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SOME SEQUENCE SPACES
DEFINED BY |V, p,| SUMMABILITY

Abstract. The object of this paper is to introduce some new sequence spaces which
arise from the notion of |N, p,| summability. Some topological results, certain inclusion
relations and a result on matrix transformations have been discussed.

1. Introduction
. . . . e
Given an infinite series ). an, let

(1) Tp=ag+ a1+ +a,.

Denote the sequence (a,) by a and the sequence (z,) by x. We will suppose
throughout that a, x are related by (1) ( where no limits are stated, sums
throughout are to be taken from 1 to oo ). Denote by (pr)n>0 a sequence of
positive real numbers, and write P, = Y 7_, px. It is well-known that the
series 3 oo a,, (or the sequence x) is said to be summable (N, p,,) to the sum
s (finite), if t,, = P_l,.' > o PvT, — S asn — oo, and is said to be absolutely
summable (N, p,), or summable |N,p,|, if also the sequence (¢,) € BV,
that is 3, [tn — tn—1| < co. Let |N,| and N,, denote, respectively, the set of
all sequences which are summable |N,p,| and (N,p,). If p, = 1 for all n,
then |N,| and N, , respectively, become |C;| (the set of all sequences which
are absolutely Cesaro summable of order 1) and Cy (the set of all sequences
which are Cesaro summable of order 1).

The main object of this paper is to study a new sequence space |N,|(r)
which emerges naturally as an extension of I_N_pl in the same way as £, the
space of absolutely convergent sequences, is extended to ¢(p) (see Bourgin
[1], Landsberg [4], Maddox [8, p. 30] and Simons [9]). The definition of
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|N,|(r) is given in the following section. In §3, we propose to study linear
topological structure of |N,|(r) endowed with natural paranorm. In this
section we also discuss uniform convexity, k-convexity and local boundedness
of [N,|(r) spaces. In §4, certain inclusion relations have been discussed. In
§5, we give a criterion for compactness of a subset K C |N,|(r) , which is
completely analogous to the classical theorem (see [6]). Finally in §6, we
state without proof a result on matrix transformations.

2. Notation and definitions
The following inequalities (see, e.g., [8]) are needed throughout the paper.
Let p = (px) be a bounded sequence of strictly positive real numbers. If
H = sup pi, then

(2) lar + bx|™ < C (Jak[™ + [bk[™),
where C = max (1,29-1). Also for any complex A,
3) AP < max (1,[A7).

Given a sequence a = (ax), we write, for n > 1, ¢,(a) = t, — t,—1, where
t, = —}}—n Y _oPu,. By an application of Abel’s transformation we have

(4) ¢n(a) = P 1;,” - EPk—lak(n >1).
n k=1

Note that for any sequences a, b and scalar A, we have

(5) dn(a+d) = dp(a) + du(b) and ¢,(Aa) = Adp(a).

We now extend the definition of |N,| to a more general space |N,|(r) in
the same way as £ is extended to £(p).

DEFINITION 2.1. Let r = (7,) be a bounded sequence of positive real num-
bers. We define |Np|(r) = {a = (ax) : 2, |¢n(a)|™ < oo}.

If r, is a constant (which we will denote by ), we write |N,|, in place
of |Np|(r). We omit the suffix r in the case r = 1; note that this agrees with
the definition of |N,| already given. If p, = r, = 1 for all n, then |N,|(r)
reduces to |Cy].

Note that |N,|(r) is a linear space since for a,b € [Ny|(r)and A, p € C
by (2), (3) and (5) we have

Y I6n (e + pb) ™
< max (1,277) (max (1, |A1%) 3 Ién (@) ™ +max (1, 1) 3 l6n(®)]™)

where H = supr,.
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3. Topological structure of |N,|(r)

In this section we propose to study linear topological structure of [ N,|().
THEOREM 3.1. (i) |N,|(r) is a complete topological linear space paranormed
by g-(a) = (5, |6n (a) ™)™, where M = maz (1, H), H = supr,,.

(ii) If r is a constant sequence, then |N,|, is a Banach space for r > 1
and a complete r-normed space for r < 1 (see [8, p.94] ). In these cases ,
we write ||a||, in place of g,(a).

(iii) |Fp|2_ is a Hilbert space with the inner product given by (a,b) =
2o $n(a)Pn(d).

The proof is a routine verification by using ‘standard’ techniques and
hence is omitted.

In the following theorem we shall discuss uniform convexity (see, e.g.,
[3], [10] ) of |Np|. In case T = 2, we have just shown that |N,|; is a Hilbert
space and hence is uniformly convex. We now discuss the general case when
1<r<oo.

THEOREM 3.2. |N,|, is uniformly convez for 1 < r < co.
In order to prove this theorem we require the following lemmas.
LEMMA 3.3. For r > 2 and a,b € |N,|, we have
a+b a-b||" 1
< - T T .
: 5| < 5 el + 180)
The proof follows from the well-known inequality [3, p. 224].
LEMMA 34. If1<r <2, L+ 1 =1 anda,b€ |N,|,, then
a+b a-b|’ 1 1 o/r
< || =llallx + =1idlI7 .
2 . 2 r-— (2|hz"T+-2'|“T)
Proof. Using the well-known inequality

r

+

T

8

|2+ w|* + |2 = w]’ < 2(|2|" + |w|7)™T
[3, p. 227), we get
N T P
r~1 r—1
)"+ ( )

( Pn(a) + dn(b)
2
< (3@ + 1600007

whence, since 0 < 7 — 1 < 1, we have
T) = )T-l) 2

®) (2;((¢4@+¢Awfyﬁ+(

¢n(e) — én(b)
2

-

r=—1

Pnla) — Pn(b)
2

2
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1 1 =T/ 1
< (S n@r+ 3 i0u0r) ™ = (Gl + 5000)

By Minkowski’s inequality for 0 < 7 — 1 < 1, we have

o (D(([Beg]) 7« (g

s/r

1

) =8 )r-l)

r s/r r s/r
n(a (b (@) — @n(b
2(2‘“);‘“)) +(Z¢()2¢()>
_a+bs a—b|°
- 2 |, 2 |,

So Lemma 3.4 follows by (6) and (7).

Proof of Theorem 3.2. Let a,b € [N,| be such that ||a||, = ||8]|» = 1
and ||a — b||, > € for some € satisfying 0 < € < 2. By Lemma 3.3, for r > 2
we have ||932"—b”: + ||“T'b”: <1, which implies that

T

T
(8) s |22 <1 o2y
2 |, 2 |,
Again for 1 < r < 2, by Lemma 3.4, we get
bS _ S
(9) <t <1 (2
T T

From (8) and (9) it follows that we can find for each r > 1, a number 6,
0 < 6 < 1, which depends only on ¢ such that ||9—'21,i||r < 1-4,and so |N,|,
is uniformly convex.

COROLLARY 3.5. |N,|, is reflezive for 1 < r < oo.

The result follows from Theorem 3.1 (ii), Theorem 3.2 and the fact that
a uniformly convex Banach space is reflexive (see [10, p.109]).

In the following theorem we discuss the condition for k-convexity and
local boundedness of |N,|(r). We refer to {7, 9] for the definitions of k-
convexity and local boundedness.

THEOREM 3.6. (i) For r > 1, if [Ny|, is k-convez then [Nplx C |Np|,.
(ii) | Np|(r) is locally bounded (that is, there ezists a bounded neighbour-
hood of 0) if liminf r, > 0.

Proof. (i) If |N,|, is k - convex then there is an absolutely k-convex
set U and 6§ > 0 such that {a:||a||. <6} C U C {a:]|eal|, <1}. Thus if
aV(N =1,2,...) be defined by ¢,(a”) = 6/N'/" forn < N,0for n > N,
then a € U for all N. Thus by absolute k-convexity of U, the condition
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>N, A% < 1(An real and non-negative) implies that Y 5_; Ana? € U.
Hence || Y n—; Ana||» < 1, that is
1/r
)<,

(2o (&)

n

A

and, since 7 > 1, we have

;|¢n(éma”)|r <1,

which by (5) implies that

Z ( i AN¢n(‘1N))T <L
N=1

n

Thus, using (2.12.1) of [2, p. 32], we get
1> 3 (Men(@)) +3 (atn(@®) +. 4 (Andala™)
2 m
S A+ N Y B+ XL Y dra™),
n=1 n=1
since ¢n(a’N) = 0 for n > N. Consequently, 1 > A[6"+ 252 (6/21/7) +.. .+

Arm (6/mM7) = 67 T N_i AN, that is S n_, A% < 1/67. Thus, we have
shown that

(10) E Ak, <1 implies that Z Ay <1/67.
N=1 N=1

If now a € [Nyl and S = 3, |#n(a)|* then, for any m, > N_, ]‘b—”gﬂt <1
Hence by (10) we have 3 % _, I%%)-'T <1/6". Since this holds for any

m, it follows that - |¢n(a)|” < §7/k[§7. We have thus proved that |N,|x C
|Nplr.

(ii) If inf r, = p > 0 then for any K > 0 and € > 0, we choose an integer
N > 1 so that N*/M > K /e where M = max(1,supr,). Now g.(a) < K
implies that g.(a/N) < K/N?/™ < €. In other words {a:g.(a) < K} C
N {a: g-(a) < €}; and since for every ¢ > 0, there exists an N for which this
relationship holds, {a : g,(a) < K} is bounded. It is immediate from this
that any metrically bounded set is bounded. In particular {a : g-(a) < 1} is
bounded, and it follows that |N,|(r) is locally bounded.
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4. Inclusion between |N,|(r) spaces L
The folowing result gives inclusion relation between |N,|(r) spaces.

THEOREM 4.1. (i) If r,, and s, are bounded sequences of positive real num-
bers such that r,, < sy, for each n, then |N,|(r) C |Np|(s).

(i) If (tn) and (u,) are bounded sequences of positive real numbers and
if T = min(tn, Un), ¢n = Max(tn,un), then |Np|(r) = [Np|(t) N |N,|(x) and
|N,|(g) = w where w is the subspace generated by |N,|(t) U |N,|(u).

Proof. We only prove (i). Proof of (ii) is similar to that of the corresponding
result for £(p) given by Simons [9, Lemma 3].

(i) Let a€|Np|(r). Then |¢(a)| <1 for large n. Since ry, < 8y, |Pn(a)|* <
|¢n(a)|™ for large n. This shows that a € [N,|(s) and the proof is complete.

COROLLARY 4.2. The three conditions [Np|(t) C [Np|(u), |Np|(r) = |N,|(2)
and |Np|(u) = |Np|(q) are equivalent.

COROLLARY 4.3. |N,|(t) = |Np|(w) if and only if |N,|(r) = |N,|(q)-

5. Compactness
The next result gives characterization of compact sets in |Np|(r).

THEOREM 5.1. A set K C |N,|(r) is compact if and only if

(i) K is closed and bounded,

(ii) given any € > 0, there ezists an ng = no(e) (depending only on €)
such that (3 4y |¢n(a)|'”)1/M < €, for all a € K whenever n' > ng, and

(iii) i fe : |Npl(r) — C is given by fr(a) = ¢r(a) for all a € |N,y|(r) ,
then fr(K) is compact for k > 1.

Proof. One may readily adapt the arguments of Leonard [5, Theorem 5.1]
to prove the necessity. We consider only the sufficiency. Suppose (i), (ii) and
(iii) hold. Since K is closed and |N,|(r) is complete, it suffices to show that K
is totally bounded. Given € > 0, there exists an ng = ng(¢) , depending only
on ¢, such that (3°°° ., |¢n(a)|r")l/M < s, for all @ € K, whenever
n' > ng . Now fr(K) is compact for all ¥ > 1, hence, totally bounded;
so for each n = 1,2,...,no, there exist ¢n(a1),dn(az),...dn(an ) € fu(K)
such that if ¢,(a) € fn.(K) then there exists ¢, 1 < ¢ < n], such that
|pn(a) — dn(ai)] < ——- Now let '

2"uno"
Kno = {b . b = (¢1(a,-1),¢2(a,-2),...,¢no(a;"°),0,0,...,),
1<i<np, 1<4€nh, ovny 1< 00, <y )

Then K, is a finite set containing njnj...n) elements. If a € K, then
én(a) € fu(K) for all n>1. Let b€ K, be given by b=(¢1(a;,), ¢2(as,),. ..
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M L
ooy Pno(@in, )5 0,0,...,0,...), where |¢n(a) - dn(ai,)| < (;To) ™.on =
1,2,...,n0.

Then
g'(a—b)= Z |#n(a) — dnlai)|™ + Z |$n(a)™
n-no+1
< Z 2— + Z |pn(a)l™ = —- + Z |@n(a)|™.
n=ng-1 n=no+1

But 3377 11 1éa(a)|™ < ET for all a € K. Therefore, g,(a — b) < ¢; and
since @ € K is arbitrary and K, is a finite set,it follows that K is totally
bounded.

6. A result on matrix transformations

Finally, we state without proof a result on matrix transformations. If
X, Y are any two sets of sequences, we denote by (X, Y) the set of those
matrices A = (anx) which have the property that Az exists and belongs to
Y for any z € X.

Write ¢n(Az) = 52— — Y Pic1Ai(z) = Y bukzk, where by, =

o ey Picraix -
With this notation we have the following result.

THEOREM 6.1. Letr > 1. Then A € (£,|N,|(r)) if and only if sup, Y, |bnk|
< 00.

The proof uses ideas similar to those used (e.g.) in [8, p.167] .
Our thanks are due to the referee for various suggestions which improved
the presentation of the paper.
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