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OSCILLATION FOR SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS
WITH FUNCTIONAL ARGUMENTS

Abstract. Sufficient conditions are established for the oscillations of systems of partial
differential equations of the form (1).

1. Introduction

Recently, the oscillation problem for the partial functional differential
equation has been studied by many authors. We refer the reader to [1]-[3]
for parabolic equations and to [4]-[7] for hyperbolic equations. But only
(8], [9] studied the oscillation of systems of partial functional differential
equations.

In this paper, we study the oscillation of systems of partial differential
equations with functional arguments of the form

(1) o () e 1)

= ai(t)Aui(z, 1) + Y _ air(t)Aui(z, pi(t))
k=1

m
= gi(e, (e, 1) = Y Y gijn(z, )iz, 0n(t),

j=1h=1
(z,t) €A x[0,0)=G, i=1,2,...,m,

where  is a bounded domain in R™ with a piecewise smooth boundary 912,

2,,.
and Au;(z,t) =Y I, a—%’g’—tl,i =1,2,...,m.
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Suppose that the following conditions hold:
(A1) p € C([0, 00);[0,00)),lim¢— 00 S:o p(ls)ds = +00,% > 0;
(A2) g; € C(G;[0,0)),i(t) = min, 5 qi(z, ), q(t) = minyci<m ¢i(2),

i€In =1{1,2,...,m}
(A3) Qijh € C(G R)’ quh(l' t) > O’ ‘Iiih(t) = mlnzeﬁ Qiih(x,t), and
Tin(t) = ?:%‘l‘Iijh(x,t)vah(t) = lgisnm {Qiz’h(t) - ]z:;é_?jih(t)} >0,
J=1,¥F2

i,j€In,hel, ={1,2,...,1}

(A4) a;,a;x € C([Oa 00)7 [Oa OO)), i€ Ima ke I, = {172, .. .,8};

(A5) aj,px € C([0,00); R), 0(t) < t, pi(t) < t, the functions o;, pi are
nondecreasing and lim; o, 0;(2) = im0 pi(t) = 00,5 € I, k € I,.

We consider two kinds of boundary conditions:

O0ui(z,1)

where N is the unit exterior normal vector to 9 and g;(x,?) is a nonnegative
continuous function on 99 x [0, 00),: € Ip,, and

(3) ui(z,t)=0, (z,t)€dINx[0,00), i€ Ipn.

DEeFINITION 1.1. The vector function u(z,t) = {ui(z,t),us(z,t),...
.»um(z,t)}7 is said to be a solution of the problem (1), (2) (or (1), (3))

if it satisfies (1) in G = Q X [0,00) and boundary condition (2) (or (3)).

DEFINITION 1.2. A nontrivial component u;(z,t) of the vector function

u(z,t) = {ui(z,t), uz(z,t),...,un(z,t)}7T is said to oscillate in 0 x [pp, 00) if

for each > pg there is a point (zg,%) € QX [p, 00) such that u;(zo,%) =0

+ gi(z, )ui(z,t) = 0,(z,t) € I x [0,00), @€ I,

DEFINITION 1.3. The vector solution wu(z,t) = {ui(z,t),ua(z,t),...

c oy Um(2,8)}T of the problem (1), (2) (or (1), (3)) is said to be oscilla-
tory in the domain G = Q X [0, 00) if at least one of its nontrivial compo-
nents is oscillatory in G. Otherewise, the vector solution u(z,t) is said to be
nonoscillatory.

We note that a particular case of system (1) with p(t) = 1,/ = 1 has
been studied in [8].

2. Oscillation of the problem (1), (2)
THEOREM 2.1. If there ezxists some hg € I; such that a;lo(t) >0, and

(4) TQho(t)dt =00, 1>0,

then every solution u(z,t) of problem (1), (2) is oscillatory in G.
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Proof. Suppose to the contrary that there is a nonoscillatory solution
u(z,t) = {w(z,1),us(z,1),...,un(z,t)}7 of the problem (1), (2). We as-
sume that |u;(z,t)] > 0 fort > to > 0, ¢ € I,,. Let é; = sgnu(z,t),
Zi(z,t) = b;ui(z,t), then Z;(z,t) > 0,(z,t) € R X [tg, ), ¢ € Ip,. From
(A5) there exists a number t; > t such that Z;(z,t) > 0, Z;(z,pk(t)) > 0
and Z;(z,04(t)) > 0in Q X {t1,00),1 € I, k € L.

Integrating (1) with respect to z over the domain 2, we have

d. d
(5) s (P(t)a é u;(z, t)d‘”)

= a;(t) S Aui(z,t)dz + Za,-k(t) S Aui(z, pr(t))dz
Q k=1 Q

m

!
-} ai(e, ui(z, )de = Y Y~ | giju(e, t)uj(z, on(2))de,
b Q

j=1 h=1
t Z tl, 1€ Im°
Therefore,
df d
©® (0 |7t 0i)

= ai(t) | AZi(z,)de + 3 ain(t) | AZi(, pi())de - | ai(, 8) Zi(z, t)de
Q k=1 Q Q

[~

3

m
= 23S N ain(@, 02z, 0n(t))dz,  t>t1,i € L.
j Q

j=1h=1

From Green’s formula and boundary condition (2), it follows that

(M (AZi(z,t)dz = | 9%(=,t) yo . _ | g9i(2,1)Zi(z,1)dS <0,
Q an N

N
0Zi(z, pi(t))
®) AZi(z,pu(t))dz = | v
Q N
= - | gi(z, k() Zi(z, pi(1))dS <0, t>t;, i€ln, kel,
an

where dS is the surface element on 9.
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Combining (6)—(8), we get
d d
@ = (P(t)gt‘ é Zi(z, t)dQJ)

l
< -4t 5 Zi(z, t)de = ) qin(t) | Zi(2, on(1))dz
h=1 Q

! m
+Z Z q,lh(t)SZj(a:,ah(t))da:, t>t,i€ I
h=1 1,j#

Set Vi(t) = |, Zi(=, t)d:v > 11,1 € I,. From (9) we have
(10)  [pOV; (O + &(t)Vi(®) + Z[szh(t)v(ah(t))

- S Gp®Vilen® <0, t2ty, i€ In.
J=1,j#4

Let V() = Yi~, Vi(t), t > t;. Then, from (10) we have
(1) @OV @) +e@V ()
l m m
+ Z { E[q“h(t)vi("h(t)) - Z ﬁijh(t)vj(ah(t))]} <0, t21.
h=1 ® i=1

J=1,5#i
Noting that

) laiin(®)Vi(on(t)) - E 3i;n(O)Vi(an(?))]

i=1 j=1,j#i

= lqun(®Va(on(t)) - Z G1n(DVi(on(1))]
j=1,j+#1

+ [q221(t)Va(on(t)) — E ROIZ(Z10) E ST
J=1,j#2
+ [mmaOVin(0a(®) = D Tmjn(OVi(on(1))]
j=1,j#m
= [gna(?) - Z Tia(M)Vi(on(?))

i=1,j#1



Oscillation for systems of partial differential equations 525

m

+lgen(®) = Y. Taa®OIVal(on(@®) +......
J=1,5#2

+ [gmmat) = D Tima()]Vim(on(t))
j=Lj#m

FR (ORI MG MACID)

J=1,j#i
Qn(t)V(on(t)), 121, hel.
From (11) we get

v

i
(12) POV @] +a&VO + D Qu(®)V(on(t)) <0, t21.
h=1

The inequality (12) shows that [p(t)V'(t)] < Ofort > t;. Hence p(t)V’(t)
is a decreasing function in the interval [t1,00). We can claim that V () > 0
for t > t4. In fact, if v’ (t) <0 for ¢t > t4, then there exists a T > t; such
that p(T)V'(T) < 0. This implies that

V() < ’L(D(—)(—)f >T.

Hence

V() - V(T) < p(T)V'(T) § o) t>T.
Therefore,
tlim V(t)= -
which contradicts the fact that V(t) = Y.I_, Vi(t) > 0.
From (12) we obtain that there exists some hg € I; such that
(13) POV O +@r OV (on() <0, 21
Integrating the inequality (13), we have

(14)  pOV () - p(t1)V (1) + | Qno(5)V(0no(5))ds <0, 2>ty

ta

Then we obtain

(15) [ Qno(8)V(ony(8))ds < —p(&)V' (1) + p(1)V (11), t21a.

ty
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Hence
t

(16) S Qhr,(s)ds

y t2t,
V(one(t1)) '

1 ' '
< ——[-p(t)V () + p(t1)V (t1)] £
V(aho(tl))[ p( ) ( ) p( 1) ( 1)]
which contradicts the condition (4).
This completes the proof of Theorem 2.1.

THEOREM 2.2, If

o0

17 S q(t)dt = oo
then every solution u(z,t) of the problem (1), (2) oscillates in G.
Proof. As in the proof of Theorem 2.1, we obtain (12). Therefore,

(18) POV @ +e@V(#) <0, t2h.

The remainder of the proof is similar to that of Theorem 2.1 and we
omit it.
DEFINITION 2.1. The solution V(¢) of the differential inequality (12) is called

eventually positive if there exists a number px > t; such that V(¢) > 0 holds
for all t > p.

COROLLARY 2.1. If the inequality (12) has no eventually positive solution,
then every solution u(z,t) of the problem (1), (2) is oscillatory in G.

3. Oscillation of the problem (1), (3)
The following fact will be used. The smallest eigenvalue g of the Dirich-
let problem
Aw(z) + aw(z) = 0in R,
{w(:c) =0 on 01},
where « is a constant, is positive and the corresponding eigenfunction ¢(z)
is positive in ).

THEOREM 3.1. If all assumptions of Theorem 2.1 hold, then every solution
of the problem (1), (3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(z,t) = {wi(z,t),ux(z,t),...,um(z,t)}T of the problem (1), (3). We as-
sume that |u;(z,t)] > 0 fort > to > 0,1 € I,. Let §; = sgnu;(z,t),
Zi(z,t) = b;ui(z,t), then Z;(z,t) > 0, (z,t) € Q X [to,), ¢ € I,. From
(A5) there exists a number t; > to such that Z;(z,t) > 0, Zi(z, pk(t)) > 0
and Z;(z,on(t)) > 0in @ X [t1,0),¢ € In,, k € I,.
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Multiplying both sides of (1) by ¢(z) > 0 and integrating with respect
to z over the domain 2, we have

19 2 (o) {ui(z, Dp(z)d)
Q

= a;(t) | Aui(z,t)p(z)dz

Q
+ 3 an(®) | Aui(z, pr(t)p(2)ds — | 4z, Dui(s, pl)de
k=1 Q Q

m !
=33 Vaiin(z ui(z, on®))p(z)dz, t>11, i€ In.
i=1h=1Q

Therefore,

i (P03 ) e oteree)

= ai(t) | AZi(z,t)p(z)dz
Q

(20)

+ Y ai(t) | AZi(z, pr(D))p(2)dz - | gi(2, 1) Zi(=, ) p(z)de
k=1 Q Q

>

' j=1h=1

. )
~ L3S Vaisn(e, )25z, on(t)p(z)de, 21, i€ In.
Q

Green’s formula and boundary condition (3) yield

1) |AZi(z,t)p(z)dz = | Zi(z,1)Ap(z)dz = ~ao | Zi(z,t)p(z)dz < 0
Q Q Q

and

(22) | AZi(z, pu(t)p(z)dz = | Zi(z, (1)) Ap()dz
Q Q

= —ag | Zi(z,p(1))e(z)dz <0, t21), i€ In, k€L,
Q

Then, we have
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@) 5(r0 | 2 (el
Q

< - ai(t) | Zi(z, p(a)dz
Q

=3 gt | 2z, on(O)ola)ds

h=1
+ Z Z ijn(t) § Zj(z,on(t))p(z)dz, t2t, i€ln
h=1j=1,j#i

Set Vi(t) = { Zi(z,t)p(z)dz, t > t1,i € Ir,. Then, from (23) we have

{
(24)  [p@QV; ()] + G(@Vi(®) + Y [guan(6)Vi(on(D))
h=1

m

- Z qijh(t)vj(ah(t))] <0, t>1, t€1,.
J=l,5#i

Let V(t) = Yir, Vi(t),t > t;. From (24) we have
(25) [p&)V' ()] +a@®)V(2)

l m m
+ 2 D @V@® - 3 T} <o, iz,
h=1 * i=1 j=1,j#¢

As in the proof of Theorem 2.1, from (25) we obtain
!
(26) OV O] + eV + D QutV(on(®) <0, t2 1.
h=1
The remainder of the proof is similar to that of Theorem 2.1 and we
omit it.

COROLLARY 3.1. If the differential inequality (26) has no eventually positive
solution, then every solution u(z,t) of the problem (1), (3) oscillates in G.

It is not difficult to see that the following theorem is true.

THEOREM 3.2. If the assumption of Theorem 2.2 hold, then every solution
u(z,t) of the problem (1), (3) is oscillatory in G.
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4. Examples

ExAMPLE 4.1. Consider the system of two partial differential equations
%(t%ul(z,t)) = tAui(2, 1) + (2+ )Auy(z,t — 3) — uy(z,1)
=3uy(z,t—7) —ug(z,t — ) — (24 us(z,t - 72"-) — 2uy(z,t — g—),
%(t%uz(z,t)) = tAuy(z,t) + Aug(z,t — %[) — 3uy(z,t)
—uy(z,t — 1) — 2us(z,t — ) — wy(z,t — _72r_) — 3uy(z,t — -72r-),

(27) o

x (z,t) € (0,7) x [0,0),
with boundary conditions
0 i .
a_ Uy = 7 U = > = .
(28) o bi(0:) = gou(m, 1) =0, 20, i=1,2

Heren =1, m=2,s=1,1=2,p(t) =t, a1(t) = ¢, an1(t) = 2+ 11,
pi(t) =t - 3275, a(z,t) = 1, q(a,t) = 3, qu(t) = 1, o1(t) = t — 7,
quz(z,t) = 2+ ¢, qa(2,t) = 2, 02(t) = t = §, @2(t) = ¢, an(t) = 1,
@2(z,t) = 3, an(z,t) = 1, an(z,t) = 2, qaia(z,t) = 1, goa2(z,2) = 3. It is
easy to see that @1(t) = 1,Q2(t) = 1, and

t ¢

lim S ds = lim ds = 400,
t—o00 p(.s) t—o00 fo

at)=(-7) =120, [Qi®)dt={dt=00, t >0.
to

Hence all conditions of Theorem 2.1 are fulfilled. Then every solution
of the problem (27), (28) oscillates in (0,7) X [0,00). In fact, ui(z,t) =
cos zsint, uy(z,t) = cosz cost is such a solution.

ExXAMPLE 4.2. Consider the system of two partial differential equations

r %(e't%ul(z,t)) = e tAuy(z,t) + 2etAuy(z,t — 3275) — 4uy(z,1)
—2ui(2,t — 1) — uz(z,t — 1) = (L 4+ e (z,t - §) - 2up(z,t - §),
(29) < %(e“%ug(z,t)) = (24 e )Au(z, ) + (4 + e Aus(z, ¢ - 3F)
—%e‘tm(z,t) - uy(z,t— 1) — 2ug(z,t — )

| —%e~tui(z,t - §) - 3us(z,t - ), (z,t) € (0,7) x [0, 00),

with boundary conditions
(30) u;(0,t) = uy(r,t)=0, t>0,:i=1,2.
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It is easy to see that all conditions of Theorem 3.1 are fulfilled. Then
every solution of the problem (29), (30) oscillates in (0, 7) x [0, 00). In fact,
u1(z,t) = sinz cost, uz(z,t) = sinz sint is such a solution.
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