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SINGULAR LINEAR DIFFERENTIAL EQUATIONS
AND LAURENT TYPE SERIES

Abstract. Linear ordinary differential operators with meromorphic coefficients at zero
are studied. It is well known that in the case when zero is a regular or regular singular
point then fundamental system of solutions conmsists of convergent series of the Taylor
type. On the other hand in the case of irregular singular point power series solution, in
general, does not converge; however it can be asymptotically sum up in sectors to an
exact solution. The aim of the paper is to show that for a class of operators with irregular
singular point the fundamental system of solutions can be found in a form of convergent
Laurent type series of a Gevrey order. Under suitable conditions the convergence of the
approximation scheme for a functional equation 2;‘;_ § Wi(2=3)G(z—j) = H(z) is also
derived and properties of its solution G are described.

Introduction
Let

(1) P= P(z,%) = zn:a‘(z)dd—;

be a linear operator with meromorphic coefficients at zero. Multiplying
a'(z),t=0,...,n by 2"/a,(z) we can assume that

w . .
Z aiz? for0< |z|<r ifi=0,...,n~1,

(2) a‘(z) = { 5

z" if 2 = n.
with some jo € Z and r > 0. The Newton diagram for P is defined by
(3) Np ={(i,j) € Nox Z : a}; # 0}.
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We call the set {(,0) : ¢ € No} as the characteristic level of P and define
the characteristic polynomial

(4) W(z) = Wp(z) = (2)a + 3 ai(2)s.
=0
where
_ T(z+1) 1 if i =0,
) Gh=sorig = {z(z—l)-...o(z—z'+1) if i € N.

The degree of W is equal to n. Note that W(z) is equal to the coefficient
Wo(z) in the expression

z7*P(2%) = z W;(z)z?!

P
where k= max (-j)>0 and
(’7.7)6”}’
n—1 )
(6) W;(z) = Z a;4i(2)i for j > —k, j #0.

i=max(0,jo—j)

Note also that P can be written in the form

d\ _ = p d
P(:v,a;> = Z z Wj(zd_m_)
i=—k
We denote by xp the Katz invariant of P i.e. the smallest x > 0 such
that there are no points of Ap below the line {(3,5) : j = x(: — n)}. If
k = kp = 0 i.e. there are no points of Np below the characteristic level then
zero is regular or regular singular point for P. In the other case it is called

irregular singular point. We have the well known

THEOREM (Fuchs, [H]). Let zero be a regular or regular singular point for
P and let f be analytic at zero. Put po = 0 and let p;,...,pm be the roots
of W. Then every solution of Pu = f is given by a convergent series of the
form

m Qu oo
E Z E Cu.,p,»-ylnpa; . xpy"‘"/

£=0 p=0 4=0
with some q, € Ny for p=0,1,...,m.
In the case of an irregular singular point the Fuchs theorem is no longer

true. However there exist formal power series solutions of Pu = f (cf. [T])
they, in general, do not converge.
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ExAMPLE 1 (Euler). The equation z?u' = u — z has a unique formal power
o0

series solution 4(z) = ) a,z”, where a, = (y — 1)!
=1

During the last few years a special procedure called multisummability
was developped to deal with divergent power series solutions of differential
equations (Ecalle [E], Balser [B], Braaksma [Br], Malgrange [M],...). Ap-
plying this procedure to the Euler equation z?u' = u — z we need first to
compute the Borel transform B of its formal solution @

Ba(() : —Zm)c’ = ferfg <1

¢
and then analytically continue it to a function g(¢) = 1/(¢ — 1) for { # 1.
Now we note that g is of exponential growth along any ray dy := {¢ €

C : arg{ = 0} with 0 < 8 < 27 (in fact g is bounded on any dg). Next we
compute the inverse to the Borel transform, which appears to be the Laplace
transform of g along dy (in variable 1/z)

1 ¢
Log(z) = ~ 2 ) dc.
o }al—ce"p( z)

Lgg is defined in a sector S(0) := {z : |argz — 6] < w/2}. Finally, gluing
together Lg4g with 0 < 6 < 27 we get a function u defined in a sector
S={z:-7/2 < argz < 57/2}. The u is a solution of the Euler equation
and 4 is the asymptotic expansion of u in §.

On the other hand, since for the Euler equation NVp lies below the char-
acteristic level it is natural to look for its solutions in the form

0 0
u(z) = z a,z" + Inz Z byz”.
y==—00 y==-00

Comparing both sides of z%u’' = u — z we get by = -1, b_; = 1,
by = (=1)"1/(=7)! for y € —No, a0 = C, a1 = 1-C, ..., ay = dy +

(-1)YC/(—y)! with d, = (-1)7 2;_1731(—_7%). for v € =N, (so |d,] <
1/(=y = 1)!). Thus,

-1
u(z) = Ce % —Inz .71/ 4 Z dz”

y=—00
and the series converges for z € CWO}.

It appears ([H], Ch. IV, Th. 10.1) that the fundamental system of solu-
tions of the homogeneous equation Pu = 0 consists of Laurent type series.
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However the coefficients arising in this kind of representation are very diffi-
cult to find as shows

ExAMPLE 2. Looking for a solution of the equation z?4% = (1 +22)u in the

form of Laurent series v = Y°°° __ a.z” we find
y=—00 Y

(v—-1ay-1=ay+ay_y foryeZ.
So we can fix arbitrarily ap = C. Putting a; = a we find that, in general,
both series E:":o a,z” and Z;;_ oo @+Z" are divergent. However they will
converge for a very special choice of a/C = J1(2)/Jo(2) (Jn — the Bessel
function of order n), since the general solution is given by

u(z) = Ce* Vo =C i ( f: ﬁ-)z"

(i ]
y==00 i=max(0,—%) l.(l + 7)
In the paper we study the Cauchy problem
4y =
(7) {P(a:, =1, .
u(t) = ug,..., v V() = u,_q,
where f is a Laurent type series of radious of convergence » > 0 and 0 <

t < r. By applying the Mellin transformation M we transform the problem
(7) into a functional equation for the function G = Mu

0
(8) W(2)G(2)+ Y W;(z-35)G(z - ) = H(2).
o
Under suitable conditions we shall solve (8) by the method of successive
approximations and compute the boundary value 5(G) (cf [E1]) of its solu-
tion. Then u(z) = 35:5(G)[z] is a solution of (7). To be more precise let us
introduce

DEFINITION. By a Laurent series of Gevrey order x > 0 and radious of
convergence r > 0 we mean a series

. (o]
u(z) = z C,x"
y=—00
such that for some M < oo and any 7 < r
C(r)/F"  for y € Ny,
s

(9) c-M b for y € =N
(7= ™7
The u is a holomorphic function on B(r) \ {0} satisfying with some L < oo

andany 7 < 7

(10) |lu(z)| £ C(F)exp{L/|z|*} for0< |z| < T.
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Conversely, if u € O(B(r) \ {0}) satisfies (10) then u is a Laurent series of
order Gevrey k.

Note here that the derivative and the primitive of v if C_; = 0 are
also Laurent series of the same Gevrey order as u. On the other hand if
u;,t = 1,2 are Laurent series of Gevrey orders ;,7 = 1,2 then u; - u; is a
Laurent series of Gevrey order £ = max(&1, K2).

DEFINITION. Let m € N, ¢ € Ng, p1,...,pm € C with p, # p,mod1 for
1<v<pu<m Let u*? pe{1,...,m},p€{0,...,q} be Laurent series of
Gevrey order . Then a sum

m

q
(11) u(a:) = Z A“’plnpz cxPe . ullfvp(z)
1

u#=1p=0
m q o0
=3P Cupoliteanet
u=1p=0y=-00
is called a Laurent type series of Gevrey order & .

Note here that in the expression (11) p, can be replaced by p, + ! with
a fixed | € Z but the new C, = C,, ,  still satisfies (9).

The main result can be stated as follows.

THEOREM 1. Let P be a linear differential operator (1) with meromorphic
coefficients (2) at zero. Assume one of the following cases

Case 1°. P is of order 1;

Case 2°. Np C Ny x No;

Case 3°. Np C Nog x (=Np);

Case 4°. P is a composition of operators satisfying any of the Cases
1°-3°.

If f is a Laurent type series of Gevrey order k and radious of convergence
r then every solution of Pu = f is a Laurent type series of Gevrey order
max(k,kp) and radious of convergence v (kp is the Katz invariant of P).

Before the proof let us observe that Case 4° is an immediate conse-
quence of Cases 1° — 3° since Kp,op, = max(kp,,£p,). Note also that by
the properties of solutions of linear equations we can assume that with C,
satisfying (9) and some ¢ € Ny, p € C

(12) f= i C.fy where f.(z):=In% - z°*7.

y=—00
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Proof of Case 1°. P is an operator of order 1 i.e.
P(2 L) =l 43 0o with o€ Z
x’}ﬂ = z% +JZJ: a;z’ with some 3o € Z.
=Jo
Then k = kp = max(0, —jo), W(z) = z—ap and W;(z) = aj for j > —k,j #
0. Considering u(z) = z~%u(z) instead of u we can assume that ap = 0.
Then the general solution u4 of the homogeneous equation given by

ug(z) = Cexp{ - Sg—(-;—zdz}

is a Laurent series of Gevrey order kp if kp > 0 or a Taylor series if kp = 0.
On the other hand a special solution u, of P(z, gd;)u = f is given by

us(z) = exp{ - S@dm} . S @ -exp{ Xg(?vﬂdm}d:v.
So for f given bir (12),

S ¢ ifp¢Z
— Py pPTY 7= ’
u,(x)—z Z CpInPz - 2Pt where g {q+1 ifpez
p=0 y=-o00
is a Laurent type series of Gevrey order max(kp, k) and the same is true for
Ug + Us.
For the proof of Cases 2° and 3° we need to recall some facts about
Laplace distributions and, the Taylor and Mellin transformations.

Laplace distributions
Let v € RU {—oo} and w € RU {oo}. The space L, ,(R) of Laplace
distributions on R is defined ([Z]) as the dual space of
Li,.,)(R)= lim L,u(R)
a>y,b<w
where for any a,b € R

Lo p(R) = {p € C®(R): sup sup |D¢(2)|7a,5(2) < 00 for any m € No }
z€Ra<lm

with

e % forz <0,
Ya () = {e"”" for z > 0.

Let m € N, py,...,pm € Cand L = {J}_,(p, + R). In an analogous way
as above we can define the space L, , (L) of Laplace distributions on L. If

Imp, #Impy for u # A, (g, A=1,...,m) then

Lzu,w)(L) = @Léu,w)(p# + R)

p=1
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The Taylor and Mellin transformations _

In this section we always assume that v < w. If = € B(e“;e”) - the
universal covering space of B(e“)\ B(e”) — then the function L 5> a — z*
belongs to L(, ) (L). So we can define the Taylor transform of § € L( lw)(]L)

by
TS(z) = S[z’] for « € B(e”;e).
Define
O} (B(e*;e") = {u € O(B(e¥;e")) :
for any e < r < t < e“ there exists m € N such that
lu(z)] < C(1+ |lna:|)m for r < |z| < t}
and
ollmpyy.Im p"'}(ﬁ(e“’;e”)) = {u € O(B(e“;€")) such that

u= Z z?»u, with some u, € O1°}(B(e¥;e"))}.
p=1
We have
THEOREM 2 ([E2}, Th. 2). Let v < w. The Taylor transformation is an
isomorphism of L, (L) onto Olimes,imem}( B(ev; e¥)).

Fix e” < t < e“. Following [L2] we define the Mellin transform of u €
O{Im P10 dm ppy } (B(e“’; eu)) by
(13) MEu(z)= | w(z)z™"do
(1)
where 7%(t) = {z € B(e¥;e¥) : Fargz > 0,|z| = t} and the orientation of
+y%(t) is positive.
M u (resp. M u) defined by (13) is holomorphic on {Im z > max(Im p;,

...,Impyp)} (resp. on {Im z < min(Im pq,...,Imp,,)}). Since u = 3 zP»u,
p=1

with u, € 0% (B(e¥; e)) we define
(13)  Ma(z) = Y Miu(z = p) + Y Miu(z - p,)
for Imz ¢ {Im py,...,Imp,,},

where the sum of M{u (resp. M;u) is taken over u € {1,...,m} with
Imp, < Imz (resp. Imp,, > Im z). Theorem 4 of [E2] can be restated as
follows

THEOREM 3. Let u € @{Imp1,..nIm ”"'}(E(e“’;e")) with v < w. Then for any
e’ <t<e’,G:= Mmu € O(C\L) and there ezxists N € N such that
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t—Rez

Co—F——— 5 JforImz close tolmp,, p=1,...,m,
(19) (6@ s { = e -
t|Im—z| for | Im 2| big enough.
Furthermore, the sum of differences of boundary values
m
1
(15) Si=Y % bt 8G - b, 3G) € L{, (L)
u=1

is independent of t and TS = u.

We can also adapt Theorem 5 of [E2] to the situation considered here.

THEOREM 4. Let G € O(C\ L) satisfies (14) Assume that the sum of dif-
ferences of boundary values given by (15) belongs to L, , (L) with some

v <Int < w. Then G = Mu where u := TS € OUm e ’Im”"'}(B(e ;e”)).
In the proof of Theorem 1 we shall need

COROLLARY 1. Let G € (’)(C\Uz;l(p“-{-Z)) be such that with some q € Ny
(16)  [G(2)]

—Rez
C 4 r forzclosetop,+Z,u=1,...,m,
dist(z,p, + Z i
< t(— Reg g )) .
CW for | Im z| big enough.

Then
S E 2 z( pu+BG b_ +]KG) Z Z Z C#’Pﬁ’ (p“-{-’y) e Lzlnt lnt)(L)

u=1p=0vy=—0c0
Furthermore if Cy = Cp py satisfy (9) then
,}' fo'e) lnr)(L) (L Uu—l(pu + R))’
2° v = TS5 1s a Laurent type series of order k and radious of conver-
gence r,

I Mu=4G.

ExaMPLE 3. If u is given by a Laurent type series (9) then it is the Taylor
transform of

5= Zz Z C#»P»’Y( 1)p6(p +,7) (-oo lnr)(L)

p=1p=0y=—-o00
So u € Ollmp1s--Im ”"'}(E(r 0)). For any 0 <t < r we have

m g ©0 ' Int)?P—! bt
Mt“(z)=zz E u.p,'vz l)'(z—(p )_7)l+1t ot

p=1p=0v=—o00

for zg{ﬂl,---,/’m} +Z.
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In particular,if t =1

(17)  Mu(z)
m ¢ [o) :
_—p‘
=22 2 Curn for z ¢ {p1,...,pm} + Z.
p=1p=0~vy=—-00 (Z - p;l. - 7)P+1

Auxiliary lemmas

In the proof of Cases 2° and 3° we shall also need
LEMMA 1. Let k,l,ye Nandi€ {1,...,k} withiy+...+4, =1. Then
. 1 . . 1 . . 1' l!
IZ):=(z+u)" (z+01+02)2-...-(z+81+...+5,)» > F- DRy
Jor z € C, where (z) :=1+ |2|.

Proof. Since |z| > |Rez| we can assume that z =z € R.If z > -1 or
z < -l we immediately obtain I(z) > I!. Now let —p— 1 < z < —p with
some p € {1,...,1 —1}. Let 4 € Ny be such that ¢, +...+ i, < p and
14+ ...+ 4, + 1,41 > p+ 1. Then we derive

Iz)> (14da4...4+d,) 1. (14i,)w-1-1%
X 1Vt (14 d,q)% 42 o (U dpgr + .o +4,)
> (1 .. : +,)" .. (u—1 4 4,)*2 . "'L"

xR ‘e Tin—1 kin
z:t”:; . (iu+l + iu+2)i"+2 . . (iu+l +...+ iV)i"
ki»+l kiu+2 o k'."

S (it i)t i) (p+1- k) - p)!

= k! = k!

1=kt I
= TgHRR = (k- D)k

In an analogous way we obtain

LEMMA 2. Letve N and 4y,...,4, 2 1. Thenfor 2z € C
(Z+1.1)(2+11+22)(Z+11++2,,) 21/'/2"

Proof of Cases 2° and 3°. Let us consider a Cauchy problem (7) where
f is given by (12) and 0 < t < r. Taking eventually z/t as an independent
variable we can assume that ¢ = 1 and r > 1. We shall solve (7) by the
method of the Mellin transformation. We have (with (z); defined by (5))
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M(a®(2)u)(2) = Z afMu(z - j),
M{e@) ) )= 2 el i =Mz +i=9)
i—1 a
+ 3 (=1) i v5 (@) oy fori=1,n-1,
v=0

M(z i—)(z) (2)n Mu(z)+Z( 1m0 g (7)o

Thus, applying the Mellin transformatlon to (7) we obtain

n=1 oo
Y5 (et - i)iMas + i - §) + (2)aMalz) = H(2),
=0 j=jo
with
H(z) = Mf(2) + B(2),
where
(18) B(Z) = Z Z( 1)Vuz 1- uat,,( 2(t)t—z l)|t =1
i=1v=0

is a polynomial of degree < n — 1. So with G(z) = Mu(z) and W;,j > &,
given by (4) and (6), we obtain a functional equation (8). To solve (8) we
shall apply the method of successive approximations according to the scheme

H(z)
Go(2) =
H(z)
G,(z) = ZW(z ])G,, 1z - ])+W()forV€N
J¢0
Put Go = Gpand G, = G, — G, for v € N.
By induction we derive for v € N

(19) G,(z) = (—1)"2A(u,—uk+l;z)H(z+ vk - 1),

=0
where for /€ Ngand v € N

(20) A(w,-vk+1l;2)=

Z Wi —k(z+k—01 )W, —k(z4+2k—t1—13) - .. .- W; _(2+vk—t1— ... ~1,)
WeW(z+k—0u)W(z+2k—14 - zz) cW(ztvk-i1—...—1,)
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with the sum taken over i € N§ with ¢y + ...+ ¢, = [ and i, # k for
p=1,...,v.

o0

We shall prove the convergence of the series ) 7, G, and compute the

boundary value of the limit G := Y 0o G,.

Case 2°. Np lies above the characteristic level which is equivalent to
the demand that £ = kp = 0. Then (19) and (20) take the form

(21) G,(z) = (—I)VZA(V,I; 2)H(z-1), ve N
I=v

where for /€ Nand v € N

(22) A(v,l;2)
— E Wil(z—il)W,-z(z—il—ig)-...-Wiu(z—il—...—i,,).
W(Z)W(Z—il)W(Z—il —ig)'...'W(Z—’il - ...—i,,)

1.1.-|-...+i,,=l
1<i, ,u=1,...,v

Denote by {p1,...,0s} the zeroes of P with multiplicity ¢j,...,¢s respec-
tively (so }.._; §» = n). Devide {p1,...,ps} into sets By,..., By, in such
a way that p, and p, belong to the same set for o,7 € {1,...,s} if and
only if p, — pr € Z. Let B, = {p, := pu1,.--,Pum,} Where p, =
Puid + Yux for A =1,...,m, with 0 = 7,1 < Y42 < ... < Yuym, (B =
1,...,m); @ur = Qua + ...+ qgux for p € {1,...,m},A € {1,...,m,};
4 = Qum,(# = 1,...,m). Then each summand of A(v,l;z) has poles
at most at p; + No,...,pm + No and the order of a pole at p, + v for
Yur £ < Yurtr With A=1,...,m, (here 7, nn, 41 = 00) is at most equal
togux (u=1,...,m). Put

6 =1/2-min min (1,dist(p, + No, p, + No)) > 0 where pg = p from (12),
and the first minimum is taken over 0 < ¢ < p < m if dist(po + Z,
{p1,---,pm}) > 0, and over 1 < 0 < u < m otherwise.

By the convergence of the series (2) and the definition of Wj,j € N (see
(6)) we find that for any 7 < r there exists M; = M;(7) < oo such that

M,

T

IW;(2)] < (2" 1forz€eC, jeN.

We can also find C < oo such that for any 0 < ¢ < § and o € {1,...,s}
C

- EEc(z)n

for |z—ps| > cand |z2~p,| > 6 forT€{1,...,s}, T#o.

e
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Thus, for any 0 < € < é the summands of A(v,l; z) are estimated by (with
M; = CM)
My

(23) R R C e T

for z € C such that dist(z,p, + No) > ¢ and dist(z,p) + Ng) > 6 for
Ae{l,....m} #pu(p=1,...,m). Now by Lemma 2, (23) is bounded by

(2M,)Y

W fOI’ zZ € C as above,

and since there are (111:11) < Ll, summands in A(v,[; z) we get

__ @MD" :
()" for z € C as in (23).

(24) |A(v,l;2)| < C

Now we shall study the convergence of~z C:”,,. To this end observe that for
fgiven by (12),G, = Zjez C;G;, with G, obtained by the approximation
scheme for

P(z,&)u; = fijforjez;
(i) _Ju; forj=0,:=0,1,...,n -1,
u; (1) ‘{0 forj£0,i=0,1,...,n—1.
Put
]
B(z)—ﬁ; for j =0,
Hj(z) = -q! P )
(z——pT')q'H fOl‘]#O

with B(z) given by (18). Since B is a polynomial of degree < n — 1 we get
for l € Ny

|H;(z - 1)| < Clz)" ()" 1+ 1/[z—1—p|?*! forj=0, 2#p+l,
! =1 C/lz=1-p—jI7*! forj#0, z#p+j+1.

Observe that for any 7 > 1

1 =1 1 &S (+v+n—1)ugna
] m S EIE 7
=v =0
1 (v+n-1) 2 vin
= Lwrn o oy )
Py Gk (1= 1/1')

Soin the case when (p+Z)N{py,...,pm} = 0,G ;v is a holomorphic function
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outside ({p1,...,m} + No) U (p + j + Np) satisfying with any 0 < e < §

G (2)] < z |A(v, 1; 2)| - | Hj(z = D)

< CE (2M2l) ( )n—l (l)n—l

< e (V1) (2)n

M3" 2 \» AM,
< —_— = - t = = ~
- Clsql‘l/!(z) (C1 Cln-1) (1 - 1/1') » M 1- l/r)
for z € C such that dist(z,p, + No) > ¢ and dist(z,p) + No) > 6 for A €
{0,...,m},/\~7é = 0,...,m where po = p+ j,q = ¢ + 1, Consequently

G; = Y02 G;,v is holomorphic outside ({p1,...,pm} + No)U {p+ j + No}
and satisfies with any 0 < e < §

C
(2)] < —— .
|G;(2)] € 0 (3) for z € C as above

Finally G = }°.c; C;G; is holomorphic outside ({p1, ..., pm}+No)U{p+Z}
and satisfies with any 0 < € < 6

(25) IG(2)| < ( ) for z € C such that

dist(z,p+ Z) > € and dist(z,{p1,-..,pm} + No) > 6, if u =0,

dist(z,p, + No) > € and dist (z,(p + Z)U U (pr + No)) > 6,
0<A#usm

if pe{l,...,m}.
This implies that

m -1 oo

b(G) = Z Z CO'Pv76(p+'v) + E Z ZC“'P”Y (Putn)”

p=0 y=—o00 u=1 p=0 =0
Now we shall estimate C, , . Let p = 0 and fix ¥ € Z. Since A(v,1;z)is
holomorphic at p + v we have

- : A(v,y - j;2)
. = (—1)vt! Wy(—2° 177
b(GJ,V)Iz=p+'v ( 1) q b((z —p- 7)q+1 ) |z=p+-

- { > C’:"’Wﬁf:’lq) for v < v -7,
p=

0 otherwise
with C3' ., = 27ri(—1)”+"(q) Al=P)(y 4 — j: p+ 7). Note here that by (24),
|A(v,l; 2)| < C'(2JM2 ) for dist(z,p+Z) < é.

~I( l)2
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Thus, by the Cauchy inequality and the duplication formula for factorials,
we estimate CJ , ., = 3020 Cd'r s

(2M5)"(y — j)* . Cexp{y/8Ma(y - j)}

3 .
ICO.p,'yI < CZO ‘f'y—j(y!)2 < o for v > j,
v=

and Cg,pﬂ =0 for vy < j.
Finally, by (9) we derive for any 7 < 7

{C/:ﬂ fory > 0,

|Covp1'7| S Z |Cb1,p,’7||CJ| S
ify
with some M < oo.
Let now p € {1,...,m}. Then

C( M)_ﬂ/n fory< 0

2 5P
b(GV)IZ=pu+'Y = { Z C”vpy'y (p +’y) for ’)’ Z 0,
O

otherwise
with
2mi
ct = —
BpY (qp - 1)!

qu—1 ~1-
v1( 4 di—""?
x 3 (1t (%) G - - 1 Buliemp
=0

Note that H(z—1) is regular at p,+ Np and A(v,[; 2) is regular at z = p, +7
if I < 4. Since

i (2Ml)” .
|A(V, l, Z)I S CW for ¢ S dlSt(Z,p” + No) S é

and
|H(z=1)] < C(z)*1(1)*! for dist(z,p,+Z)< §
by the Cauchy formula we derive

(2M,1)" -
IC ’Pv’Yl < Cg: (V!)2Fl

o)

Z(“/H) (r+5)"” SC L

(1/')27"y vi(T)7

with some I <co and 7 := Texp{l/r- 1}. Finally
|Crpy| £ C/(T*)7 for v € No.

Now let dist(p+ Z, {p1,...,pm}) = 0. We can assume that p = p;. Then
at points of p + Z the poles of A(v,!; z) glue with that of H(z — ). Thus G
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is holomorphic outside ({p2,...,0m} + No) U (p1 + Z) satisfying (25) with
po = p1 = p and qo, q; replaced by go + ¢1. this implies that

a1+ oo m 9u—-1 oo
b(G) = Z E Cl’P»‘Y (01+'7) + Z Z ZC“'P"Y (Put)"
p=0 y=—00 pu=2 p=0 vy=0

As in the previous case we get
C/(T*) for p € {1,...,m} v € N,
I #yP,’YI C% for u= 1, v € —Nop.
REMARK 1. The estimation of C,, , , implies that the radious of convergence

of the solution u is > r* := rexp{l/r — 1}. Iterating the procedure we
conclude that in fact it is at least equal to 7.

Case 3°. Np lies below the characteristic level (and k£ > 1, so kp > 0).

The proof of Case 3° is similar to that of Case 2°. So we only give the
main points, leaving detailes to the reader. Since W; = 0 for j > 1 and for
j < —k we have

vk
(26) Gu(z) = (-1)"Y_A(v,~l;2)H(z+1), vEN
I=v
wherefor /e Nand v € N
(27) A(v,-1;2)
— Z Wil(Z—il)Wiz(Z—il—ig)-...-W,’v(Z—il—...—'i,,)
S W(EW(z—i)W(z—i1—dg)ee...- W(z—t1—...—%,)

—k<iy<-1,u=1,...,v

As in the Case 2° we devide the zeroes {p1,...,0,} of P intosets By,..., By,
but this time it is more convenient to take as p,(p = 1,...,m) the element
of B, with the biggest real part. Since only a finite number of W; is different
from zero for any 7 < oo we can find M = M(7) < oo and C < oo such that
forany0<e < éando€{1,...,s}

Wi(z) Mr z)'/"P

| W(z) |
for z € C, with |2—p,| > ¢ and |2 —p;| > 6 forr € {1,...,s}, 7 # o, where
kp is the Katz invariant of P. So we can also find C < oo such that for any
0 < € < § the summands of A(v, —I;z) are estimated by (with M; = CM)
My
e z)M(z —4y)~H/rp o (z—dy — ... —Q,) T /RP

for z € C such that dist(z,p, — No) > € and dist(z,py — No) > 6 for
Ae{l,...,m},A# p(u =1,...,m). Consequently, since there are at most

9o
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¥ /v! summands, by Lemma 1 we obtain for v <! < vk
My
W)/ ke (2)n
for z € C as above (M; = M;ke(4k)*/<P).
Assume that (p+Z)N {p1,...,pm} = 0. Then as in the Case 2° we find

that G is holomorphic outside ({p1,...,pm} —No)U(p+Z) and there exists
C such that for any 0 < € < 8, (25) holds for z € C such that

dist(z,p+ Z) > ¢ and dist(z,{p1,..-.,pm} —No) > 6, if u=0,

dist(z,p, — No) > € and dist (z,(p + Z)U U (pxr — No)) > 6,
0<A#usm ’

if pe{l,...,m}

(28) |A(v,=l;2)| < C

So
m qu-—1
(Y=Y 3 ConatiBin 32 2 3 Cuntlrey
p=0v=—0c0 pu=1 p=0 y=—o00

This time however we need a more refined estimation of C, . Let
g = 0. Then Copy = Y Cop,yC' with C; satisfying (9) and C3 ., =

0o 'R%
> v=0Cd'p > Where

{27m( 1P (D) AP (v, 5 —v);p+7) ifv <j—7y <k,
0

iz

C]t
0Py otherwise.

Since by (28)

|A(y,—1;2)| < C for dist(z,p+Z)< §

“'l(ll)l/n
by the Cauchy inequa]jty we derive
My C .
¢ uz—:o ’FJ-’Y(V?)I/np < 55 forj>v20,
MY Mj—"l
j 1C ¥ gy <C— : 5
Conal £ 7 3580 2G0T =75 =) 7
B for j >,7<0,
0 for j < 7.
and
ch_,y-%SC/F" fory >0,

|CO,prv| < QI

C(({{,—)v'u )P with § = min (1/kp,1/K), M < oo fory <0.
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Similarily for p € {1,...,m} we obtain

-5
Crpirl £ Cr—Yg7=
e ((=7))H/=»

In the case when dist(p + Z, {p1,.-.,pm}) = 0 assuming that p = p; we
obtain

for vy < 0.

1+g3 o m ¢g-1 0
bG) =3 D Croablpant 2 2 2 Cupliiim
p=0 y=~00 p=2 p=0 y=-©
where
C’/r’Y for p=1, v € Ny,
with 8 = min (1/kp,1/k) for p=1, v € —N,
Conl < { CTEIP (e, 1) o 1
C((—_%P— fOI‘,U.E{? ,m} v € —No.

Final remarks

ExaAMPLE 4. Consider the problem

d 1 diu 1\ o i
P(z,dz)u—a: o) (w+;)u—0, u(1) =0, ¥'(1) = -1.

Then k = 1,kp = 1/2, W(z) = z2(z - 1),W_; = W; = —1. Since kp ¢
No, P is not a composition of operators of order 1. So P does not satisfy
assumptions of Theorem 1. Taking the Mellin transform we arrive at the
equation

W(z)G(z) G(z+ 1) G(z-1)=1.
The approximations G, are given by G,,(z) Y10 A(v, —v + 2; z) with
A(v,—v + 2l;2)

1
B ',1+Z+:i - WEW(E+1-24)-....W(z4+v -2 —...—-2i,)
i, €{0,1},u=1,0v
le{0,1,...,v}. Since G, has a pole at zero of order 1 + v (for 1 = {v/2])
the sum ) G, does not converge to any function G € O(C \ Z) having
polynomial growth near Z.

REMARK 2. The method of the Mellin transformation can be applied to
the Case 1° of Theorem 1. In this case to prove the convergence of the
approximation scheme for the functional equation (8) one requires sophisti-
cated combinatorial tricks to show that A(v, —vk + [;2) have simple poles
at integers (if ap = 0), however its summands can have poles of arbitrary
order.
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REMARK 3. The method of the Mellin transformation can be also applied
to the equation Pu = f, where P satisfies assumptions of Theorem 1 and
f € 0{71.---,1,.}(3(,.;0)) with some 71,...,7, € R. In that case any spe-
cial solution of Pu = f belongs to (’){TI""'TWI"‘”1""1""""}(E(r;0)) where

P1,-

(B]
[Br]
(E]

(H]
(E1)

(£2]
(M]

[T]

(2]

.., Pm are the roots of the characteristic polynomial for P.
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