

Seong Sik Kim

FARTHEST POINTS AND BOUNDED 2-FUNCTIONALS

Abstract. In this paper, we give some theorems on further characterizations and existences of ϵ -farthest points in linear 2-normed spaces in terms of bounded linear 2-functionals.

I. Introduction

Let X be a linear space of dimension greater than 1 and $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ which satisfies the following conditions:

- (N₁) $\|a, b\| = 0$ if and only if a and b are linearly dependent,
- (N₂) $\|a, b\| = \|b, a\|$,
- (N₃) $\|\alpha a, b\| = |\alpha| \|a, b\|$, where α is real,
- (N₄) $\|a + b, c\| \leq \|a, c\| + \|b, c\|$.

$\|\cdot, \cdot\|$ is called a *2-norm* on X and $(X, \|\cdot, \cdot\|)$ is called a *linear 2-normed space* ([3]). Note that the 2-norm is non-negative and $\|a, b\| = \|a + b, b\|$.

The following definitions and Theorem 1.1 are given in [5] and [9]:

DEFINITION 1.1. A *2-functional* f is a real-valued mapping with domain $A \times C$, where A and C are linear manifolds of a linear 2-normed space $(X, \|\cdot, \cdot\|)$.

DEFINITION 1.2. A 2-functional f is said to be *linear* if

- (1) $f(a + c, b + d) = f(a, b) + f(a, d) + f(c, b) + f(c, d)$,
- (2) $f(\alpha a, \beta b) = \alpha \beta f(a, b)$, where α and β are real.

DEFINITION 1.3. A 2-functional f with domain $D(f)$ is said to be *bounded* if there is a real constant $K > 0$ such that $|f(a, b)| \leq K \|a, b\|$ for $(a, b) \in D(f)$.

Key words and phrases: ϵ -farthest point, deviation, bounded linear 2-functional.

1991 *Mathematics Subject Classification:* 46B99, 46B20.

This paper was supported by Non-Directed Research Fund, Korea Research Foundation, 1996.

If f is bounded, define the norm of f , $\|f\|$, by

$$\|f\| = \inf\{K : |f(a, b)| \leq K\|a, b\| \text{ for all } (a, b) \in D(f)\}.$$

If f is not bounded, define $\|f\| = +\infty$.

For $x \in X$, let $V(x)$ denote the subspace of X generated by x .

THEOREM 1.1 ([5]). *Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $x_o \in X$ be a non-zero element. Let $z \in X$ be such that x_o and z are linearly independent. Then there exists a bounded linear 2-functional f with the domain $X \times V(z)$ such that*

- (1) $f(x_o, z) = \|x_o, z\|$,
- (2) $\|f\| = 1$.

Additional properties of bounded linear 2-functionals may be found in [5] and [8].

DEFINITION 1.4 ([6]). Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. For $x, y \in X$, $x \neq y$ and $y \neq 0$, the set $L(x, y) = \{x + ty : t \in R\}$ is called the *algebraic line* determined by x and y .

It is possible to define the unit cylinder with central axis $L(0, z)$ for every non-zero point $z \in X$.

DEFINITION 1.5 ([6]). Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. For a non-zero point $z \in X$, the set $B(z, 1) = \{x \in X : \|x, z\| \leq 1\}$ is called the *unit cylinder* with central axis $L(0, z)$.

In 1979, C. Franchetti and I. Singer ([2]) studied the concept of farthest points in normed linear spaces and obtained some results on characterizations and existences of farthest points in normed linear spaces. In 1984, M. Janc ([4]) gave also some characterizations of farthest points in normed linear spaces and I. Singer ([8], p162) gave a characterization of the elements of ϵ -approximation. Recently, some characterizations of farthest points in linear 2-normed spaces have been obtained by S. Elumalai and S. Ravi ([1]) and S. Ravi ([7]).

In this paper, we give some theorems on further characterizations and existences of ϵ -farthest points in linear 2-normed spaces.

2. Characterizations of ϵ -farthest points

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space with $\dim X \geq 2$, G be a subset of X and let ϵ be a real number ≥ 0 . For $x \in X$ and $G \subset X$, we shall denote by $[G, x]$, the subspace of X generated by some elements of the set G and x . A nonempty subset G of a linear 2-normed space X is *bounded* if

$\sup_{g \in G} \|g, z\| < \infty$ for $z \in X \setminus [G]$, where $[G]$ denotes the subspace of X generated by the elements of G .

The *deviation* of G from x is defined by

$$\delta_G(x, z) = \sup_{g \in G} \|g - x, z\| \quad \text{for } z \in X \setminus [G, x].$$

Let $x \in X$ such that $[G, x] \subsetneq X$. An element $g_o \in G$ is called a *farthest point* to x in G (with respect to z) if

$$\|g_o - x, z\| = \sup_{g \in G} \|g - x, z\|$$

for every $z \in X \setminus [G, x]$.

The set of all farthest points to x in G (with respect to z) is denoted by $F_G(x, z)$.

DEFINITION 2.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X , $x \in X$ such that $[G, x] \subsetneq X$, $g_o \in G$ and $\epsilon \geq 0$. Then an element g_o is called an ϵ -farthest point to x in G (with respect to z) if

$$\|g_o - x, z\| \geq \delta_G(x, z) - \epsilon = \sup_{g \in G} \|g - x, z\| - \epsilon$$

for every $z \in X \setminus [G, x]$.

The set of all ϵ -farthest points to x in G (with respect to z) is denoted by $F_{G,\epsilon}(x, z)$. Of course, $F_{G,0}(x, z) = F_G(x, z)$.

The following theorems give the necessary and sufficient condition for $g_o \in G$ to be an element of $F_{G,\epsilon}(x, z)$.

THEOREM 2.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X , $x \in X$ such that $[G, x] \subsetneq X$ and $g_o \in G$. If $g_o \in F_{G,\epsilon}(x, z)$, then $g_o \in F_{G,\epsilon}(\alpha x + (1 - \alpha)g_o, z)$ for any $\alpha \geq 1$.

Proof. Suppose that $g_o \in F_{G,\epsilon}(x, z)$. Then we have

$$\|g_o - x, z\| + \epsilon \geq \|g - x, z\|$$

for any $g \in G$. Let $x_\alpha = \alpha x + (1 - \alpha)g_o$ with $\alpha \geq 1$. For $z \in X \setminus [G, x]$,

$$\begin{aligned} \|g - x_\alpha, z\| &\leq \|g - x, z\| + \|x - x_\alpha, z\| \\ &\leq (\alpha - 1)\|x - g_o, z\| + \|g_o - x, z\| + \epsilon \\ &= \|g_o - (\alpha x + (1 - \alpha)g_o), z\| + \epsilon. \end{aligned}$$

Thus, we have $g_o \in F_{G,\epsilon}(\alpha x + (1 - \alpha)g_o, z)$. This completes the proof.

COROLLARY 2.2. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X , $x \in X$ such that $[G, x] \subsetneq X$ and $g_o \in G$. Then $g_o \in F_{G,\epsilon}(x, z)$ if and only if $\alpha g_o + \beta g \in F_{G,\epsilon}(\alpha x + \beta g, z)$ for any $\alpha \geq 1$, $\beta \leq 0$ with $\alpha + \beta = 1$ and for all $g \in G$ with $\alpha g_o + \beta g \in G$.

THEOREM 2.3. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a subset of X , $x \in X$ such that $[G, x] \subsetneq X$ and $\epsilon \geq 0$. Then $g_o \in F_{G, \epsilon}(x, z)$ if and only if $g \in B(z, \|x - g_o, z\| + \epsilon) + x$ for each $g \in G$.

Proof. Let $g_o \in F_{G, \epsilon}(x, z)$. Suppose that there exists $g_1 \in G$ such that if $g_1 \notin B(z, \|x - g_o, z\| + \epsilon) + x$, then

$$\|g_o - x, z\| + \epsilon < \|g_1 - x, z\| \leq \delta_G(x, z),$$

which is a contradiction.

Conversely, if $g_o \notin F_{G, \epsilon}(x, z)$, then $\|g_o - x, z\| < \delta_G(x, z) - \epsilon$. Then, by definition of $\delta_G(x, z)$, there exists $g_1 \in G$ such that $\|g_o - x, z\| + \epsilon < \|g_1 - x, z\|$. Therefore, we have

$$g_1 \notin B(z, \|x - g_o, z\| + \epsilon) + x.$$

This completes the proof.

3. ϵ -farthest points in term of bounded linear 2-functionals

In this section, we give some characterizations of ϵ -farthest points in linear 2-normed spaces in terms of linear bounded 2-functionals. For any non-zero element $z \in X$, we denote by $(X \times V(z))^*$ the space of all bounded linear 2-functionals f with domain $X \times V(z)$ and with the norm $\|\cdot\|$ defined by

$$\|f\| = \sup\{|f(x, z)| : \|x, z\| = 1, (x, z) \in X \times V(z)\}.$$

For $f \in (X \times V(z))^*$ and $G \subset X$, we shall write $\sup_{\|f\|=1} f(G, z)$ for $\sup_{f \in (X \times V(z))^*, \|f\|=1} f(G, z)$ and $\sup_{g \in G} f(g, z)$ respectively.

THEOREM 3.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X , $x \in X$ such that $[G, x] \subsetneq X$, $g_o \in G$ and $\epsilon \geq 0$. Suppose that for every $g \in G$, there is a 2-functional $f_z \in (X \times V(z))^*$ such that

- (1) $\|f_z\| = 1$,
- (2) $f_z(g - x, z) = \|g - x, z\|$,
- (3) $f_z(g - g_o, z) \leq \epsilon$.

Then $g_o \in F_{G, \epsilon}(x, z)$.

Proof. Suppose that the conditions (1), (2) and (3) hold for $g \in G$. Then, for each $z \in X \setminus [G, x]$

$$\begin{aligned} \|g - x, z\| &= f_z(g - x, z) \\ &= f_z(g - g_o, z) + f_z(g_o - x, z) \\ &\leq \epsilon + \|g_o - x, z\|. \end{aligned}$$

Since $g \in G$ is arbitrary, passing to supremum over $g \in G$, we have

$$\delta_G(x, z) \leq \epsilon + \|g_o - x, z\|.$$

Therefore, $g_o \in F_{G,\epsilon}(x, z)$. This completes the proof.

THEOREM 3.2. *Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a subset of X , $x \in X$ such that $[G, x] \subsetneq X$, $g_o \in G$ and $\epsilon \geq 0$. Then $g_o \in F_{G,\epsilon}(x, z)$ if and only if for every $g \in G$, there is a 2-functional $f_z \in (X \times V(z))^*$ such that*

- (1) $\|f_z\| = 1$
- (2) $f_z(g_o - x, z) \geq \|g - x, z\| - \epsilon$.

Proof. Suppose that the conditions (1) and (2) hold. Then, for each $z \in X \setminus [G, x]$

$$\|g_o - x, z\| \geq |f_z(g_o - x, z)| \geq f_z(g_o - x, z) \geq \|g - x, z\| - \epsilon.$$

Since $g \in G$ is arbitrary, passing to supremum over $g \in G$, we have

$$\|g_o - x, z\| \geq \delta_G(x, z) - \epsilon.$$

Thus, $g_o \in F_{G,\epsilon}(x, z)$.

Conversely, suppose that the conditions do not hold. Then there exists $g_1 \in G$ such that for each $f \in (X \times V(z))^*$ with $\|f\| = 1$, $z \in X \setminus [G, x]$, we have

$$f(g_o - x, z) < \|g_1 - x, z\| - \epsilon.$$

By the Hahn-Banach theorem type ([9]), there exists $f_z \in (X \times V(z))^*$ with $\|f_z\| = 1$ such that $f_z(g_o - x, z) = \|g_o - x, z\|$. Thus we have

$$\|g_o - x, z\| = f_z(g_o - x, z) < \|g_1 - x, z\| - \epsilon \leq \delta_G(x, z) - \epsilon.$$

Therefore, $g_o \notin F_{G,\epsilon}(x, z)$. This completes the proof.

By using Theorem 3.2, we easily obtain the following:

COROLLARY 3.3. *Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a subset of X , $x \in X$ such that $[G, x] \subsetneq X$, $g_o \in G$ and $\epsilon \geq 0$. Then the following statements are equivalent:*

- (1) $g_o \in F_{G,\epsilon}(x, z)$.
- (2) For every $g \in G$, there is a 2-functional $f_z \in (X \times V(z))^*$ such that
 - (i) $\|f_z\| = 1$,
 - (ii) $f_z(g_o - x, z) \geq \sup_{g \in G} \|g - x, z\| - \epsilon$.

The following lemmas were proved by R. Ravi ([7]).

LEMMA 3.4. *Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X and $x \in X$ such that $[G, x] \subsetneq X$. Then, for each $z \in X \setminus [G, x]$*

$$(3.1) \quad \sup_{\|f_z\|=1} |\sup_{g \in G} f_z(g - x, z)| = \sup_{\|f_z\|=1} \sup_{g \in G} |f_z(g - x, z)|.$$

Proof. Let $x = 0$. Then, for each $z \in X \setminus [G]$

$$(3.2) \quad \sup_{\|f_z\|=1} |\sup f_z(G, z)| = \sup_{\|f_z\|=1} \sup |f_z(G, z)|.$$

Now, for each $z \in X \setminus [G]$, let $f_z \in (X \times V(z))^*$, $\|f_z\| = 1$.

Case (i). $\sup f_z(G, z) \geq 0$. Then

$$(3.3) \quad |\sup f_z(G, z)| = \sup f_z(G, z) \leq \sup |f_z(G, z)|.$$

Case (ii). $\sup f_z(G, z) < 0$. Then

$$(3.4) \quad \begin{aligned} |\sup f_z(G, z)| &= -\sup f_z(G, z) = \inf(-f_z)(G, z) \\ &\leq \sup(-f_z)(G, z) \leq \sup |f_z(G, z)|. \end{aligned}$$

Thus, by (3.3) and (3.4), we have for $z \in X \setminus [G]$

$$(3.5) \quad \sup_{\|f_z\|=1} |\sup f_z(G, z)| \leq \sup_{\|f_z\|=1} \sup |f_z(G, z)|.$$

Now, for each $z \in X \setminus [G]$ let $\epsilon_z > 0$ be given. Then, there exists an $\tilde{f}_z \in (X \times V(z))^*$ with $\|\tilde{f}_z\| = 1$ such that

$$\sup_{\|f_z\|=1} \sup |f_z(G, z)| \leq \sup |\tilde{f}_z(G, z)| + \epsilon_z.$$

We may assume that $\sup |\tilde{f}_z(G, z)| = |\sup \tilde{f}_z(G, z)|$. Then, for $z \in X \setminus [G]$

$$\begin{aligned} \sup_{\|f_z\|=1} \sup |f_z(G, z)| &\leq \sup |\tilde{f}_z(G, z)| + \epsilon_z \\ &= |\sup \tilde{f}_z(G, z)| + \epsilon_z \\ &\leq \sup_{\|f_z\|=1} |\sup f_z(G, z)| + \epsilon_z. \end{aligned}$$

Hence, since $\epsilon_z > 0$ is arbitrary, we have

$$(3.6) \quad \sup_{\|f_z\|=1} \sup |f_z(G, z)| \leq \sup_{\|f_z\|=1} |\sup f_z(G, z)|, \quad z \in X \setminus [G].$$

By (3.5) and (3.6), for each $z \in X \setminus [G]$, we have

$$\sup_{\|f_z\|=1} |\sup f_z(G, z)| = \sup_{\|f_z\|=1} \sup |f_z(G, z)|,$$

which is (3.2). This proves the lemma for $x = 0$.

Next, let $x \in X$ be arbitrary such that $[G, x] \subsetneq X$. Then, for each $z \in X \setminus [G, x]$ applying (3.2) to the set $G - x$, we have

$$\sup_{\|f_z\|=1} |\sup f_z(G - x, z)| \leq \sup_{\|f_z\|=1} \sup |f_z(G - x, z)|,$$

which is (3.1). This completes the proof.

LEMMA 3.5. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X and $x \in X$ such that $[G, x] \subsetneq X$. Then, for each $z \in X \setminus [G, x]$

$$\sup_{g \in G} \|g - x, z\| = \sup_{\|f_z\|=1} |\sup f_z(G, z) - f_z(x, z)|.$$

Proof. For each $z \in X \setminus [G, x]$, let $f_z \in (X \times V(z))^*$. Then we have

$$\begin{aligned} \sup_{g \in G} \|g - x, z\| &= \sup_{g \in G} \sup_{\|f_z\|=1} |f_z(g - x, z)| \\ &= \sup_{\|f_z\|=1} \sup_{g \in G} |f_z(g - x, z)| \\ &= \sup_{\|f_z\|=1} |\sup_{g \in G} f_z(g - x, z)| \\ &= \sup_{\|f_z\|=1} |\sup f_z(G, z) - \sup f_z(x, z)|. \end{aligned}$$

This completes the proof.

From Theorem 3.2, Lemmas 3.4 and 3.5, we have the following:

THEOREM 3.6. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G be a bounded subset of X , $x \in X$ such that $[G, x] \subsetneq X$, $g_o \in G$ and $\epsilon \geq 0$. Consider the following statements:

- (1) $g_o \in F_{G, \epsilon}(x, z)$.
- (2) There is a 2-functional $f_o \in (X \times V(z))^*$ with $\|f_o\| = 1$, such that
 - (i) $f_o(g_o, z) \geq \sup f_o(G, z) - \epsilon$,
 - (ii) $|\sup f_o(G, z) - f_o(x, z)| \geq \sup_{\|f_z\|=1} |\sup f_z(G, z) - f_z(x, z)| - \epsilon$.
- (3) $g_o \in F_{G, 2\epsilon}(x, z)$.

Then (1) \Rightarrow (2) \Rightarrow (3).

Proof. Suppose that (1) holds. Then by Theorem 3.2, for every $g \in G$ there is an $f_o \in (X \times V(z))^*$ such that $\|f_o\| = 1$, $f_o(g_o - x, z) \geq \sup \|g - x, z\| - \epsilon$ and so

$$f_o(g_o - x, z) \geq \delta_G(x, z) - \epsilon.$$

From Lemmas 3.4 and 3.5, it follows that

$$\begin{aligned} f_o(g_o, z) - f_o(x, z) &\geq \delta_G(x, z) - \epsilon \\ &= \sup_{g \in G} \|g - x, z\| - \epsilon \\ &= \sup_{\|f_z\|=1} |\sup f_z(G, z) - f_z(x, z)| - \epsilon. \end{aligned}$$

Since $\sup f_o(G, z) \geq f_o(g_o, z)$, (ii) follows.

On the other hand, since $g_o \in F_{G, \epsilon}(x, z)$,

$$f_o(g - x, z) \leq \|g - x, z\| \leq \|g_o - x, z\| + \epsilon$$

for every $z \in X \setminus [G, x]$ and thus

$$\begin{aligned} f_o(g_o, z) &= f_o(x, z) + \|g_o - x, z\| \\ &\geq f_o(x, z) + f_o(g - x, z) - \epsilon = f_o(g, z) - \epsilon \end{aligned}$$

for each $g \in G$ and so $f_o(g_o, z) \geq \sup f_o(G, z) - \epsilon$. Thus, (i) holds.

Next, suppose that (2) holds. From Lemma 3.5, the conditions (i) and (ii), we have

$$\begin{aligned} f_o(g_o, z) - f_o(x, z) &\geq \sup f_o(G, z) - f_o(x, z) - \epsilon \\ &\geq \sup_{\|f_z\|=1} |\sup f_z(G - x, z)| - 2\epsilon \\ &= \sup_{g \in G} \|g - x, z\| - 2\epsilon \end{aligned}$$

for every $z \in X \setminus [G, x]$. Thus, we have

$$\|g_o - x, z\| \geq f_o(g_o - x, z) \geq \delta_G(x, z) - 2\epsilon$$

and so $g_o \in F_{G, 2\epsilon}(x)$. This completes the proof.

Acknowledgements. Author wish to thank the referee for his valuable assistance in preparing this paper.

References

- [1] S. Elumalai and R. Ravi, *Farthest points on suns*, Math. Today 9 (1991), 13–18.
- [2] C. Franchetti and I. Singer, *Deviation and farthest points in normed linear spaces*, Rev. Roum. Math. Pure et Appl. 24 (1979), 373.
- [3] S. Gähler, *Lineare 2-normierte Räume*, Math. Nachr. 28 (1965), 1–45.
- [4] M. Janc, *Global Kolmogorov condition and good approximation*, Bull. Acad. Serbe Sci. Arts, Sci. Math. 13 (1984), 7–20.
- [5] S. Mabizela, *On bounded linear 2-functionals*, Math. Japon. 35 (1) (1990), 51–55.
- [6] M. Newton, *Uniform and Strict Convexity in Linear 2-Normed Space*, Doctoral Diss., Saint Louis Univ., 1979.
- [7] R. Ravi, *Approximation in Linear 2-Normed Spaces and Normed Linear Spaces*, Doctoral Diss., Madras Univ., 1994.
- [8] I. Singer, *Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces*, Springer-Verlag, 1970.
- [9] A. White, *2-Banach spaces*, Math. Nachr. 42 (1969), 43–60.

DEPARTMENT OF MATHEMATICS
DONGEUI UNIVERSITY
PUSAN 614-714, KOREA

Received May 11, 1998; revised version March 30, 1999.