
to the setting of multivalued mappings by Kaneko [7] who established the
following theorem, which also generalizes a result of Nadler [10).

THEOREM 1.1. Let (X,d) be a complete metric space and f : X — X
be a continuous map. Let T be a closed bounded valued f-contraction map
on X which commutes with f and T(X) C f(X). Then f and T have a
coincidence point in X. Suppose moreover that one of the following holds:
either (i) f(z) # f*(z) implies f(z) € T(z) or (ii) f(z) € T(z) implies

im0 f*(z) exists. Then T and f have a common fized point.

(The referee of this paper has pointed out that condition (i) in the above
result implies condition (ii), for if f(z) € T(z) then under (i) the sequence
{f™(z)} is constant).

On the other hand, a natural generalization of the single-valued contrac-
tior: map is a nonexpansive map, but it need not have a fixed point in the
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general metric space setting without additional hypotheses. Much work has
been done on fixed points for such maps. The notion of nonexpansiveness has
also been extended in many directions. Recently Jungck and Sessa [6] have
used the idea of single-valued f-nonexpansiveness and the result of Jungck
referred to above and proved the following common fixed point result.

THEOREM 1.2. Let M be a weakly compact subset of a Banach space X
which is star-shaped with respect to ¢ € M. Suppose f,g: M — M, where f
s continuous in the weak and strong topology on M, f is affine, fg = gf,
f(M) = M, and f(¢) = q. If for all @ and y in M, |lg(z) — ()l <
If(z)— f(y)|| , then f and g have a common fized point in M, provided that
either (i) f — g is demiclosed or (ii) X satisfies Opial’s condition.

In [8] Lami Dozo has used Nadler’s result [10] and proved that it holds
for multivalued nonexpansive maps under certain conditions, viz., each com-
pact-valued nonexpansive map of a nonempty weakly compact convex sub-
set of a Banach space satisfying Opial’s condition has a fixed point. Re-
cently Daffer and Kaneko [2] have studied f-nonexpansive multivalued maps
and proved coincidence and fixed point theorems for compact-valued f-
nonexpansive maps on connected metric spaces under some conditions; the
concept of orbits was a major tool in their approach.

In section 2, one of our main purposes is to extend the result of Jungck
and Sessa [6] to multivalued f-nonexpansive maps. This is done in Theorem
2.2, which includes results of Lami Dozo [8] and Dotson [3] as special cases.
Section 3 deals with convergence of coincidence point sets of f-nonexpansive
maps and is based on the papers of Pietramala [12] , Acedo and Xu [1].
Utilizing Lemma 2.2, we prove (Theorem 3.1) that under suitable conditions,
it is possible to construct a sequence of coincidence point sets of f and
multivalued f-contraction maps, converging weakly in the sense of Mosco
to a coincidence point of f and a multivalued f-nonexpansive map; this
contains the result in {1] as a special case.

We recall the following notions and definitions. Let M be a nonempty
subset of a normed linear space X and let f be a single-valued mapping of
M into X. We use CB(X) to denote the collection of all nonempty closed
bounded subsets of X, K(X) for the collection of all nonempty compact
subsets of X, and H for the Hausdorff metric on CB(X) induced by the
norm of X, i.e.

H(A, B) = max{sup inf ||z — y||,sup inf ||z — y||},

for all A,B in CB(X). A multivalued map T : M — CB(X) is said to be
an f-contraction iff for a fixed constant h € (0,1) and for each z,y € M,

H(T(z),T(y)) < hllf(z) - f(W)II-
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Further, if T and f satisfy the inequality
H(T(z),T(y)) < I (=) = fW)ll,

then T is said to be f-nonexpansive. In particular, if f is the identity map
on M then a multivalued map is an f-contraction (resp. f-nonexpansive)
iff it is a contraction (resp. nonexpansive). Note that each single-valued
map is an f-contraction (resp. f-nonexpansive ) iff it is a multivalued f-
contraction (resp. f-nonexpansive). A point z € M is called a fixed point of
the multivalued map T iff ¢ € T(z) and it is called a coincidence point of f
and T iff f(z) € T(z). We denote by C(fNT) the set of coincidence points
of fand T.

A Banach space X satisfies Opial’s condition [11] if for every sequence
{zn} in X weakly convergent to z € X, the inequality

liminf ||z, — z|| < liminf ||z, — y]
7=+ 00 n—00

holds for all y # z. Every Hilbert space [11] and the spaces /(1 < p < o)
(4] satisfy Opial’s condition.

A subset M is said to be star-shaped with respect to ¢ € M if {tz + (1 -
1)g:0<t< 1} C M for each z € M. The point q is known as a star-centre
of M. Clearly the star-shaped subsets include the convex subsets as a proper
subclass.

2. Coincidence and fixed points
Before proving our main results of this section we begin with the follow-
ing useful lemmas.

LEMMA 2.1. Let X be a Banach space and M be a closed subset which is
star-shaped with respect to ¢ € M. Let f be a continuous affine self-map
of M such that f(M) = M and f(q) = q. Let T : M — CB(M) be an
f-nonezpansive map which commutes with f and has T(M) bounded. Then
for each positive integer n there are z, € M and w, € T(z,) such that
f(zn) — wp — 0 as n — oo.

Proof. Clearly, as a closed subset of a Banach space X, M is a complete
metric space, and (M) C M = f(M). Take a sequence {h,} of real num-
bers for which 0 < h, < 1 and h, — 1 as n — oo. For each n, define a
multivalued map J,, by setting

Jo(z) = hyT(z)+ (1 = hyp)g, forall z € M.

Then for each » > 1, J, maps M into CB(M) and J,(M) C f(M). Now we
show that for all n > 1, J,, is an f-contraction and commutes with f. Let
z,y € M. Then

H(Jn(2), Jn(y)) = ko H (T (2), T(y)),
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so, by using the f-nonexpansiveness of T', we get

H(Jn(2), In(y)) < hall F(2) = F(W)II;

which proves that each J, is an f-contraction . For each z € M,

Inf(z) = haT f(z) + (1 = hn)q
= hn fT(2) + (1 = hn)f(q)
= f{hnT(x) + (1 - hn)Q} = fJn(x),
that is, each J, commutes with f. All the conditions of Theorem 1.1 are

satisfied and hence there is an z, € M such that f(z,) € J,(2,). So by the
definition of J,(z,), there is some w, € T(z,) such that

f(zn) = hnwn + (1 - hn)q
Thus
1 £(2n) = wn|| = (1 = hn)llg — wal|.

Since T(M) is bounded and w, € T(z,) C T(M), we have that ||g — wy||
is bounded and so by the fact that h, — 1 as n — o0, it follows that
f(zrn) — wn — 0 as n — o0.

The following lemma is based on the important property of being demi-
closed, generalizing Lami Dozo’s result in [8]. We continue to use — to
denote strong convergence, and we use — to denote weak convergence. A
multivalued map T : M — 2% (the collection of nonempty subsets of X) is
said to be demiclosed if for every sequence {z,} C M and any y, € T(z,),
n=1,2,..., such that z, — z and y, — y, we have z € M and y € T(z).

LEMMA 2.2. Let M be a weakly compact subset of a Banach space X sat-
isfying Opial’s condition. Let f : M — X be a weakly continuous map and
T: M — K(X) be an f-nonexpansive multivalued map. Then f — T is
demiclosed.

Proof. Let {z,} C M and y, € (f —T)z, be such that z, — z and y, —
y. It is obvious that € M and f(z,) — f(z). Since y, € f(zn) — T(2n),
we get

(2.2.1) Yn = f(zn) — un, for some u, € T(z,).

Since T'(z) is a compact set, there is a v, € T'(z) such that

(2.2.2) lun — vn|| < H(T(2n), T(2)) < [|f(zn) = f(2)I]-

From (2.2.1) and (2.2.2), passing to the limit with respect to n, we obtain
(2.2:3) liminf | (2n)= F@)l| > liminf lun—vall = limist |/ (@n)=a—vall



Multivalued nonezpansive maps 569

T(z) being compact, for a convenient subsequence still denoted by {v,}, we
have v, — v € T(z). Then (2.2.3) yields

limin [1£(2a) ~ f(2)] > limint 1 £(20) = y = ol
Since X satisfies Opial’s condition and f(z,) — f(z), this yields f(z) =
y+v. Thus y = f(z)—v € f(z)—-T(z), which proves that f—T is demiclosed.
To see that not every continuous map f and compact valued f-nonex-

pansive map on a closed star-shaped subset M of a Banach space X have a
coincidence point, we consider the following examples.

ExAMPLE 2.1. Let X =R with the usual norm and M = [0,1]. Define the
maps f: M —- M and T : M — K(M) as follows

f@y= "2, T(z) = [o%l-] Vz € M.

Then clearly, T is an f-nonexpansive and f is a continuous affine map, but
f and T have no coincidence point.

EXAMPLE 2.2. Let X =R with the usual norm and M = [0, 00). We define
f:M—>MandT: M — K(M) as follows

fle)=2z+1, T(z)={z} Vze M.
Clearly, T is an f-nonexpansive map which commutes with f but f and T
have no coincidence point.

Now utilizing the above lemmas we shall prove the following coincidence
point results. In the rest of this section f denotes a continuous affine self-map
of M.

THEOREM 2.1. Let X be a Banach space and M be a closed subset which is
star-shaped with respect to ¢ € M such that f(M) = M and f(q) = q. Let
T:M — CB(M) be an f-nonezpansive map which commutes with f such
that (f — T)M s closed and T(M) is bounded. Then C(fNT) # 0.

Proof. It follows from Lemma 2.1 that for each positive integer n there are
zn, € M and w, € T(z,) such that

fzn) — wy, — 0.
Since f(z,) — wn, € (f = T)zn C (f = T)M and (f — T)M is closed, so
0 € (f— T)M. Hence there is a point & € M such that f(z) € T(z).

Now in the following we unify and generalize earlier stated results of
Jungck and Sessa [6] and Lami Dozo [8] for multivalued f-nonexpansive
maps.

THEOREM 2.2. Let X be a Banach space and M be a weakly compact subset
which is star-shaped with respect to ¢ € M. Let f be a weakly continuous map
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such that f(M) = M and f(¢g) = q and let T : M — K(M) be a multivalued
f-nonezpansive map which commutes with f. Then C( f NT) # § provided
that one of the following holds: either

(a) (f = T) is demiclosed, or
(b) X satisfies Opial’s condition.

Proof. Since the weak topology is Hausdorff and M is weakly compact and
therefore weakly closed, it is also strongly closed. So by Lemma 2.1, for each
positive integer n there are z, € M and w, € T(z,) such that

f(zs) — wy, — 0.

M being weakly compact, for a convenient subsequence still denoted by
{z,}, we have 7, = z € M. Put

Yn = f(zn) — wn € (f — T)an;
then y, — 0. Now if (a) holds then 0 € (f — T')z, that is f(z) € T(z). If
(b) holds it follows from Lemma 2.2 that (f — T') is demiclosed, and hence
f and T have a coincidence point € M as in the previous case.

REMARK 2.1If f = I, the identity map on M, then Theorem 2.2(b) extends
Theorem 3.2 of Lami Dozo [8] for star-shaped subsets and Theorem 2.2
generalizes Theorem 6 of Jungck and Sessa [6] for multivalued nonexpansive
maps. Moreover Dotson [3] proved in his Theorem 2 that each single-valued
nonexpansive selfmap T' of a weakly compact star-shaped subset M of a
Banach space has a fixed point in M provided that I — T is demiclosed.
Hence Theorem 2.2(a) contains Dotson’s fixed point theorem as a special
case.

Since for a compact set M in a Banach space, obviously,
0 = liminf ||z, — z|| < liminf ||z, — y||,
n—00 n—00
if {z,} C M, z, = z and y # z, from the same technique adopted in

Lemma 2.2 and Theorem 2.2 we derive the following theorem for general
Banach spaces, which contains Theorem 1 of Dotson [3] as a special case.

THEOREM 2.3. Let X be a Banach space and M be a compact subset which
is star-shaped with respect to ¢ € M. Let f be a weakly continuous map such
that f(M) = M and f(q) = g and let T : M — K(M) be a multivalued
f-nonezpansive map which commutes with f. Then C(fNT) # 0.

Now we obtain the following common fixed point results.

THEOREM 2.4. Suppose that M, f, T and q satisfy the assumptions of The-
orem 2.2 and moreover the following condition holds
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(%) f(z) € T(z) implies lim f(z) ezists.
Then T and f have a common fized point in M.

Proof. By Theorem 2.2, there exists a point zg € M such that f(zo) €
T(zo). Then, clearly

fM®o) = 71 f(w0) € fP7 1T (o) = T(S* (o))
Now, if (%) holds, then by taking the limit as n — oo, we get
p € T(p), where p = li7rln f(=o0),

and clearly p = f(p).

Similarly, using Theorem 2.1 we have another common fixed point result.
And a proof of this is similar to that of Theorem 2.4, hence we omit it.

THEOREM 2.5. Suppose that M, f, T, and q satisfy the assumptions of
Theorem 2.1 and moreover the following condition holds

(%) f(z) € T(z) implies lirrlnf"(ar) exists.

Then T and f have a common fized point in M.

3. Convergence of coincidence point sets

In this section, following the technique in [1,12], we show that in a specific
case it is also possible to construct a sequence of coincidence point sets of
f and f-contraction maps T, converging weakly in the sense of Mosco to a
coincidence point of f and 7.

First we recall the following [1,12]:
A sequence {A,} in CB(X) is said to converge (converge weakly) to an
element A € CB(X) in the sense of Mosco if

liminf A, =limsup 4, = A (w —liminf A, = w — limsup 4, = A),
where
liminf A, = {z € X : 3 a sequence {z,},z, € A, such that z, — z}
and
limsup A, = { € X : 3 a subsequence {A4,,} of {4,} and a
sequence {z,, } with z,, € A,, such that z,, — z};

in the case of w — liminf and w — lim sup, — is replaced by —=.

A net {A)}¢(0,1) of closed subsets of X converges (converges weakly) to
A in the sense defined before if every sequence {4, }, \n = 1 (0 < A, < 1)
as n — 00, converges (converges weakly) in the sense of Mosco to A.
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Now, let M, f, T and ¢ be the same as in Lemma 2.1. For A € (0,1), we
define the map T) : M — CB(M) by

Ta(z) = AT(z)+ (1 - A)g, forall z€ M.

Then T) is a multivalued f-contraction map, and hence [7], C(fNTy) # 0.
Using Lemma 2.2 we prove the following convergence result.

THEOREM 3.1. Let M be a weakly compact star-shaped subset of a Banach
space X satisfying Opial’s condition. Let f be a weakly continuous self-map
of M and T : M — K(M) be an f-nonezpansive map such that C(fNT) =
{z}. If for some star-centre ¢ of M and for each X € (0,1), C(fNT») # 9,
then the net {C(fNT\)} converges weakly to C(fNT) in the sense of Mosco,
as A — 1.

Proof. We have to prove that
w—limsupC(fNT),)=w-— ligiong(fnT,\n) = {z},

for every sequence A, — 1, 0 < A, < 1. Since w — liminf C w —~ lim sup, it
is enough to show that

(i) w—limsup C(fNTy,) C {2} and

(ii) {2z} Cw—liminf C(f NT),).

For (i), let z € w — limsup C(f N T),). Then there exists a convenient
subsequence still denoted by {A,} and a convenient sequence {z,} such that
z, € C(fNTy,) and z, — z. Clearly € M; also since f(z,) € Th,(2n),
there exists u, € T(z,) such that

f(zn) = Apun + (1= Ay)g,
and hence
f(zn) — un — 0.
Since by Lemma 2.2, f — T is demiclosed, it follows that 0 € (f — T')z, and
therefore ¢ = z.
To show (ii), for each A, € (0,1), choose any z), = z, € C(fNT),) and
up € T(z,) satisfying
f(zn) = Apun + (1= An)g.
Then by the same proof as above, we see that every weak cluster point of
{z,} is a point of C(f N T). Hence z), — 2z as A\, — 1.
If f and T have a unique coincidence point z such that T'(z) = {z}, then
we have the following strong convergence result in a real Hilbert space.

THEOREM 3.2. Let M be a closed convez bounded subset of a real Hilbert
space X and f, f~1 be continuous in the weak, respectively strong, topology
onM. LetT : M — K(M) be an f-nonezpansive multivalued map such that
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C(fNT) = {2z} = T(2). Then for some fized g € M and any z) € C(fNT»)
for each A € (0,1), 2\ — z as A — 1.

Proof. Since f(z)) € Ta(z)), so there exists yx € T(z)) such that
(3.21) fzx) =2+ (1= Mg
Also, since
(322)  llwn— 2l = llyr = T(2)|l £ H(T(2x),T(2)) < | f(z2) — f(2)ll,
so from (3.2.1) and (3.2.2) we have
|fen=0-ne_,
A

< (z) = I

Thus

2
< N(f@x) = @) + (g = 2)II%,

———f(“/\) 4 (q-2)

which implies

z)) —q|® Ty) —
M) =gy o L2200 o) < sen) - alf + 205 a0) - 000 2)
and hence

@) —alP < -2 (fen) — g7 —0) < (f@2) - a2 —a).

1+
Finally, using the Cauchy-Schwarz inequality we obtain,
(3:2.3) 1f(z2) = all < |2 - 4l|.

From the proof of the previous theorem, it is clear that 2y — zas A — 1,
so the weak continuity of f implies f(z)) — 2 and thus

(3.24) (f(zr),q) = (2,9).
From the inequality (3.2.3) it follows that
(3.2.5) £ = 2(f(22), 9) < ll2l|* ~ 2z, ).

And hence (3.2.4) and (3.2.5) together imply that
lim sup || f(z)]l < |l

But, on the other hand f(z)) — 2 implies
timint [|f(22)] 2 2]

Thus limy_,; || f(z)||=||]| and since f(z))— z we deduce that f(z))— z.
Therefore, the continuity of f~! implies ) — z.
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