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SINGULAR LINEAR DIFFERENTIAL EQUATIONS 
AND LAURENT TYPE SERIES 

Abs t r ac t . Linear ordinary differential operators with meromorphic coefficients at zero 
are studied. It is well known that in the case when zero is a regular or regular singular 
point then fundamental system of solutions consists of convergent series of the Taylor 
type. On the other hand in the case of irregular singular point power series solution, in 
general, does not converge; however it can be asymptotically sum up in sectors to an 
exact solution. The aim of the paper is to show that for a class of operators with irregular 
singular point the fundamental system of solutions can be found in a form of convergent 
Laurent type series of a Gevrey order. Under suitable conditions the convergence of the 
approximation scheme for a functional equation Wj(g — j)G(z — j) = H(z) is also 
derived and properties of its solution G are described. 

Introduction 
Let 

N ' 1 = 0 

be a linear operator with meromorphic coefficients at zero. Multiplying 
a'(x), i = 0 , . . . ,n by xn/an(x) we can assume that 

oo 
/o\ ni(m\ ) £ a)x3 f o r 0 < M < r if t = 0 , . . . , n - 1 , (2) a (x) = ^ j=jo 

xn if i = n. 
with some jo € Z and r > 0. The Newton diagram for P is defined by 

(3) Afp = {(i,j) € No x Z : a|+J- ^ 0} . 
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We call the set {(¿, 0) : i 6 No} as the characteristic level of P and define 
the characteristic polynomial 

(4) W(z) = WP(z) = (z)n+Y/a\(z)i. 
: = 0 

where 

_ C C f ± i L _ J 1 i f i ' = °> W r ( z + i _ t - ) - \ ar(ar - 1) - . . . • (ar - z + 1) if i € N. 

The degree of W is equal to n. Note that W(z) is equal to the coefficient 
Wo(z) in the expression 

oo 
x~zP(xz) = Wj(z)xj 

j=-k 
where k = max (—j) > 0 and 

(i,j)€M"p J> ~ 
n-1 

(6) Wj(z)= 0,]+^ for j>-k, 
i=max(0,jo-j) 

Note also that P can be written in the form 

We denote by KP the Katz invariant of P i.e. the smallest K > 0 such 
that there are no points of Mp below the line {(i, j) : j = n(i — ra)}. If 
k = Kp — 0 i.e. there are no points of Afp below the characteristic level then 
zero is regular or regular singular point for P. In the other case it is called 
irregular singular point. We have the well known 

THEOREM (Fuchs , [H]). Let zero be a regular or regular singular point for 
P and let f be analytic at zero. Put po = 0 and let p\,..., pm be the roots 
ofW. Then every solution of Pu = / is given by a convergent series of the 
form 

m Vii oo 
E E E ^ l n * * . ^ 
fi=0 p=0 7=0 

with some qM 6 No for fi = 0 , 1 , . . . , m. 

In the case of an irregular singular point the Fuchs theorem is no longer 
true. However there exist formal power series solutions of Pu = f (cf. [T]) 
they, in general, do not converge. 
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EXAMPLE 1 (Euler). The equation x2u' = u — x has a unique formal power 
oo 

series solution = a 7 x 7 , where a 7 = (7 — 1)! 
7 = 1 

During the last few years a special procedure called multisummability 
was developped to deal with divergent power series solutions of differential 
equations (Ecalle [E], Balser [B], Braaksma [Br], Malgrange [M],...). Ap-
plying this procedure to the Euler equation x2u' = u — x we need first to 
compute the Borei transform Bù of its formal solution ù 

00 .. 

^ ( O - E r ^ C - 1 ^ for Kl < 1 

and then analytically continue it to a function g(Q = l / ( ( — 1) for ( / 1. 
Now we note that g is of exponential growth along any ray dg := {£ G 
C : argC = 0} with 0 < 6 < 2ir (in fact g is bounded on any d$). Next we 
compute the inverse to the Borei transform, which appears to be the Laplace 
transform of g along d$ (in variable 1/x) 

Cgg is defined in a sector S{6) := {x : | argx — 6\ < TT/2}. Finally, gluing 
together Cgg with 0 < 0 < 2ir we get a function u defined in a sector 
S = {a; : —ir/2 < argx < 5ir/2}. The u is a solution of the Euler equation 
and u is the asymptotic expansion of u in S. 

On the other hand, since for the Euler equation Afp lies below the char-
acteristic level it is natural to look for its solutions in the form 

0 0 
u(x) = ^^ a7xy + lnx ^ b^x1. 

7= —00 7= —00 

Comparing both sides of x2u' -- u — x we get bo - —1, £>_ 1 = 1, . . . , 
by = ( - l ) 7 - 1 / ( — 7 ) ! for 7 € -No , a0 = C, a_i = 1 - C, ..., a 7 = ef7 + 

( - i r C / ( - 7 ) ! With d 7 = f o r 7 € _ N , ( s o |<g < 
l / ( - 7 - l ) ! ) . Thus, 

- 1 

u ( x ) = Ce~l'x - l nx • e~1/x + ^ 
7= — 00 

and the series converges for x € C \ {0}. 

It appears ([H], Ch. IV, Th. 10.1) that the fundamental system of solu-
tions of the homogeneous equation Pu = 0 consists of Laurent type series. 
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However the coefficients arising in this kind of representation are very diffi-
cult to find as shows 

EXAMPLE 2 . Looking for a solution of the equation x2j£ = (1 + x2)u in the 
form of Laurent series u = Xl^L-co a-yx'1 we find 

(7 - l )a 7 _i = a 7 + a 7 _ 2 for 7 6 % . 

So we can fix arbitrarily ao = C. Putting a\ = a we find that, in general, 
both series Xl^Lo a i x ' i and S 7 = - o o a t x l a r e divergent. However they will 
converge for a very special choice of a/C = Ji(2)/Jo(2) ( J n - the Bessel 
function of order n), since the general solution is given by 

00 00 , 1 

7 = - o o ¿=max(0,—r) K " In the paper we study the Cauchy problem 

i 7 ) J p(*. = f> 

where / is a Laurent type series of radious of convergence r > 0 and 0 < 
t < r. By applying the Mellin transformation M we transform the problem 
(7) into a functional equation for the function G = Mu 

00 
(8) W{z)G{z) + £ WS{* - j)G(z - j) = H(z). 

3* 0 
Under suitable conditions we shall solve (8) by the method of successive 
approximations and compute the boundary value b(G) (cf [LI]) of its solu-
tion. Then u(x) = 577¿»(G)[a;'] is a solution of (7). To be more precise let us 
introduce 

DEFINITION . By a Laurent series of Gevrey order k > 0 and radious of 
convergence r > 0 we mean a series 

00 
u(x) = ^ Cyx'1 

-y=—00 
such that for some M < 00 and any r < r 

( C(r)/rv for 7 € N0, 

( 9 ) ' ^ F i i i l & k f o r 7 € - N -
The u is a holomorphic function on B(r) \ { 0 } satisfying with some L < 00 
and any f < r 

(10) |u(x)| < C(rr)exp{i/|x| / !} for 0 < |x| < r. 
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Conversely, if u 6 0{B(r) \ {0}) satisfies (10) then u is a Laurent series of 
order Gevrey k. 

Note here that the derivative and the primitive of u if C_i = 0 are 
also Laurent series of the same Gevrey order as u. On the other hand if 
Ui,i =1 ,2 are Laurent series of Gevrey orders = 1,2 then u\ • U2 is a 
Laurent series of Gevrey order k = max(«i, K2). 

DEFINITION . Let m E N, q € No, pi,...,pm 6 C with p„ ± p^modl for 
1 < v < fi < m. Let u'1'p,ij, £ {1 , . . . ,m} , p 6 {0,.. .,q} be Laurent series of 
Gevrey order K. Then a sum 

m q 

(11) u(ar) = J ] S A^hJ'x • xp- • «"'"(a) 
fi=1 P=0 

m q 00 

= E E E c ^ - M ' * • « " + 7 

/x=lp=0 7= — 00 

is called a Laurent type series of Gevrey order k . 
Note here that in the expression (11) pu can be replaced by pu + I with 

a fixed I € Z but the new C7 = CM)Pi7 still satisfies (9). 
The main result can be stated as follows. 

THEOREM 1 . Let P be a linear differential operator ( 1 ) with meromorphic 
coefficients (2) at zero. Assume one of the following cases 

Case 1°. P is of order 1; 
Case 2°. Afp C N0 X N0; 
Case 3°. J\fP C N0 x ( -N 0 ) ; 
Case 4°. P is a composition of operators satisfying any of the Cases 

l°-3°. 

If f is a Laurent type series of Gevrey order k and radious of convergence 
r then every solution of Pu = / is a Laurent type series of Gevrey order 
max(«,«p) and radious of convergence r (up is the Katz invariant of P). 

Before the proof let us observe that Case 4° is an immediate conse-
quence of Cases 1° - 3° since Kpl0p2 = max(/ip1 ,Kp2). Note also that by 
the properties of solutions of linear equations we can assume that with C7 

satisfying (9) and some q € No, g G C 

(12) 
00 

/ = C7/7 where /7(®) := ln'x • xp+7 . 
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Proof of Case 1°. P is an operator of order 1 i.e. 
( d\ d ^ 

PI x, — J = x——|- ajx with some jo G Z. 
j=jo 

Then k = up = max(0, — jo), W(z) = z — ao and Wj(z) = a,j for j > — k, j ^ 
0. Considering u(x) = x~a°u(x) instead of u we can assume that ao = 0. 
Then the general solution ug of the homogeneous equation given by 

ug(x) = Cexp j - j ^-t-dx | 

is a Laurent series of Gevrey order K p i f K p > 0 o r a Taylor series if up = 0. 
On the other hand a special solution us of P(x, = / is given by 

« . ( * ) = ex P { - J ^ d z } • J M . e X p{ J ^ d x } d x . 

So for / given by (12), 

« . ( * ) = £ E where f - { j 
p=0 7=—oo 

is a Laurent type series of Gevrey order max(/«p,«) and the same is true for 
ug + u3. 

For the proof of Cases 2° and 3° we need to recall some facts about 
Laplace distributions and, the Taylor and Mellin transformations. 

Laplace distributions 
Let v € R U { - o o } and u 6 R U {oo}. The space w )(R) of Laplace 

distributions on R is defined ([Z]) as the dual space of 

V , u , ) ( R ) = ^ La<b{R) 
a>f,6<u> 

where for any o, b G R 
I 0 , 6 (R) ={<p£ C°°(R): sup sup \Da<f>{x)\iajb{x) < oo for any m e N0 } 

z£ln<m 
with 

/ \ f e~ax for x < 0, 
7a,b\x) — ^ e-bx fo r x > 0. 

Let m G N, pi,...,pm G C and L = UJT=I(/9M + a n analogous way 
as above we can define the space ¿ [ „ ^ ( L ) of Laplace distributions on L. If 
Im pp ^ Im p\ for p, ^ A, (/x, A = 1 , . . . , m) then 

m 

1 
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The Taylor and Mellin transformations 
In this section we always assume that u < u. If x € B(e"\ev) - the 

universal covering space of B(ew) \ B(eu) - then the function L 3 a i " 
belongs to Z(„iU,)(L). So we can define the Taylor transform of S € L\„tW){L) 
by 

TS(x) = S[x] for x e B(e"; e"). 
Define 

Oi°y(B(eu]ev)) = {u € 0(B(e"-,e")) : 

for any e" < r < t < eu there exists m € N such that 
|«(®)| < C( 1 + |lnx|)m for r < |x| < t} 

and 
0{lmf,1' -'lmPm}{B(eUJ]e1')) = {tie 0(B(eu;e")) such that 

m 
u = with some e ^ ^ ( ¿ ( e " ; « " ) ) } . 

We have 
THEOREM 2 ([L2], Th. 2). Lei u < u. The Taylor transformation is an 
isomorphism o f L ' ^ i L ) onto 0<Impi Im'~y(B(eu;e")). 

Fix e" < t < ew. Following [L2] we define the Mellin transform of u G 
C?iImpi Imp"»> (B(eu; e")) by 

(13) M f u ( z ) = J u(x)x~z~1dx 

where 7±( i) = {x € B(ew; e") : ^ argx > 0, |ar| = t} and the orientation of 
±7 ± ( / ) is positive. 

M f u (resp. M^u) defined by (13) is holomorphic on {Im z > max(Im pi, 
m 

...,Im^)m)} (resp. on {Im-j < min(Impi,.. .,Im/om)}). Since u = ^ xp"ull 

with <= OW(B(ew;eu)) we define 
(13 ' ) Mtu(z) = £ Mtu(z + £ M7<2 ~ P*) 

for Im z £ {Im p \ , . . . , Impm}, 
where the sum of M f u (resp. Mju) is taken over /z € { l , . . . ,m} with 
Im p^ < Im 2 (resp. Im p^ > Im z). Theorem 4 of [L2] can be restated as 
follows 

THEOREM 3. Let u € ^mp^{B{eu\ev)) with u < u. Then for any 
e" < t < e", G := Mtu e 0{C \ L ) and there exists N € N such that 
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{C IT } T77KT for Im 2 cl°se to 1m pa, H = l,..., m, 

C f o r \ 1 m z \ big enough. 

Furthermore, the sum of differences of boundary values m 1 
( 1 5 ) 5 : = £ ^ ftUm® - € ¿ U ( L ) 

/»= i is independent of t and TS = u. 

We can also adapt Theorem 5 of [£2] to the situation considered here. 

THEOREM 4. Lei G G C?(C \ L) satisfies (14) Assume that the sum of dif-
ferences of boundary values given by (15) belongs to ^ ^ ( L ) with some 

i/ < I n t < u. Then G = Mtu where u:=TS £ <9<Impi Im"'">( JB(ea ' ; c")) . 

In the proof of Theorem 1 we shall need 

COROLLARY 1 . Let G € <3(C\U™=i(/V + 2 ) ) be su°h that with some q 6 N0 

(16) \G(z)\ 
Z 

\CT~r~r for z close to p^ + Z, n = l,...,m, 

, r R e * 
|Im z\ 

Then 

for | Imz| big enough. 

m ^ m q oo 

/x=l fi=l p=0 7= —oo 

Furthermore, if C 7 = CM>Pi7 satisfy (9) i/ien 

1° i € ¿ L o o ^ j i L ) (L = + * ) ) , 
2° u = TS is a Laurent type series of order K and radious of conver-

gence r, 
3° Mtu = G. 

E X A M P L E 3. If u is given by a Laurent type series (9) then it is the Taylor 
transform of m q oo 

* = £ £ £ € £ U , l n r ) ( L ) . 
fi=l p=0 7=—oo 

So u € 0 { I m p i I m ' , m>( JB(r;0)) . For any 0 < t < r we have 
m 9 oo p , ,, 

m « . ) - E E E 
/i=l p=0 7= —oo 1=0 ' y ' ' 

for z £ {pi,. . .,Pm} + Z. 
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In particular, if t = 1 

(17) Mu(z) 
m <j oo | 

= E E E ( z - + : 
il=lp=0 7=-oo ^ ^ 'J 

Auxiliary lemmas 
In the proof of Cases 2° and 3° we shall also need 

L e m m a 1. Let k,l,v eN and i € { 1 , . . .,k}" with ix + . . . + iu = I. Then 

I ( z ) := {z + i t f * ( z + i1 + i2y* •...• (z + h + . . . + ivY" > 

for z € C , where (z) := 1 + \z\. 

P r o o f . Since \z\ > | Rez| we can assume that 2 = x G R. If x > — 1 or 
x < — I we immediately obtain I(x) > /!. Now let — p — 1 < x < — p with 
some p € {1 , . . . , / — 1}. Let /z € No be such that i\ + ... + < p and 
¿1 + . . . + + V+i > p + 1. Then we derive 

/ (*) > (1 + i2 + . . . + V)'"1 • . . . • (1 + v ) ' " " 1 • l*'" 

X l ^ + ' i l + V ^ ) ' " * 2 • . . . • (1 + V + 2 + • • • + i u j " 

> (¿i + . . . + «„)''» ( y - i + v ) ' " - 1 . 
- fc'l " ' 

x » f f i (Vt-i + Vt-2)'"+2 (Vt-i + • • • + 

( t i + • • • + ¿„)!( V H + • • • + i „ ) ! ( p + 1 - k ) \ ( l - p ) l 

~ k< ~ k< 

> (i + i - k ) i n 
2'+i~kkt ~ ( k - i y . ( 4 k y 

In an analogous way we obtain 

L e m m a 2 . Let v e N and i \ , . . . , i v > 1. Then for z G C 

(z + n)(z + i1 + i 3 ) - . . . - ( z + i1 + . . . + iu) > v \ j T . 

Proof of Cases 2° and 3°. Let us consider a Cauchy problem (7) where 
/ is given by (12) and 0 < t < r. Taking eventually x/t as an independent 
variable we can assume that t = 1 and r > 1. We shall solve (7) by the 
method of the Mellin transformation. We have (with (z)i defined by (5)) 
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oo 
M (a°(x)u)(z) = Y , a°jMu(z - j), 

j—io 

(¿i \ 00 

a\x)j^u\ (z) = Y , aK2 + i - j)iMu{z + i - j ) 
J=Jo 

i-1 
+ £ ( - ! ) " « , _ ! _ „ ^ ( « « ( O r * - 1 ) |(=1 for t = 1 , . . . , » — 1, 

i/=0 

^ ' i/=0 
Thus, applying the Mellin transformation to (7) we obtain 

n—1 00 
2 ]T a*.(z + i - j)iMu(z + i - j ) + (z)nA<ii(z) = JT(z), 

0 J=io 

with 

JJ(s) = A</ ( * ) + * ( * ) , 
where 

( i s ) b(z) = - ¿ B - i r ^ . ^ i a X i r - 1 ) ^ 
j=l i/=0 

is a polynomial of degree < n — 1. So with G(z) = Mu(z) and Wj,j > k, 
given by (4) and (6), we obtain a functional equation (8). To solve (8) we 
shall apply the method of successive approximations according to the scheme 

r (*\ - H { z ) 

G » { z ) = W^i £ W j { z ~ j ) G " - l { z - j ) + m7)for * e N " 
0 

Put Go = Go and G„ = G„ - G„_1 for v e N. 
By induction we derive for v € N 

00 
(19) Gu{z) = ( - 1 ) " J ] A(i/, -i/fc + Z; z)H(z + vk - I), 

1=0 
where for I G No and 1/ € N 

(20) A(v,-vk + l;z) = 

£ _jb(3r+fc—¿1 )iyf3_fc(g+2fe—¿1—¿2) • • • • • ^ - f c ^ + t / f c - t i - . . .--¿„) 
+ jfc - ¿i)W(ar + 2* - ¿1 - ¿2) •. . . • W(z + vk - ix - ... - »„) 
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with the sum taken over i G Nq with i'i + . . . + iv = I and k for 
p = 1 , . . . , i / . 

We shall prove the convergence of the series X ^ o ^ and compute the 
boundary value of the limit G := S^Lo ^v-

Case 2°. Mp lies above the characteristic level which is equivalent to 
the demand that k = Kp = 0. Then (19) and (20) take the form 

oo 
(21) G„(z) = ( - 1 ) " £ A{v, /; z)H(z - I ) , i / £ N 

i=i/ 

where for I € N and v € N 

(22) A{v,l-,z) 

E Wh(z - ii)Wi2(z - n - i2) • •. • • Wiu{z - zi - ... - ¿„) 
. , W(z)W(z-i1)W(z-i1-i2)-...-W(z-i1-...-i,,y 

Denote by {p\,.. . ,/?s} the zeroes of P with multiplicity qi,.. .,qs respec-
tively (so Qo — n)• Devide . . . ,ps} into sets B\,..., Bm in such 
a way that pa and pT belong to the same set for a, r £ { 1 , . . . , s } if and 
only if p<j - pT G Z. Let = {p» := • • •, p»,mii} where p^x = 
Pn,l + 7 f o r A = 1 ,...,171^ with 0 = 7^1 < 7^2 < . . . < 7 ^ ^ (p, = 
l , . . . , m ) ; Qfi,\ = 1 + . . . + i„,A for p € { l , . . . , m } , A € { l , . . . , m M } ; 
9m = i^m^P- = 1, - - •, m). Then each summand of A(i>, l;z) has poles 
at most at pi + No, . . ••,pm + No and the order of a pole at p^ + 7 for 
7m,A < 7 < 7it,A+i ^ = 1 , • • •, "V (here = 00) is at most equal 
t o In,a O = 1,. . . , m ) . Put 

= 1/2 • min min (l,dist(/9<T + N o , ^ + No)) > 0 where po = p from (12), 

and the first minimum is taken over 0 < cr < p < m ii dist(/?o + Z, 
{pi,...,pm}) > 0, and over 1 < a < p < m otherwise. 

By the convergence of the series (2) and the definition of Wj,j 6 N (see 
(6)) we find that for any r < r there exists Mi = Mi(r) < 00 such that 

I W j ( z ) \ < for * 6 C, j € N. 

We can also find C < 00 such that for any 0 < £ < S and a € { 1 , . . . , 5} 

1 
W{z) ~ £V<r(2)n 

for |z — p a \ > £ and |z — p r \ > 6 for r € { 1 , . . . ,5} , r ^ a. 
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Thus, for any 0 < e < 6 the summands of A(v,l\z) are estimated by (with 
Mi = CM\) 

(23) 
MX Q 

£^r'(z)n{z - ¿i) • . . . • (z - ii - . . . - i v ) 

for j € C such that d i s t ( z , ^ + No) > £ and dist(2,/9.\ + No) > 6 for 
A € { 1 , . . . , to}, A ^ / i ( / i = 1 , . . . , to). Now by Lemma 2, (23) is bounded by 

(2M2Y 
C — . . . for z G C as above, 

e*»rlv\{z)n 

and since there are < summands in A(u, z) we get 

( 2 4 ) \A(v, i,z)\ < C j ^ [ z ) n f o r 2 € C a s in ( 2 3 ) . 

Now we shall study the convergence o i ^ G v . To this end observe that for 
/ given by ( 12) , Gu = Yljez CjGjtl/ with Gj<v obtained by the approximation 
scheme for 

„(O/ix _ / u » for j = 0, i = 0 , 1 , . . . , n — 1 , 
\ 0 for j ^ 0, » = 0 , 1 , . . . , n — 1 . 

Put 

H j ( z ) = 

B ( z ) ~ 

-q\ 
(Z - p)•+» 

for j = 0, 

for jf / 0 
( z - P - J ' ) 9 + 1 

with B(z) given by ( 18) . Since B is a polynomial of degree < n — 1 we get 
for / € N0 

I H(z - I ) \< I W - ' W " - 1 + 1 / 1 * " 1 ~ P\q+1 for j = 0, z # p + /, 
l ) \ S \ c / l z _ l _ p _ j l q + 1 f o r j ^ 0 , z ^ p + j + l . 

Observe that for any r > 1 

°° / "(Z)"- 1 ^ 1 (/ + „ + „ - l W n - l 

1=0 

1 y , /"(/)n-1 ^ 1 " 
i/J Z-f f — /yl 

/=i/ /=0 
1 (i/ + n - 1 ) ! 

f< 

i > + n + / 2 y 

v\ ( 1 - l / r ) " + n ~ \ 1 — l / r / 

So in the case when ( p + Z ) n { p i , . . . , p m } = 0, GjyV is a holomorphic function 
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outside ({/>i,..., pm} + No) U (p + j + No) satisfying with any 0 < e < 6 

oo 

l=u 

°° ( 2 M 2 i y / \n—X /i\n—1 

M," / „ . ,,/ 2 \ n , , AM2 \ 

£ ( C l = c ( n " 1 ) ! ( i ^ T 7 ? ) • M ' = T^TJf) 

for z 6 C such that dist(^, + No) > £ and dist(z,/3.\ + No) > 6 for A € 
{ 0 , . . . , m} , A ^ p, p, = 0 , . . . , m where po = p + j, qo = <7 + 1, Consequently 
Gj = E^Lo i s holomorphic outside ( { p i , . . . , p m ) + N 0 ) U {p + j + N 0 } 
and satisfies with any 0 < £ < 6 

Q 
\Gi(z)\ < r r for z € C as above. 

JW £i»(z) 

Finally G = YjjtzCjGj is holomorphic outside ({/?i,.. . ,/9TO }+No)U{/3+Z} 
and satisfies with any 0 < s < 6 

Q 
(25) \G{z)\ < for 2 6 C such that 

dist(z,/> + Z ) > e and dist(z, {pi,.. . , p m } + No) > 6, if p = 0, 

dist(z,/5M + No) > £ and dist (z, (/> + Z ) U ( J (pa + N 0 ) ) > £ , 
0<A±n<m 

if p e {1 , . . . ,m } . 

This implies that 
9 oo m In—1 oo 

b(G) = E E + E E E 
p=0-y=—oo / i= l p=0 7 = 0 

Now we shall estimate C^p.-y. Let p = 0 and fix 7 G Z. Since /; 2) is 
holomorphic at p + 7 we have 

= J E C ' S , ) for.<7-j, 
I p=0 

0 otherwise 

with C30%„ = 27 r i ( - l ) p + " g ) A(«-p)(i/,7 - 7) . Note here that by (24), 

\ A ( u , l - , z ) \ < C ^ 2 . 1 ^ for dist(z,/> + Z ) < 
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Thus, by the Cauchy inequality and the duplication formula for factorials, 
we estimate C ^ = 0 

( 2 M 2 n 1 - j Y ^ C e x p { V 8 M 2 ( 7 - i ) } I r j I < r V y 2 ' K 1 ~ J J < 

j / = 0 

for 7 > j , 

a n d Co l P ) 7 = 0 for 7 < j . 
Finally, by (9) we derive for any r < r 

|Co, P ) 7 |< Y , \ C Ì i P J \ C j \ < 

j< 7 

with some M < oo. 
Let now p G { ! , . . . , m } . Then 

c j f for 7 > 0, 

for 7 < 0 ( _ 7 ) ! i / * 

for 7 > 0, 
p—Q 
0 otherwise 

with 
2iri 

(?„ - 1)! 

X 
p=0 

Note that H ( z — l) is regular at pM + No and A{v,l\ z) is regular at z = /0M + 7 
if / < 7 . Since 

W " ' '5 *)l * for e < dist(z, P , + No) < i 

and 
|JT(ar - Z)| < C ( z ) n - 1 ( l ) n ~ 1 for d i s t { z , P l l + Z ) < 6 

by the Cauchy formula we derive 

f k ( 2 M 2 / r • (Z)"-1 

I 0 ™ ! 
z=7 

< M3 " fr+^fr + j ) " - * < c ^ 

with some L < 00 and r* := r e x p { l / r — 1}. Finally 

|CM)P)7 | < C / ( r* ) 7 ^ 7 € N0. 

Now let dist(/> + Z, { /> i , . . . ,p m }) = 0. We can assume that p = p\. Then 
at points of p + Z the poles of A{v, /; z) glue with that of H(z - I). Thus G 
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is holomorphic outside ({/>2, • • •,Pm} + No) U {p\ + Z) satisfying (25) with 
Po = P\ = P and <70,<7i replaced by go + this implies that 

9i + i oo m lit ~ 1 oo 

p—0 7=—oo fi=2 p=0 7 = 0 As in the previous case we get 

|Cm,p,7I - | c ( _ y / / t f o r / i = l , 7 6 - N o . 

Remark 1. The estimation of CMiP)7 implies that the radious of convergence 
of the solution u is > r* := rexp{l / r — 1}. Iterating the procedure we 
conclude that in fact it is at least equal to r. 

Case 3°. Afp lies below the characteristic level (and k > 1, so Kp > 0). 
The proof of Case 3° is similar to that of Case 2°. So we only give the 

main points, leaving detailes to the reader. Since Wj = 0 for j > 1 and for 
j < -k we have 

vk 
(26) Gv{z) = ( - 1 ) " Y , z)R{z + 0 . v € N 

where for / G N and i / f N 
(27) A(u,-l;z) 

EWh(z - ii)Wi2(z - ix - i2) • • • • • Wiv{z - h - . . . - i v ) 
• j . _ , W(z)W(z — i\)W(z — ¿i — ¿2) •... • W(z — ¿1 — . . . — i„)' 

As in the Case 2° we devide the zeroes { p \ , . . . , p s} of P into sets B\,..., Bm, 
but this time it is more convenient to take as pM(/x = 1 , . . . , m) the element 
of Bp with the biggest real part. Since only a finite number of Wi is different 
from zero for any r < 00 we can find M = M(r) < 00 and C < 00 such that 
for any 0 < e < 6 and a € {1 , . . . , s} 

Wi(z) MP(z)i^ltp 

N C ' 
W(z) ~ ' Ei' 

for z € C, with \z-pa\ > £ and |z — pT\ > 6 for r € {1, . . •, s}, r / cr, where 
Kp is the Katz invariant of P . So we can also find C < 00 such that for any 
0 < e < S the summands of A(v, —/; z) are estimated by (with M\ = CM) 

c Mi 
£i»rl(z)n{z - i^-ii/Kp •... • (z - i'i - . . . - ¿„)-W"p 

for z 6 C such that dist(-j,/9/J — No) > £ and dist(2, - No) > 6 for 
A 6 {1 , . . . , m}, X = 1 , . . . , m). Consequently, since there are at most 
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lv jv\ summands, by Lemma 1 we obtain for v < I < vk 
MX 

(28) |A(i/, - / ; z)\ < C — . . 

for 2 G € as above (M2 = M1ke(4k)k/Kp). 

Assume that (p + Z)D {pi,...,pm} = 0. Then as in the Case 2° we find 
that G is holomorphic outside ({/9i,... ,pm} — No)U(/9 + Z) and there exists 
C such that for any 0 < £ < 6, (25) holds for z G C such that 

dist(z,/> + Z) > £ and dist(z, {pi,.. . ,/»m} - No) > 6 , if // = 0, 

dist(z,p„ - N0) > £ and dist (z,(p + Z) U [ j (pA - N0)) > 6, 
0<A ¿ t i<m 

if n € { l , . . . , m } . 
So 

m 0 
kg) = E E M l ) + E E E 

p=0 1 = - oo f!= 1 p=0 7=—oo 

This time however we need a more refined estimation of C^ iPi7. Let 
p, = 0. Then C 0 ,p , 7 = Ej>7

 C0,P,-yCi with Ci satisfying (9) and = 

E^Lo Co',p,y, w h e r e 

C3> = f 27ri(-l)p+I/(')A(9-P)(i/, j - 7 ) ; P + 7 ) if v < 3 ~ 7 < 
'p '7 10 otherwise. 

Since by (28) 
MX 

\A(v, - / ; 2)| < C7l{n)l/Kp for dist(*,p + Z) < i 

by the Cauchy inequality we derive 0 0 M" 
< 

„to P'"7(i/!)1 / ' t p " r ^ 

c E . . „ v - < c 

for j > 7 > 0, 

M T 7 

>(j'-7)/fc 
for i > 7 , 7 < 0, 

0 for j < 7 . 

and 

£ J L . £ < c / j r r 

|C0,p,7| < < 
for 7 > 0, 

M ~ 7 _ 
(F^F with ¡3 = min ( l / «p , 1/k), M < 00 for 7 < 0. 



Singular linear differential equations 519 

Similarity for p, € {1, . . . , m} we obtain 
M " 7 

IC^. ,1 < C ( ( _ 7 ) ! ) 1 / W p for 7 < 0. 

In the case when dist(/o + Z, {pi, ...,pm}) = 0 assuming that p = p\ we 
obtain 

9l+9 oo m qi—10 

HO =E E <wS+„ + EE E 
p=0 7=—oo /i=2 p=0 7= —oo 

where 
C/fT for n = 1, 7 € No, 

ic | < i C T ^ W w i t h ^ = m i n 1 / k ) f o r ^ = 7 e ~ N ' 

f o r M € { 2 , . . m } , 7 € -No. 

Final remarks 
E X A M P L E 4 . Consider the problem 

'('• = " + i)B = - • 
Then k = 1,Kp = 1/2, = Z(Z - l),W_I = Wx = - 1 . Since Kp £ 
No, -P is not a composition of operators of order 1. So P does not satisfy 
assumptions of Theorem 1. Taking the Mellin transform we arrive at the 
equation 

W(z)G(z) - G(z + 1) - G(z - 1) = 1. 
The approximations G„ are given by Gv{z) = A(is, —v + 21; z) with 
A(v, -v + 21; z) 

y I 
W(z)W(z + 1 - 2i\) W{z + u-2i1-...~ 2 »„)' t l x . — » 

» M €{O,I} , / I=I , . . . ,« / 

I G {0,1, . . . , u}. Since G„ has a pole at zero of order 1 + v (for / = \v/2\) 
the sum ^ Gu does not converge to any function G 6 0(C \ Z) having 
polynomial growth near Z. 
R E M A R K 2. The method of the Mellin transformation can be applied to 
the Case 1° of Theorem 1. In this case to prove the convergence of the 
approximation scheme for the functional equation (8) one requires sophisti-
cated combinatorial tricks to show that A(v, —uk + /; z) have simple poles 
at integers (if ao = 0), however its summands can have poles of arbitrary 
order. 
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R E M A R K 3 . The method of the Mellin transformation can be also applied 
to the equation Pu = / , where P satisfies assumptions of Theorem 1 and 
/ E 0)) with some Ti,...,TM 6 R. In that case any spe-
cial solution of Pu = f belongs to (B(r;0)) w h e r e 

Pi-, • • • > Pm. are the roots of the characteristic polynomial for P. 
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