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SOME SEQUENCE SPACES 
DEFINED BY \N,pn\ SUMMABILITY 

A b s t r a c t . The object of this paper is to introduce some new sequence spaces which 
arise from the notion of |TV, p n | summability. Some topological results, certain inclusion 
relations and a result on matrix transformations have been discussed. 

1. Introduction 
Given an infinite series S^Lo a « ' 

(1) xn = a0 + ai + b an. 

Denote the sequence (a„) by a and the sequence (z n ) by x. We will suppose 
throughout that a, x are related by (1) ( where no limits are stated, sums 
throughout are to be taken from 1 to oo ). Denote by (pn)n>o a sequence of 
positive real numbers, and write Pn = Y^k=oPk- It is well-known that the 
series a « ( o r sequence x) is said to be summable (N , pn) to the sum 
s (finite), if tn = -p- Pvxv y -5 as n —• oo, and is said to be absolutely 
summable ( N , p n ) , or summable \N,pn\, if also the sequence ( t n ) 6 BV, 
that is l̂ n — n̂—i | < oo- Let |iVp| and Np denote, respectively, the set of 
all sequences which are summable \N,pn\ and ( N , p n ) . If pn = 1 for all n, 
then \NP\ and Np , respectively, become \C\\ (the set of all sequences which 
are absolutely Cesaro summable of order 1) and C\ (the set of all sequences 
which are Cesaro summable of order 1). 

The main object of this paper is to study a new sequence space |-/Vp|(7*) 
which emerges naturally as an extension of |jVp| in the same way as the 
space of absolutely convergent sequences, is extended to l(p) (see Bourgin 
[1], Landsberg [4], Maddox [8, p. 30] and Simons [9]). The definition of 
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|JVp|(r) is given in the following section. In §3, we propose to study linear 
topological structure of |iVp|(r) endowed with natural paranorm. In this 
section we also discuss uniform convexity, k-convexity and local boundedness 
of ¡iVp|(r) spaces. In §4, certain inclusion relations have been discussed. In 
§5, we give a criterion for compactness of a subset K C |-/Vp|(r) , which is 
completely analogous to the classical theorem (see [6]). Finally in §6, we 
state without proof a result on matrix transformations. 

2. Notation and definitions 
The following inequalities (see, e.g., [8]) are needed throughout the paper. 
Let p = (pk) be a bounded sequence of strictly positive real numbers. If 

H = suppfc, then 
(2) \ak + b k r < C ( \ a k r + \ b k r ) , 
where C = max (1 ,2 H _ 1 ) . Also for any complex A, 
(3) |A|P* < max (l, |A|H) . 

Given a sequence a = (ak), we write, for n > 1, 4>n(a) = tn — tn-1, where 
tn = -p- Pfxv By an application of Abel's transformation we have 

(4) <t>n{a) = — £ Pk-,ak{n > 1). 
rnrn-\ k = 1 

Note that for any sequences a, b and scalar A, we have 

(5) <f>n(a + b) = 4>n(a) + <t>n{b) and <j>n(\a) = \<t>n(a)-
We now extend the definition of |iVp| to a more general space |iVp|(r) in 

the same way as I is extended to l{jp). 

D E F I N I T I O N 2.1. Let r = (rn) be a bounded sequence of positive real num-
bers. We define \7^\(r) = {a = (ak) : |^„(a)| r- < oo}. 

If rn is a constant (which we will denote by r), we write |iVp|r in place 
of |iVp|(r). We omit the suffix r in the case r = 1; note that this agrees with 
the definition of |iVp| already given. If pn = rn = 1 for all n, then |./Vp|(r) 
reduces to |Ci|. 

Note that |iVp|(r) is a linear space since for a, b 6 |iVp|(r) and A , / i 6 C 
by (2), (3) and (5) we have 

n 

< max ( M " - 1 ) (max (1, |A|") £ \<j>n (a) f ' + m a x (l , H " ) £ |^n(6) | r-) 
n n 

where H — supr n . 
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3. Topological structure of |iVp|(r) 
In this section we propose to study linear topological structure of |iVp|(r). 

T h e o r e m 3.1. ( i ) |-/Vp|(r) is a complete topological linear space paranormed 

by gr(a) = (£n |<j>n (a) \r"f,M, where M = max (1, H), H = suprn. 
(ii) If r is a constant sequence, then |iVp|r is a Banach space for r > 1 

and a complete r-normed space for r < 1 (see [8, p.94] )• In these cases , 

we write ||a||r in place of gr(a). 

(iii) |7Vp|2 is a Hilbert space with the inner product given by (a,b) = 

The proof is a routine verification by using 'standard' techniques and 
hence is omitted. 

In the following theorem we shall discuss uniform convexity (see, e.g., 
[3], [10] ) of |iVp|r. In case r = 2 , we have just shown that |iVp|2 is a Hilbert 
space and hence is uniformly convex. We now discuss the general case when 
1 < r < oo. 

T h e o r e m 3.2. |iVp|,. is uniformly convex for 1 < r < oo. 

In order to prove this theorem we require the following lemmas. 

L e m m a 3.3 . For r >2 and a,b € |-/Vp|r we have 

a + b 
+ 

a — b 
< j d H r + K ) . 

The proof follows from the well-known inequality [3, p. 224]. 

Lemma 3.4. / / l < r < 2 , i + i = l and a,be |iVp|r , then 

a + b 
+ 

a — b 
s/r 

P r o o f . Using the well-known inequality 

\z + w\° + \z-w\s < 2{\z\r + 

[3, p. 227], we get 

( Ma) + Mb) 

r * c 
M a ) ~ <t>n{b) T 

< Q + \ i < M < o r ) r _ 1 

whence, since 0 < r — 1 < 1 , we have 

( 6 ) ( s r ( ( ^n(o) + M b ) T M a ) ~ <t>n(t>) TVT 
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< (\E\MaW + \E\Mb)\r)r~l = (\\\a\\rr+\\\b\\ 
^ n n ' ^ 

By Minkowski's inequality for 0 < r — 1 < 1, we have 

(7) <Ma) + <t>n(b) + <f>n(a) - (j)n{b) 
i r— 1 

s / r 

r—1 

M E 
4>n(a) + <t>n{b) 

s/r 

+ E 
4>n(a) - <j>n(b) 

s/r 

a + b + 

So Lemma 3.4 follows by (6) and (7). 

P r o o f o f T h e o r e m 3.2. Leta,6e|iVp| be such that ||a||r = ||6||r = 1 
and ||a - 6||r > e for some e satisfying 0 < e < 2. By Lemma 3.3, for r > 2 

i± ' " 
2 

we have ||^|| r + < 1 , which implies that 

(8) 
a + b < 1 -

a — b 
< 1 " (e/2 

Again for 1 < r < 2, by Lemma 3.4, we get 

(9) 
a + b < 1 -

a — 
< 1 " 

From (8) and (9) it follows that we can find for each r > 1, a number 6, 
0 < S < 1, which depends only on e such that H^^Hr — 1 — s o I-̂ PI»-

is uniformly convex. 

COROLLARY 3 . 5 . \Np\r is reflexive for 1 < r < oo. 

The result follows from Theorem 3.1 (ii), Theorem 3.2 and the fact that 
a uniformly convex Banach space is reflexive (see [10, p.109]). 

In the following theorem we discuss the condition for k-convexity and 
local boundedness of |iVp|(r). We refer to [7, 9] for the definitions of k-
convexity and local boundedness. 

THEOREM 3 . 6 . (i) For r > 1, ¿/|JVP|R is k-convex then |JVP|FC C |IVP|R. 

(ii) |7Vp|(r) is locally bounded (that is, there exists a bounded neighbour-
hood of 0) «/liminf rn > 0. 

P r o o f , (i) If |iVp|r is k - convex then there is an absolutely k-convex 
set U and 6 > 0 such that {a : ||a||r < 6} C U C {a : ||a||r < 1}. Thus if 
aN(N = 1 , 2 , . . . ) be defined by <f>n(aN) = S/N1^ for n < N, 0 for n > N, 
then aN G U for all N. Thus by absolute A;-convexity of U, the condition 
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Siv=i XN - real and non-negative) implies that A 6 U. 
Hence || YHN= i A./vaN||r < 1? that is 

( E n 
and, since r > 1, we have 

<f>n I E 
\N=1 

s 1/r 
) S i , 

m 

E h ( i > 0 N=1 
< 1, 

which by (5) implies that 

r 

71 N=1 

Thus, using (2.12.1) of [2, p. 32], we get 

1 > E ( A i<Ma 1 ) ) r + E ( A 2 M " 2 ) ) * + • • • + E ( W n ( a m ) ) ' 
n n n 

2 m 
= A ^ a 1 ) + A£ E K(« 2 ) + • • • + A^ E 

n=l n=l 

since 4>n(aN) = 0 for n > N. Consequently, 1 > + \r
2 2 (¿¡/21/r)r + . . .+ 

A^m (¿/m1 / , r) r = ¿ r <Mv> that is Y , N = \ XN < T H U S . WE HAVE 

shown that 

(10) E A^ < 1 implies that E XN < 
N= 1 N=1 

If now a G |JVp|fc and S = £ n \M^)\k then, for any m, i ^ ^ T ^ < 1-
Hence by (10) we have ^ ^ r < l / 6 r . Since this holds for any 

irvit foUows that |<M°)f < STlk/6r. We have thus proved that |iVp|fc C 
lA^lr-

(ii) If inf rn — p > 0 then for any K > 0 and e > 0, we choose an integer 
N > 1 so that N"!m > K/e where M = max(l,supr„). Now gr(a) < K 
implies that gr(a/N) < K/N<>/M < e. In other words {a : gr(a) < K } C 
N {a : gT(a) < e}; and since for every e > 0, there exists an N for which this 
relationship holds, {a : gr(a) < K} is bounded. It is immediate from this 
that any metrically bounded set is bounded. In particular {a : gr(a) < 1} is 
bounded, and it follows that |-/Vp|(r) is locally bounded. 



544 V. K. B h a r d w a j , N. Singh 

4. Inclusion between |iVp|(r) spaces 
The folowing result gives inclusion relation between |iVp|(r) spaces. 

THEOREM 4.1. ( i ) If rn and sn are bounded sequences of positive real num-

bers such that rn < sn for each n, then |iVp|(r) C |iVp|(s). 
(ii) If (tn) and (un) are bounded sequences of positive real numbers and 

if rn = min( fn ,u n ) , qn = max ( t n ,u n ) , then |iVp|(r)_=_|JVp|(i)_Q|-^P|(w) and 

|JVp|(9) = w where w is the subspace generated by |iVp|(Z) |J |iVp|(u). 

P r o o f . We only prove (i). Proof of (ii) is similar to that of the corresponding 
result for £(p) given by Simons [9, Lemma 3]. 

( i ) Let aG |iVp|(r). Then |0(a)|<l for large n. Since rn<sn, |^n(a)|s" < 

|0n(a)|r" for large n. This shows that a G |iVp|(s) and the proof is complete. 

COROLLARY 4.2. The three conditions |iVp|(i) C = 

and |iVp|(u) = |iVp|(<7) are equivalent. 

C O R O L L A R Y 4 . 3 . | A Q ( f ) = | A Q ( u ) if and only if l i V p K r ) = |JVp|(^). 

5. Compactness 

The next result gives characterization of compact sets in |jVp|(r). 

THEOREM 5.1. A set K C |iVp|(r) is compact if and only if 

( i ) K is closed and bounded, 

(ii) given any e > 0 , there exists an no = no(e) (depending only on e) 

such that |0n(a)|rn)1^Ai < e, for alia G K whenever n' > no, and 

(iii) if fk : |iVp|(r) C is given by fk(a) = <f>k(a) for all a G |iVp|(r) , 
then fk{K) is compact for k > 1. 
P r o o f . One may readily adapt the arguments of Leonard [5, Theorem 5.1] 
to prove the necessity. We consider only the sufficiency. Suppose (i), (ii) and 
(iii) hold. Since K is closed and |iVp|(r) is complete, it suffices to show that K 
is totally bounded. Given e > 0, there exists an no = no(e) > depending only 

on e, such that \(f>n{o)\rnY^M < jifur, for all a G K, whenever 
n' > no . Now fk{K) is compact for all k > 1, hence, totally bounded; 
so for each n = 1,2 ,...,ra0, there exist <j>n(ai), ^n(a2), • • .<f>n(an<n) G fn(K) 

such that if (¡>n(a) G fn(K) then there exists i, 1 < i < n'n such that 
\Ma) ~ <i>n(ai)\ < jJ Now let 

2 -» n0r" 

Kno = {b:b= (<fo(aiJ,<fo(aiJ,...,<£no(a»»0)'0'0'-"') ' 

1 < h < n[, 1 < ¿2 < n'2, ..., 1 < ino < n'no}. 

Then Kna is a finite set containing n[ n'2... n'no elements. If a G K, then 
<f>n(a) G fn(K) for all n > 1. Let b G Kno be given by b = (^(a^), ^2 (ai2 ) , • • • 
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• • • ^ n o K , o ) , 0 , 0 , . . . , 0 , . . . ) , where \<f>n(a) - <f>n(aiJ| < , n 
1 , 2 , . . . , n o . 

Then 

- 6) = £ - ¿„(a< J | r " + £ 

"0 M °° fM °° 

E K(«)r = V + E 

But < for all a 6 -ft'. Therefore, gr(a — b) < t; and 
since a G K is arbitrary and Kno is a finite set,it follows that K is totally 
bounded. 

6. A result on matrix transformations 
Finally, we state without proof a result on matrix transformations. If 

X, Y are any two sets of sequences, we denote by (X, Y) the set of those 
matrices A = (ank) which have the property that Ax exists and belongs to 
Y for any 

Write (f>n{Ax) = P<tgT_1 E"=i Pi-\Ai(x) = Y,kbnkXk, where bnk = 

With this notation we have the following result. 

THEOREM 6.1. Let r > 1. Then A e {t, pVp|(R)) if and only if supfc |&„K|R 

< oo. 

The proof uses ideas similar to those used (e.g.) in [8, p.167] . 
Our thanks are due to the referee for various suggestions which improved 

the presentation of the paper. 
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