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ON SOME FURTHER WIRTINGER-BEESACK
INTEGRAL INEQUALITIES

1. Introduction

In the previous paper [5] the uniform method of obtaining and investi-
gating various types of integral inequalities involving a function and its first
derivative (see {4],{2], [7] and [3]) has been extended to the integral inequal-
ities involving a function and_its second derivative. Some quadratic integral
inequalities of the second order of the form
(1) {sh2dt < {rh"’dt, he H,

I I
where I = (a,8),—00 < a < § < oo, r and s are real functions of the
variable t, H is a class of functions absolutely continuous on I has been
derived.

In this paper we derive some new integral inequalities of the form (1).
The method we use consists in determining the function s and the auxiliary
functions wp, w; and w; depending on the given function r and the auxil-
iary function ¢ and next using these functions to determine the class H of
functions A for which the inequality (1) holds. The class of functions A for
which the inequality (1) holds determined in this paper doesn’t cover with
the class of functions h obtained in the paper [5].

We also derive some new integral inequalities of the form (1) with the
Chebyshev weight functions r = (1 — t2)® and s = v (1 — t2)’ on I = (-1, 1),
where a, b, ¥ > 0 are certain constants.

The integral inequalities of the form (1) have been also obtained before,
but another methods were applied (for references see e.g. [5], [6], [8]). In
the particular case when the interval Iis compact and the weight function
r = 1 on I these inequalities were thoroughly studied by Beesack in the
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classic paper [1] and therefore we called the inequalities of the form (1) the
Wirtinger-Beesack inequalities.

2. Main results

Let I = (a,f),—00 < a < 3 < o0, be an arbitrary open interval. We
denote by AC(I) the class of real functions defined and absolutely continu-
ous on the interval I, and by ACY(I) the class of functions f € AC(I) such
that f' € AC(I). Let r € AC(I) and ¢ € AC'(I) be given functions such
that r > 0, ¢ > 0 on the interval I and r¢" € ACY(I). Let us put

(2) s = (re")"p 1.

Let us denote by H the class of functions h € AC'([) satisfying the
following integral conditions

(3) {ra?dt < 0o, |sh?dt > ~o0

I I
and the limit conditions
) lim infy—o (woh? + 2wihh’ + woh'?) < oo,
lim sup,_, s(woh? + 2w hh/ + wah'?) > —o00
and

(5) liItn inf (woh? + 2wihh' + wyh'?) < lim sup(woh? + 2wy kA + wok'?),
—a t—p

where

(6) wo = T(SD_I‘P’)3 + 7.90//(()0—1)/ _ (7‘(,0")'(,0—1,
(7) wy = (e ¢,

(8) wy = r 1Y .

Assumptions apply that wy € AC(I) and w;, we € AC(T).
The following theorem is the main result of this paper:

THEOREM 1. Let
(9) w = (r¢')p + 2rpp” — 2r¢' <0
almost everywhere on the interval I.
Then for every function h € H the inequality
(10) fsh2dt < | rh"*dt
I I
holds.

If w# 0 and h # 0 then the inequality (10) becomes an equality if and
only if h = cp with ¢ = const # 0 and the additional conditions
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pEH,
lim;—a(wop? + 2w10¢" + wap'?) = lims_,p(wop? + 20109 + wap'?)

(11)

are satisfied.

Proof. This proof is a modification of the proof of Theorem 1 in [5]. Let
h € ACY(I). By virtue of (6), (7), (8) and from assumptions we have
woh? + 2w hh' + woh'® € AC(I) and hp~! € ACY(I). It has been shown in
[5] that the identity

(12) rh"? — sh? = (voh?® + 20, hK') + g,
where vg = r¢”(¢™) — (r¢") 71, v; = r¢"p~! and
(13) g = rlp(e™'h)" + 20/ (¢ R) P — 2re¢" (07 R

is valid almost everywhere on L
Now we transform the right side of the identity (12) and, after simple
calculations, obtain the identity

(14) rh"* — sh? = (woh® + 2wy bk’ + wah'?) + gy
where

_ _ 2 _
(15) g1 = (e h)" + ' (7 hYT" = wi(e™ h)]?

which is valid a.e. on I. We note that according to the assumptions g; > 0
a.eon I

Now let h € H. The first condition of (3) implies that the function rh"?
is summable on I since rh”? > 0 on L It follows from assumptions that the
functions sh? and woh? + 2w k' + wyh'? are summable on each compact
interval [a,b] C I. Thus by (14) we get the summability of the function g
on [a,b] C I and we obtain the equality

b b b
(16) {rhdt = | sh2dt + (woh? + 2wihh! + wah®)|% + | gadt

for arbitrary a < @ < b < . In view of (4) there exist two sequences {a,}
and {b,} such that @ < a, < b, < 8, a, — @, b, — 8 and

nh_}rrgo (woh? + 2w hh' + ’LD2h,2)|an <00,
lim_[—(woh® + 2wihh' + wek'™)]}s, < oo.
Thus there is a constant C such that
~(woh? + 2wihh! + wah™)' < C < o0,
By virtue of the condition g; > 0 a.e. on I and from the equality (16) we



498 B. Florkiewicz, K. Wojteczek

infer that
bn ba
| sh2dt < | rh"’dt+ C < {rh"dt + C
an an I

and from this letting n — oo we obtain

{sh2dt < {rh"*dt + C < oo.

I I
By this estimate and by the second condition of (3) we conclude that sh?
is summable on I. Next in a similar way using (16) and the summability
of the function sh? on I we prove that the function g, is summable on I.
Thus all the integrals in the equality (16) have finite limits as ¢ — a or
b — B, and hence both of the limits in (4) are proper and finite. Therefore
the conditions (4) and (5) may be written in the equivalent form

(17) -o0< }im(woh2 + 2w hh + woh'?)

< tlin}’(wohz + 2w hh + wah'?) < 0.

Now by (16) as @ — a and b —  we obtain the equality
(18)  [rh"%dt — | shdt
I I
= lim (woh? + 2w hh! + wyh'?) - lim (woh? + 2wihh' + wah') + | gdt,
— —a 7

whence, in view of (), the inequality (10) follows since g; > 0 a.e. on I
If the inequality (10) becomes an equality for a non-vanishing function
h € H, then by () and (18) we have

(19)  lim(woh? + 2wrhh’ + wph*) = tlin}a(woh2 + 2w hh' 4 weh'?),
Sgldt =0.
I

As g1 > 0 a.e. on I we obtain g; = 0 a.e. on I. Hence
(20) el 'h)" + ¢ (¢ hY = 0

a.e. on I and 11)[(<pf2)’]2 =0 a.e. on I According to the assumptions w # 0
and whence there exists tg € I such that (¢~'h)(to) = 0. The function
(¢~ 'h) € AC(I) satisfies the homogeneous linear differential equation (20)
with the initial value (¢~1h)(to) = 0, and whence (¢~1h)' = 0 on I This
implies that b = cyp , where ¢ = const # 0, since ¢~*h € ACY(I). Thus
¢ € H so that we obtain the first condition of (11) and from the second
condition of (19) we get the second condition of (11).
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Now let (11) be satisfied and let h = cyp , where ¢ = const # 0. That
implies g1 = 0 a.e. on I'so that {; g;dt = 0 and, in view of (18), the inequality
(10) becomes an equality which completes the proof. =

REMARK 1. In case of 7 = 1 on I we have w = 3" — 2¢'%. Moreover if
—o<a<f<o,pla)=¢(a)=9(B) = ¢'(B) =0 and there exist finite
limit values ¢”(a) and ¢”(8) and s > 0 on I, then it follows from Lemma
2.3 in [1], that w < 0 on I Therefore under these assumptions Theorem 1
is valid. So that Theorem 2.2 in [1] is a particular case of Theorem 1.

EXAMPLE. Let us take I = (—1,1) and the functions r = (1~ t2)* and
p=(1- tz)z_a on I, where ais an arbitrary constant such that ¢ < 1.Then
we have

s=4(a-2)(2a-3)1-1)""2>0

and
w=2a-2)3-)1-1)"""<0

on L
From Theorem 1 we obtain that the inequality holds for every function
h € H, where H is the class of functions h € AC'((~1,1)) satisfying the

integral condition
1

(21) f (1= r"dt < 0
-1
and the limit condition
(22) —-00< tlin_ll S(t,h,h') < }m{ S(t,h,h') < o,
where
(23) S(t, h, b') = wo(t)(1 = 2)° "2 b2 + wy (H)(1 - £2)* "2 hi!

()1 -2 A2
and
wo(t) = 4(a — 2) t{(5 - 3a) + (a — 1)3),
wi(t) = 4(a - 2)(1 + t2),
wo(t) = 2(a — 2)t,
since the second condition of (3) is satisfied trivially.

Now we show that a function h € ACY((—1,1)) satisfying the integral
condition (21) and the limit conditions

(24) h(~=1)=h(-1)=h(1)=H(1)=0
belongs to the class H.
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At first we show that if A(1) = A'(1) = 0 and (21) holds, then the limit
condition

lim 5(t, h, ') = 0

is satisfied. Let us consider the left-hand neighbourhood U of the point 1.
Using the Schwarz inequality we obtain the estimate

1 2 1
() = (Sh”dr) <f@a-r"dr{(1 -2 n"dr
t t t
1 1
<Aja-ndri(1-%° K" dr
t t
A 1-af 28 1 2
_ _ —-a _ aqn
=7—(1-1) §(1 2)* " dr

for t € U, where A > 0 is a constant such that (1+¢)™* < Aon U. Whence
we have

(25) IK(8)] < k()1 - t)'7"
for t € U, where

—

k(t):{—l—_—a-S(l—-r) W?dr} >0, teU
t

is a continuous function on I such that lim,_1k(t) = k(1) = 0. Next using
(25) and the Schwartz inequality again we get the estimate

1 2 1 2 1 . 2
)P = |§adr| < ((Inlar) < (TR -7)F"dr)

< §k2(f)dr§(1 _ ) edr = -2-i—ak2(0) (1= 1%

for t € U, where t < 6 < 1 and, in the last step, we applied Mean Value
Theorem for the integral S: k%(r)dr. From the above estimate we get

(26) Ih(2)] < BK(E)(1-1)'F
for t € U, where B = 751-:; and lim;,; k(6) = k(1) = 0.
Next based on the estimates (25) and (26) we obtain from (23) that
|S(t, b, 1')| < B|wo(8)IK*(0)(1 + )% + Bluw ()| k(O)k(2)(1 + 1)~
+ a1+ 1) = m()
fort € U with lim;—,; m(t) = 0. Whence it follows that lim,—,; S(¢, h, k") = 0.
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In analogous way we show that if A(—1) = A'(—1) = 0 and (21) holds,
then
tliml S(t,h, k") = 0.

Based on the above considerations we obtain that from the conditions
(21) and (24) follows the condition (22).
Therefore we get the following:

Ifa < 1 and the function h € ACY((—1,1)) satisfies the integral condition
1
[ (1-)"h"dt <
-1
and the limit conditions

h(—1) = R'(=1) = h(1) = K'(1) = 0

then the inequality
1 1

27) 4a-2)2a-3) | Q- hlt < | (113" n"dt
-1 -1

holds.

The inequality (27) becomes an equality if and only if A = ¢ (1 — t?)?~¢,
where ¢ =const.

In the particular case for a = 0 we obtain the inequality otherwise de-
duced in [1).

REMARK 2. In the paper [5] the inequality (10) has been derived under the
assumption ¢” < 0 on I In this paper the assumption has been put on both
functions r and ¢, and this involves also the cases in which the condition
¢" < 0on Iis not satisfied. Indeed, the inequality (27) with @ < 1 cannot be
obtained from Theorem 1 in [5], as for @ < 1 the function ¢ = (1 — #2)*™®
doesn’t satisfy the condition ¢” < 0 on (—1,1). Therefore the classes of
functions h for which the inequality (1) holds obtained in [5] and in this
paper are not equal.
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