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ON SOME FURTHER WIRTINGER-BEESACK 
INTEGRAL INEQUALITIES 

1. Introduction 
In the previous paper [5] the uniform method of obtaining and investi-

gating various types of integral inequalities involving a function and its first 
derivative (see [4],[2], [7] and [3]) has been extended to the integral inequal-
ities involving a function andjts second derivative. Some quadratic integral 
inequalities of the second order of the form 
(1) \sh2dt<\rh"2dt, h e H , 

I I 

where I = (a,/3),— oo < a < ¡3 < oo, r and s are real functions of the 
variable t, H is a class of functions absolutely continuous on I has been 
derived. 

In this paper we derive some new integral inequalities of the form (1). 
The method we use consists in determining the function s and the auxiliary 
functions wo, w\ and W2 depending on the given function r and the auxil-
iary function tp and next using these functions to determine the class H of 
functions h for which the inequality (1) holds. The class of functions h for 
which the inequality (1) holds determined in this paper doesn't cover with 
the class of functions h obtained in the paper [5]. 

We also derive some new integral inequalities of the form (1) with the 
Chebyshev weight functions r = (1 - t2)a and 5 = 7 ( 1 - / 2 ) f c o n / =(—1,1), 
where a, b, 7 > 0 are certain constants. 

The integral inequalities of the form (1) have been also obtained before, 
but another methods were applied (for references see e.g. [5], [6], [8]). In 
the particular case when the interval I is compact and the weight function 
r = 1 on I these inequalities were thoroughly studied by Beesack in the 
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classic paper [1] and therefore we called the inequalities of the form (1) the 
Wirtinger-Beesack inequalities. 

2. Main results 
Let I — (a, ¡3),— oo < a < (3 < oo, be an arbitrary open interval. We 

denote by AC {I) the class of real functions defined and absolutely continu-
ous on the interval / , and by ACl{I) the class of functions / G AC {I) such 
that / ' G AC {I). Let r G AC ( I ) and ip G AC1 ( I ) be given functions such 
that r > 0, <p > 0 on the interval I and rip" G AC1 {I). Let us put 

(2) s = { r y " ) " v - \ 

Let us denote by H the class of functions h G AC1 {I) satisfying the 
following integral conditions 

(3) \rh"2dt < oo, \sh2dt > - o o 
/ / 

and the limit conditions 

< 00, 
v J A 

lim swpt_>p(woh2 + 2w\hh' + w2h' ) > —oo 

and 

(5) liminf(woh2 + 2w\hh' + W2h'2) < lim sup(woh2 
+ 2wxhti + w2h'2), 

where 

(6) w0 = r(<p~V)3 + ry'^-1)' - (V)V_1, 
(7) W l = r ( V " V ) ' , 
(8) w2 = rip^ip'. 

Assumptions apply that WQ G AC(I) and wi, w2 G ACr{I). 
The following theorem is the main result of this paper: 

T H E O R E M 1. Let 

(9) w = (r<p')'ip + 2r(p<p" - 2rip'2 < 0 

almost everywhere on the interval I. 
Then for every function h G H the inequality 

(10) \sh2dt<\rh"2dt 
I I 

holds. 
If w ^ 0 and h ^ 0 then the inequality (10) becomes an equality if and 

only if h = cip with c = const ^ 0 and the additional conditions 
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(11) ^ ^ 

are satisfied. 

Proof . This proof is a modification of the proof of Theorem 1 in [5]. Let 
h € AC 1( / ) . By virtue of (6), (7), (8) and from assumptions we have 
w0h2 + 2w\hh' + w2h'2 € AC(I) and h<p~l € AC1(J). It has been shown in 
[5] that the identity 

( 1 2 ) rh"2 - sh2 = (v0h2 + 2v1hh')' + g, 

where vo = — (r<p")' ip~ l , v\ = rip"^-1 and 

( 1 3 ) g = rfciv-'h)" + 2<p'(tp~1h)']2 - 2r<p<p"[(<p-1 h,)'}2 

is valid almost everywhere on I. 
Now we transform the right side of the identity (12) and, after simple 

calculations, obtain the identity 

(14 ) rh"2 - sh2 = (w0h2 + 2w1hh' + w2h'2)' + gi 

where 

(15 ) 9l = r [ ^ h ) " + vXv-'h)'}2 - w[{<p~lh)']2 

which is valid a.e. on I. We note that according to the assumptions g\ > 0 
a.e on I. 

Now let h e H. The first condition of (3) implies that the function rh"2 

is summable on I since 
rh"2 > 0 on I. It follows from assumptions that the 

functions sh2 and woh2 + 2w\hh' + w2h'2 are summable on each compact 
interval [a, b] C I. Thus by (14) we get the summability of the function g\ 
on [a, b]c I and we obtain the equality 6 6 6 

(16 ) \ rh"2dt = \ sh2dt + (wQh2 + 2wxhti + w2h'2)\b
a + \ gidt 

a a a 

for arbitrary a < a < b < /?. In view of (4) there exist two sequences {a n } 
and {6n} such that a < an < bn < (3, an a, bn —• f3 and 

lim (woh + 2w\hh' < oo , 

l im [— (woh 2 + 2w\hh' + w2h'2)]\bn < oo. , o„.. uW , ... 
n—»-oo 

Thus there is a constant C such that 

~(w0h2 + 2w\hh' + <C < oo. 

By virtue of the condition g\ > 0 a.e. on / and from the equality (16) we 
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infer that 

\ sh2dt < J rh"2dt + C < \ rh"2dt + C 

On On I 

and from this letting n —> oo we obtain 

\ sh2dt < j rh"2dt + C < oo. 

I I 

By this estimate and by the second condition of (3) we conclude that sh2 

is summable on I. Next in a similar way using (16) and the summability 
of the function sh2 on I we prove that the function gi is summable on I. 
Thus all the integrals in the equality (16) have finite limits as a —• a or 
&—•/?, and hence both of the limits in (4) are proper and finite. Therefore 
the conditions (4) and (5) may be written in the equivalent form 

( 1 7 ) - o o < ]im.(w0h2 + 2 W i h h ' + w2h'2) 

< ]im(woh + 2w\hh' < 00. 
t-*j3 

Now by (16) as a a and b —• /? we obtain the equality 

( 1 8 ) \rh"2dt-\sh2dt 

I I 

= lim(wo^2 + 2 w\hh! + Wih'2) — lim(iuoft2 + 2w\hh! + W2h'2) + \gdt, 
t—tf) t—*a j 

whence, in view of (), the inequality (10) follows since g\ > 0 a.e. on /. 
If the inequality (10) becomes an equality for a non-vanishing function 

h € H, then by () and (18) we have 

(19) lim(ti;o/i2 + 2w1hh' + w2h'2) = Urn(w0h2 + 2wihh' + w2h'2), 

\gidt = 0 . 

/ 

As <71 > 0 a.e. on I we obtain g\ = 0 a.e. on I. Hence 

(20) V & ^ h ) " + ¿ ( v ^ h ) ' = 0 

a.e. on / a n d w[(<pf2)'Y = 0 a . e . 

on I. According to the assumptions w ^ 0 
and whence there exists to £ I such that {(p~xh)'{to) = 0. The function 
(<p~xK)' 6 AC { I ) satisfies the homogeneous linear differential equation (20) 
with the initial value (y> - 1/i) '(/o) = 0, and whence (</j -1/i)' = 0 on I. This 
implies that h = op , where c = const ^ 0, since ¡p^h 6 AC1 {I). Thus 
<f £ H so that we obtain the first condition of (11) and from the second 
condition of (19) we get the second condition of (11). 
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Now let (11) be satisfied and let h = op , where c = const ^ 0. That 
implies <7i = 0 a.e. on I so that [¡gidt = 0 and, in view of (18), the inequality 
(10) becomes an equality which completes the proof. • 

Remark 1. In case of r = 1 on I we have w = 3<pip" - 2Ip'2. Moreover if 
—oo < a < (3 < oo, <p(a) = <p'(a) — <p{(5) = <p'(P) = 0 a n < i there exist finite 
limit values f"{a) and and s > 0 on I, then it follows from Lemma 
2.3 in [1], that w < 0 on I. Therefore under these assumptions Theorem 1 
is valid. So that Theorem 2.2 in [1] is a particular case of Theorem 1. 

Example . Let us take I = (—1,1) and the functions r = (1 - t2)a and 
<p = (1 — i 2 ) 2 - 0 on I, where a is an arbitrary constant such that a < l.Then 
we have 

a = 4(o - 2)(2a - 3)(1 - t2)a~2 > 0 

and 
w = 2(a - 2)(3 - i 2 ) ( l - i 2 ) 2 _ a < 0 

on I. 
From Theorem 1 we obtain that the inequality holds for every function 

h e H, where H is the class of functions h € AC 1 ( ( -1 ,1) ) satisfying the 
integral condition 

l 
(21) \ (l-t2)ah"2dt<oo 

- l 
and the limit condition 

(22) - oo < ilim i S(t, h, ti) < lim S(t, h, ti) < oo, 

where 

(23) S(t, h, ti) = wj,(i)(l - t2f~Z h2 + W!(i)(l - t2f~2 hti 

. +u>2(t)(l-t2)a~1ti2 

and 

uo(t) = 4(a - 2) t [(5 - 3a) + (a - l)t2], 

= 4(a — 2)(1 + t2), 
u;2(i) = 2(a - 2)t, 

since the second condition of (3) is satisfied trivially. 
Now we show that a function h 6 ACX{{—1,1)) satisfying the integral 

condition (21) and the limit conditions 

(24) / i ( - l ) = ti(-l) = h(l) = ti(l) = 0 

belongs to the class H. 
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At first we show that if /i(l) = h'{ 1) = 0 and (21) holds, then the limit 
condition 

lim S(t, h, ti) = 0 

is satisfied. Let us consider the left-hand neighbourhood U of the point 1. 
Using the Schwarz inequality we obtain the estimate 

1 ^ 1 1 
\h'(t)\2 = ( J t i ' d r ) < 5 ( 1 - r 2 ) " a d r \ ( 1 - r 2 ) ° t i , 2 d r 

t t t 

l l 
2\° u>>2 

< A ¡ ( l - r ) " ° dr 5 ( 1 - r 2 ) ° h"2dr 

t t 

l 
A ( 1 - t f - a \ { \ - T 2 ) a h " 2 d T 

1 - a 

for t G U, where A > 0 is a constant such that (1 + t)~a < A on U. Whence 
we have 
( 2 5 ) \ti(t)\ < k(t){ 1 - t 

for t G U, where 
i A 1 2 

k(t) = { - ^ - ¡ ( l - r 2 ) 0 ^ " 2 ^ } > 0 , teu 
a t 

is a continuous function on / such that limt^ik^) = k( 1) = 0. Next using 
(25) and the Schwartz inequality again we get the estimate 

l 2 i 2 l 2 

\h(t)\2 = | J ti dr\ < (J \ti\dr) < (5 Jfc(r)(l - d r ) 

t t t 

< J k2(r)dr ¡ ( I - r f ~ a d r = ^ ~ k 2 ( 0 ) (1 - t f ~ a 

t i 

for t G U, where t < 0 < 1 and, in the last step, we applied Mean Value 
Theorem for the integral k2(r)dT. From the above estimate we get 

( 2 6 ) \h{t)\ < B ^ i l - t ) ^ 3 -

for t G U, where B = ^ ^ and ^ - l = H1) = 
Next based on the estimates (25) and (26) we obtain from (23) that 

I s ( t , h, ti) | < B2\uo(t)\k2(0)(i + t y - 3 + + ty~2 

+ \u2(t)\k2(t)(l + t ) a - 1 = rn(t) 

for t G U with limt_,.i m(t) = 0. Whence it follows that lim<_»i S(t, h, ti) = 0. 
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In analogous way we show that if h(-1) = h'(—1) = 0 and (21) holds, 
then 

lim S(t, h, ti) = 0. 

Based on the above considerations we obtain that from the conditions 
(21) and (24) follows the condition (22). 

Therefore we get the following: 

If a < 1 and the function h £ AC1((—1,1)) satisfies the integral condition 

i (1 -t2)ah"2dt<oo 
- 1 

and the limit conditions 

h(-1) = h'{-l) = h( 1) = h'( 1) = 0 

then the inequality 
l l 

(27) 4(a - 2)(2a - 3) \ (1 - *2)°~2 h2dt < ] (1 - t2f h"2dt 
- l - l 

holds. 

The inequality (27) becomes an equality if and only if h = c ( l - t2)2~a, 
where c =const. 

In the particular case for a = 0 we obtain the inequality otherwise de-
duced in [1]. 

R E M A R K 2. In the paper [5] the inequality (10) has been derived under the 
assumption <p" < 0 on I. In this paper the assumption has been put on both 
functions r and ip, and this involves also the cases in which the condition 
<p" < 0 on I is not satisfied. Indeed, the inequality (27) with a < 1 cannot be 
obtained from Theorem 1 in [5], as for a < 1 the function <p = (1 — f 2 ) 2 - 0 

doesn't satisfy the condition <p" < 0 on (—1,1). Therefore the classes of 
functions h for which the inequality (1) holds obtained in [5] and in this 
paper are not equal. 
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