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FARTHEST POINTS AND BOUNDED 2-FUNCTIONALS 

A b s t r a c t . In this paper, we give some theorems on further characterizations and 
existences of e-farthest points in linear 2-normed spaces in terms of bounded linear 2-
functionals. 

I. Introduction 
Let X be a linear space of dimension greater than 1 and ||-,-|| be a 

real-valued function on X x X which satisfies the following conditions: 
(Ni) ||a, 6|| = 0 if and only if a and b are linearly dependent, 
(N2) i m i t i m i , 
(N3) ||aa,6|| = |a|||a,6||, where a is real, 
( N O ||a + M | < I M I + i m i . 

Il», -|| is called a 2-norm on X and (X, ||-, -||) is called a linear 2-normed space 
([3]). Note that the 2-norm is non-negative and ||a, 6|| = ||a + b,b\\. 

The following definitions and Theorem 1.1 are given in [5] and [9]: 

DEFINITION 1.1. A 2-functional f is a real-valued mapping with domain 
A X C, where A and C are linear manifolds of a linear 2-normed space 
( X J v l l ) . 

DEFINITION 1.2. A 2-functional / is said to be linear if 
(1) / ( a + c, b + d) = / (a , b) + / (a , d) + /(c, b) + f(c, d), 
(2) f(aa,/3b) = a/?/(a, 6), where a and /? are real. 

DEFINITION 1.3. A 2-functional / with domain D(f) is said to be bounded'ii 
there is a real constant K > 0 such that | /(a, b) | < A'||a,6|| for (a,6)G D{f). 
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If / is bounded, define the norm of / , | | / | | , by 

ll/H = inf{K : | / (a , 6)| < K\\a, fr|| for all (a, b) € D(f)}. 

If / is not bounded, define | | / | | = +00. 

For i £ l , let V(x) denote the subspace of X generated by x. 

T H E O R E M 1 . 1 ( [ 5 ] ) . Let ( X , | | - , - | | ) be a linear 2-normed space and x0 G X 

be a non-zero element. Let z € X be such that xQ and z are linearly inde-
pendent. Then there exists a bounded linear 2-functional f with the domain 
X x V(z) such that 

(1) f(xQ,z) = \\x0,z\\, 
(2) 11/11 = I-
Additional properties of bounded linear 2-functionals may be found in 

[5] and [8]. 

D E F I N I T I O N 1.4 ([6]). Let ( X , ||-,-||) be a linear 2-normed space. For x,y e 
X, x yi y and y ^ 0, the set L{x, y) — {x + ty : t € R} is called the algebraic 
line determined by x and y. 

It is possible to define the unit cylinder with central axis L(0, z) for every 
non-zero point z £ X. 

. D E F I N I T I O N 1.5 ([6]). Let (X, ||-,-||) be a linear 2-normed space. For a 
non-zero point z € X, the set B(z, 1) = {x 6 X : ||x,z|| < 1} is called the 
unit cylinder with central axis L(0,z). 

In 1979, C. Franchetti and I. Singer ([2]) studied the concept of farthest 
points in normed linear spaces and obtained some results on characteriza-
tions and existences of farthest points in normed linear spaces. In 1984, M. 
Jane ([4]) gave also some characterizations of farthest points in normed lin-
ear spaces and I. Singer ([8], pl62) gave a characterization of the elements 
of e-approximation. Recently, some characterizations of farthest points in 
linear 2-normed spaces have been obtained by S. Elumalai and S. Ravi ([1]) 
and S. Ravi ([7]). 

In this paper, we give some theorems on further characterizations and 
existences of e-farthest points in linear 2-normed spaces. 

2. Characterizations of e-farthest points 
Let (X, ||-, -||) be a linear 2-normed space with dim X > 2, G be a subset 

of X and let e be a real number > 0. For a; € X and G C X, we shall 
denote by [G,®], the subspace of X generated by some elements of the set 
G and x. A nonempty subset G of a linear 2-normed space X is bounded if 
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sup a e G < oo for z G X \ [G], where [G] denotes the subspace of X 
generated by the elements of G. 

The deviation of G from x is defined by 

. SG(x, Z) — sup ||<7 — x, z\\ for 2 € l \ [ ( ? , i ] . 
g£G 

Let x £ X such that [G, x] C X. An element g0 G G is called a farthest 
point to x in G(with respect to z) if 

\\g0-x,z\\ = sup Ĥr — x, z\\ 
geG 

for every z G X \ [G, x]. 
The set of all farthest points to x in G(with respect to z) is denoted by 

FG(x,z). 

DEFINITION 2.1. Let (X, ||-, -||) be a linear 2-normed space, G be a bounded 
subset of X, x 6 X such that [G,x] C X, g0 € G and e > 0. Then an 
element ga is called an e-farthest point to x in G(with respect to z) if 

II 9o ~ x, z || > SG(x, z)-e = sup || ¿r - x, z\\ - e 
g£G 

for every z £ X \ [G, 
The set of all e-farthest points to x in G(with respect to z) is denoted 

by Fa,e{x,z)• Of course, FG,o(x,z) = FG{x,z). 

The following theorems give the necessary and sufficient condition for 
g0 € G to be an element of FG>t(x,z). 

T H E O R E M 2 . 1 . Let (X, ||-,-||) be a linear 2-normed space, G be a bounded 
subset of X, x G X such that [G, a;] C X and g0 G G. If g0 G FG>e(x, z), 
then g0 G FG<t(ax + (1 - a)g0, z) for any a > 1. 

P r o o f . Suppose that g0 G FGif(x,z). Then we have 

\\ga - x, z\\ + e > \\g-x,z\\ 

for any g G G. Let xa = ax + (1 — oc)g0 with a > 1. For z G X \ [G, 

\\g ~ xa, z\\ < ||x - xQ, z\\ + \\g - x, z\\ 
<(a- l) | |x - g0, z|| + \\g0 - x, z\\ + e 
= \\9o ~ (ax + (1 - a)g0), z\\ + e. 

Thus, we have g0 G FG<e(ax + (1 — a)g0,z). This completes the proof. 
COROLLARY 2 . 2 . Let (X, ||-,-||) be a linear 2-normed space, G be a bounded 
subset of X, x G X such that [G, x] C X and gQ G G. Then g0 G FG<e(x,z) 
if and only if ag0 + Pg G FGt0ie(ax + (3g,z) for any a > 1, f3 < 0 with 
a + ¡3 = 1 and for all g G G with ag0 + fig G G. 
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THEOREM 2 .3 . Let ( X , | | - , - | | ) be a linear 2-normed space, G be a subset of 
X, x € X such that [G, a:] C X and e > 0. Then g0 € FG<e(x, Z) if and only 
if 9 € B(z, ||z - gQ, z\\ + e) + x for each g eG. 
P r o o f . Let g0 G FG<e(x,z). Suppose that there exists 51 6 G such that if 
9\ & B(z, ||ar - g0, z\\ + e) + x, then 

llffo -x,z\\ + €< IIGI - X, z|| < 6G(X, Z), 
which is a contradition. 

Conversely, if g0 ^ Fa,e(x,z), then \\g0 — x,z\\ < ¿G(X,Z) — e. Then, 
by definition of 6Q(X,Z), there exists G\ € G such that ||<jr0 — x,Z\\ + e < 
H î — x,z||. Therefore, we have 

gi & B(z, \\x-g0,z\\ + e) + x. 
This completes the proof. 

3. e-farthest points in term of bounded linear 2-functionals 
In this section, we give some characterizations of e-farthest points in 

linear 2-normed spaces in terms of linear bounded 2-functionals. For any 
non-zero element z € X, we denote by (X x V(z))* the space of all bounded 
linear 2-functionals / with domain X x V{z) and with the norm || • || defined 
by 

11/11 = sup{|/(®,z)| : I I M I = 1 ,(x,z) ex x V(z)}. 
For f £ (X x V(z))* and G C X, we shall write sup||j | |=1 and sup f(G,z) 
for s u p / € ( X x V ( 2 ) ) . | | / | | = 1 and s u p g € G f ( g , z ) respectively. 

THEOREM 3 .1 . Let (X, ||-,-||) be a linear 2-normed space, G be a bounded 
subset of X, x G X such that [G, x\ C X,g0 6 G and e > 0. Suppose that 
for every g G G, there is a 2-functional fz 6 (X X V(z))* such that 

(1) II/,II = 1, 
(2) fz(g-x,z) = H^-ar.zH, 
(3) fz{g-g0,z)<e. 

Then gQ e FG,e(x,z). 
P r o o f . Suppose that the conditions (1), (2) and (3) hold for g £ G. Then, 
for each z € X \ [G, x] 

\\g-x,z\\ = fz(g — x, z) 

= fz(g - 9oi z) + fz(9o - X, z) 

<e + \\g0-x,z\\. 
Since g G G is arbitrary, passing to supremum over g £ G, we have 

SG(x,z)<e+\\g0-x,z\\. 
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Therefore, g0 G FoL({X, Z). This completes the proof. 

THEOREM 3 . 2 . Let ( X , ||-,-||) be a linear 2-normed space, G be a subset of 
X, x £ X such that [G, X] C X,g0 £ G and e > 0. Then g0 £ FGtt(x,z) if 
and only if for every g £ G, there is a 2-functional fz G ( X x V(z))* such 
that 

(1) \\fz\\ = 1 
(2) fz{g0 -x,z)> ||g - x, z\\ - e. 

P r o o f . Suppose that the conditions (1) and (2) hold. Then, for each z £ 
X \ [ G , x ] 

\\9o - X, z\\ > \fz{g0 - X, z)I > fz(g0 -x,z)> IIg - x, z\\ - e. 

Since g G G is arbitrary, passing to supremum over g G, we have 

||So - x,z\\ > 6a(x,z) - e. 

Thus, g0 G Fa,e(x,z). 
Conversely, suppose that the conditions do not hold. Then there exists 

Si G G such that for each / G ( X x V(z))* with ||/|| = 1, z G X \ [G, x], we 
have 

f(g0 -x,z)< ||ifi - x,z\\ - e. 
By the Hahn-Banach theorem type ([9]), there exists fz G ( X x V(z))* with 
ll/z|| = 1 s u c h that fz(g0 — x,z) = ||50 — x,z\\. Thus we have 

lido - X, Z\\ = fz(g0 ~X,Z)< Hflfi -X,Z\\~€< SG(X, Z) - €. 
Therefore, g0 £ Fa,e(x,z). This completes the proof. 

By using Theorem 3.2, we easily obtain the following: 

COROLLARY 3.3. Let ( X , ||-,-||) be a linear 2-normed space, G be a subset 
of X, x G X such that [G,x] C X,g0 G G and e > 0. Then the following 
statements are equivalent: 

(1) 9oeFGii{x,z). 
(2) For every g £ G, there is a 2-functional fz G ( X x V(z))* such that 

(i) II/»II = 1, 
(ii) fz(9o ~X,z)> supa g G ||0 - X, z\\ - €. 

The following lemmas were proved by E. Ravi ([7]). 

LEMMA 3 . 4 . Let ( X , ||-, -||) be a linear 2-normed space, G be a bounded subset 
of X and x G X such that C X . Then, for each z £ X \ [G,X] 

(3.1) sup |sup/ 2(p- x,z)\ - sup sup \fz{g — x,z)\. 
IIA 11=1 S6G ||/,||=lfl6G 
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P r o o f . Let x = 0. Then, for each zeX\[G] 

(3.2) sup | sup / 2 (G ,z ) | = sup sup | / 2 (G,z) | . 
Il/«ll=i II/« ll=i 

Now, for each z £ X \ [G], let fze(Xx V{z))*, ||/2|| = 1. 
Case (i). sup fz(G, z) > 0. Then 

(3.3) | sup fz(G, z)| = sup f2(G, z) < sup | /2(G, z)|. 

Case (ii). sup fz(G,z) < 0. Then 

| sup / 2 (G, z)| = - sup / 2 (G, z) = inf(—/2)(G, z) 
K ' ' <sM~fz)(G,z)< sup \fz(G,z)\. 

Thus, by (3.3) and (3.4), we have for z e X \ [G] 

(3.5) sup | sup/ i(G,2;) | < sup s u p \ f z ( G , z)\. 
Il/zll = l II/« ll = i 

Now, for each z € X \ [G] let ez > 0 be given. Then, there exists an fz € 
(X x V(z))* with | | /2 | | = 1 such that 

sup sup | / z ( (J , z}\ < sup z}\ + ez. 
II/« ll=i 

We may assume that sup | fz(G, z)\ = | sup fz(G, z)|. Then, for 2 6 X \ [G] 

sup sup | fz(G, z)| < sup | fz(G, z)| + ez 
II/« ll=i 

= \supfz(G,z)\ + ez 

< sup |sup/2(G,2r)| + e2. 
II/« ll=i 

Hence, since ez > 0 is arbitrary, we have 

(3.6) sup s u p | / 2 ( G , 2 ) | < sup | sup/ 2(G, z)\, z e X \ [G]. 
II/« ll=i II/« ll=i 

By (3.5) and (3.6), for each z£ X\ [G], we have 

sup | sup / 2 (G, z)| = sup | sup / 2 (G,z ) | , 
II/« ll=i II/« ll=i 

which is (3.2). This proves the lemma for x = 0. 
Next, let x € X be arbitrary such that [G, x] C X. Then, for each 

z € X \ [G, x] applying (3.2) to the set G — x, we have 

sup | sup / 2 (G - x,z)\ < sup sup | / 2 (G - x,z)\, 
II/« ll=i II/« ll=i 

which is (3.1). This completes the proof. 
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LEMMA 3 . 5 . Let (X, ||-, -||) be a linear 2-normed space, G be a bounded subset 
of X and x G X such that [G,x] C X. Then, for each z G X \ [G,x] 

sup llfif - x,z\\ = sup | sup fz(G,z) - fz(x,z)\. 
9€G ||/z 11=1 

P r o o f . For each z G X \ [G,a?], let f z e ( X x V(z))*. Then we have 
sup Hfif- x,z\\ = sup sup \fz(g-x,z)\ 
geo gEG ||/,||=i 

= sup sup \fz(g - x,z)\ 
ll/.ll=iffeo 

= sup \swp fz(g - x,z)\ 
II/,ll=i sec 

= sup I sup fz{G, z) — sup fz{x, z)\. 
II/, 11=1 

This completes the proof. 
From Theorem 3.2, Lemmas 3.4 and 3.5, we have the following: 

T H E O R E M 3 . 6 . Let (X, ||-,-||) be a linear 2-normed space, G be a bounded 
subset of X, x € X such that [G,x\ C X, g0 G G and e > 0. Consider the 
following statements: 

(1) 9o € FGit(x,z). 
(2) There is a 2-functional fQ G (X x V(z))* with ||/0|| = 1, such that 

(i) fo(g0, z) > sup f0(G, z) - £, 
(ii) | sup f0{G, z) - f0(x, z)| > s u p | | _ j | sup fz(G, z) - fz{x, z)\ - e. 

(3) g0 € FGi2t(x,z). 
Then ( 1 ) = > ( 2 ) = > ( 3 ) . 

P r o o f . Suppose that (1) holds. Then by Theorem 3.2, for every g G G there 
is an f0 G (X x V{z))* such that ||/0 | | = 1, f0(g0 — x,z)> sup - x, z\\ - e 
and so 

f0(g0-x,z) > SG(x,z)- e. 
From Lemmas 3.4 and 3.5, it follows that 

fo(g0, z) ~ fo(x, z) > 6g{x, z)-e 
= sup — x, z\\ — e 

g£G 

= sup | sup fz(G, z) — fz(x,.z)\ - e. 
II/« ll=i 

Since sup f0{G,z) > f0(g0,z), (ii) follows. 
On the other hand, since g0 G FGtf(x,z), 

fo(g ~x,z)< ||g - x, z\\ < ||g0 - x, z\\ + e 
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for every z G X \ [G, a;] and thus 

fo(g0, z) = /<,(», z) + I\9o ~ x, z\\ 

> fo(x, z) + f0(g - x , z ) - c = fo(g, z ) - € 

for each g G G and so f0(g0, z) > sup f0(G, z) — e. Thus, (i) holds. 
Next, suppose that (2) holds. From Lemma 3.5, the conditions (i) and 

(ii), we have 

fo(9o, Z) - f0(x, Z) > SUp f0(G, Z) - f0(x, z ) - € 

> s u p | suj> fz(G — x, z)\ — 2e 
II/, ll=i 

= sup ||<7 — x, z|| — 2e 
geG 

for every \ [G, x\. Thus, we have 

I\9o - x, z\\ > f0(g0 - x , z ) > SG(x, z) - 2 e 

and so g0 E Fg,2C(x)- This completes the proof. 
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