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SOME INEQUALITIES IN 2-INNER PRODUCT SPACES 

Abstract . In this paper we extend some results on the refinement of Cauchy-Buniakowski-
Schwarz's inequality and Aczel's inequality in inner product spaces to 2—inner product 
spaces. 

1. Introduction 
Let X be a real linear space of dimension greater than 1 and let -|| be 

a real-valued function on X x X satisfying the following conditions: 

(Ni) ||x, y\\ = 0 if and only if x and y are linearly dependent; 
(iv2) M = M ; 
(N3) ||ax,t/|| = |a|||a;,i/|| for any real number a; 
(N4) \\x,y + z\\<\\x,y\\+\\x,z\\. 

||-,-|| is called a 2—norm on X and ( X , ||-,-||) a linear 2-normed space 
(cf. [10]). Some of the basic properties of the 2-norms are that they are 
nonnegative, and ||a;, y + aa:|| = ||x,j/|| for every x,y in X and every real 
number a. 

For any non-zero x\, X2, • • •, xn in X, let V{x\, ..., xn) denote the sub-
space of X generated by x\, X2, • • •, xn. Whenever the notation V(®i, • • • 
..., xn) is used, we will understand that linearly indepen-
dent. 

A concept which is closely related to linear 2-normed space is that of 
2-inner product spaces. For a linear space X of dimension greater than 1 let 
(•, • | •) be a real-valued function on X x X x X which satisfies the following 
conditions: 
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( / i ) (a:, a; | z) > 0; (x,x | z) = 0 if and only if x and 2 are linearly 
dependent; 

(I2) (x,x\z) = (z,z\x)-, 
(J3) (x,y\ z) = (y,x\ 2); 
(I4) (ax, y | z) = a(x, y \ z) for any real number a; 
(h) (x + x',y\z) = (x, y\z) + (x1, y \ z). 
(•, • | •) is called a 2—inner product and (X, (•, • | •)) a 2—inner product 

space ([3]). 
These spaces are studied extensively in [1], [2], [4]-[6] and [11], In [3] it 

is shown that | |x,2| | = (x,x | z)2 is a 2—norm on (X, ||-,-||). Every 2—inner 
product space will be considered to be a linear 2 -normed space with the 
2—norm ||a;,2|| = (x,x | z)2. R. Ehret [9] has shown that for any 2—inner 
product space (X, (•, • | •)), ||a;, z\\ = (x, x \ z)2 defines a 2-norm for which 

(1) (?,y\z) = |(||® + y, 2||2- \\x-y, z\\2), 
(2) \\x + y,z||2 + \\x - y, z\\2 = 2( | |*,z | |2 + ||j/,2||2). 

Besides, if (X, -||) is a linear 2—normed space in which condition (2), 
being a 2-dimensional analogue of the parallelogram law, is satisfied for every 
x,y,z E X, then a 2-inner product on X is defined on by (1). 

For a 2-inner product space (X, (•,• | •)) Cauchy-Schwarz's inequality 

K®»y I z)\ < I z)*{y,y I = 
a 2—dimensional analogue of Cauchy-Buniakowski-Schwarz's inequality, 
holds (cf. [3]). 

2. Ref inements of Cauchy-Schwarz's Inequality 
Throughout this paper, let (X, (•, • | •)) denote a 2—inner product space 

with ||a:,z|| = (x,x | 2)2, R the set of real numbers and N the set of natural 
numbers. 

THEOREM 2.1. Let x, y,z,u,v 6 X with z $ V(x, y, u, v) be such that 
(3) | | t i , 2 | | 2 <2(x ,u|2) , \\v,z\\2 <2(y,v\z). 
Then, we have the inequality 
(4) (2(x,u\z)-\\u,z\\2)H2(y,v\z)-\\v,z\\2)1* 

+ |(ar,y | z) - (x,v \ z) - (u,y\ z) + (u,v | z)\ < ||a:,z||||y,z||. 

P r o o f . Note that 

(5) (m2 - n2){p2 - q2) < (mp - nq)2 
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for every m , n,p,q£ R . Since 

\(x,y I z) ~{x,v \ z)- (u,y I z) + (u,v | z)|2 

= |(x -u,y-v | z ) | 2 < ||a; - w,2||2 | | i/ -

= (HMI2 + ||U^||2 - 2(x,u\ z))(\\y,z\\2 + \\v,zf - 2(y,v\ z)), 

by (5), we have 

(6) |(a;, y\z)-(x,v\z)-(u,y\z) + (u, v \ z)\2 

< {\\x,z\\\\y,z\\ - (2(x,u\ z) - \\u,z\\2)2(2(y,v\ z) - ||Ml¥}2-

On the o ther hand 

0 < (2(x,u | z) - ||u,z\\2)i < 11rc,z\\, 

0<(2(y,v\z)-\\v,z\\2)l < \\y,z\\, 

which imply 

(2(z , u | z) - \\u,z\\2)*{2{y,v\ z) - I h ^ 2 ) * < \\x, z\\\\y, z\\. 

Therefore, f rom (6), we have the inequality (4). This completes the 
proof. • 

C o r o l l a r y 2.2. Let x, y, z, e E X be such that ||e, 2|| = 1 and z ^ V(x, y, e). 
Then 

(7) \(x,y\z)\<\(x,y\z)-(x,e\z)(e,y\z)\ 

+\(x,e\z)(e,y\z)\<\\x,z\\\\y,z\\. 

P r o o f . If we pu t u = (x,e | z)e and v = (y, e | z)e, then the conditions (3) 
hold. In fac t , 

2(x,u\ z) - \\u,z\\2 = 2(x,(x,e \ z)e \ z) - ||(ar, e | z)e,z||2 

= 2 ( x , e | z)(x,e \ z) — (x,e | z)2 = (x,e | z)(x,e | z) > 0. 

And similarly for the second condition in (3). 
Moreover, 

| (x, y\z)-(x,v\z)-(u,y\z) + (u, v \ z)|4 

= I (x>f I z)-(x,e\ z)(y,e \z)-{x,e\ z){e,y\ z) + (x,e \ z)(y,e \ z)\ 

= l(®»0 I *) ~ {xie I z)(e,y | z)|, 

so, by Theorem 2.1, we have (7). • 

C o r o l l a r y 2.3. Let x,y,z 6 X be such that \\x,z\\2 < 2 , | | y ,2 | | 2 < 2 and 
z<£V(x,y). Then 

(8) \{x,y\z)\2{2-\\x,z\\2)*{2-\\y,z\\2)i 

+ | ( * , y | z)\\l - \\x,z\\2 - \\y,z\\2 + (x,y | z ) | 2 < \\x,z\\\\y,z\\. 
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P r o o f . If we put u = (x,y \ z)y and v = (y,x \ z)x, then the inequality (5) 
holds. Moreover, we have 

(2(x,u\z)-\\u,z\\2)H2(y,v\z)-\\v,z\\^ 

= \{x,y\z)\2{1-\\x,z\\2)h{2-\\y,z\\2)\, 

l(®» y\z)-(x,v\z)-(u,y\z) + (u, v | z)\ 

= \(x,y\ z)\\l - \\x,z\\2 - \\y,z\\2 + |(x)2/ | z)\2\. 

Therefore, by Theorem 2.1, we have the inequality (8). • 

THEOREM 2.4. Let x, y, z, e G X be such that ||e, z\\ = 1 and z £ V(x, y, e). 

Then 

(9) |(®, y\z) — {x,e \ z)(e, y \ z)\2 

<{\\x,z\\2-\{x,e\z)\2){\\y,zr-\{y,e\z)\>). 

P r o o f . Consider a mapping P : X X X X X —>R defined by P(x,y,z) = 

(x, y\z) — (x,e\ z)(e, y \ z) for every x, y,z,e G X, having the properties: 

( i ) P(x,x,z) > 0, 
(ii) P{ax + fix', y, z) = P(x, y, z) + /3P(x', y, z), 

(iii) P(x,y,z) = P(y,x,z). 

Then Cauchy-Schwarz's inequality 

(10) \P(x,y,z)\2 <P(x,x,z)P(y,y,z) 

holds. Indeed, we observe that 

0 < P(x + aP(x, y, z)y, x + aP(x, y, z)y, z) 

= P{x, x, z) + 2 a P ( x , y, zf + a2P(x, y, z)2P{y, y, z), Va G R . 

It is well known that if a > 0 and aa2 + ba + c > 0 for all a G R then 
A = b2 — 4ac < 0. By the above inequality we deduce 

(11) P(x, y, zf < P(x, x, z)P(y, y, z)P(x, y, z)2. 

If P ( x , y, z) = 0 then (10) holds. If P(x, y, z) ^ 0 then we can devide in (11) 
by P(x,y,z)2 and obtain (10). 

The theorem is thus proved. • 

REMARK 2.1. By the inequalities (5) and (9), we have 

1(3, J/1 z) - (x,e | z)(e,y | z)\2 

<(\\x,z\\2-\(x,e\z)\2)(\\y,z\\2-\(y,e\z)\2) 

<(\\x,z\\\\y,z\\-\(x,e\z)(e,y\z)\)2. 
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Since | |z,z| | | |y,z| | > |(x,e | z)(e,y\ z)\, we get 

\(x,y | z) - (x,e | z)(e,y\ z)\ < ||z,z||||y,2|| - \(x,e | z)(e,y \ z)\ 

which yields the inequality (7). 

COROLLARY 2.5. Let x, y, z, e E X be such that ||e, z\\ = 1 and z ^ V(x, y, e). 
Then 

(12) (II® + y-iz\\2 — l(x + I z)\2)* 

< (||x,Z||2 - |(ar,e| z)\2)* + ( M 2 - \(y,e \ z)|2)*. 

P r o o f . If we define S : X X X —• R by S(x,z) = P(x,x,z)i for every 
x,y € X and use the triangle inequality for S(x,z), then we have (12). • 

COROLLARY 2 . 6 . For every non-zero x,y,z,u G X, with z £ V(x,y,u), we 
have 

(13) 
I z ) 

l*»*llll M 

< 1 + 2 

+ (y,u I z) 
II». «1111«» 1̂1 

+ (u,x I z) 
\u,z\\\\x,z\\ 

(x,y | z)(y,u | z)(u,x | z) 

For the proof of next theorem, we need the following lemma. 

LEMMA 2 . 7 . For every non-zero x,y,z £ X with z ^ V(x,y), we have 
x y 

( 1 4 ) ( M + M ) 

P r o o f . Since 

x,z II \\y,z 

x , z \ \ , h , 2 

h z <2\\x-y,z\\. 

+ 
I IMI \\x,z 

> 2 , 

we have the inequality 

(||x,*|| + M ) 2 - ( * > y | z ) ®>*ll , \\y^z\ + 2(x ,» | 
• I IMI 11«, 4 

<2 | |* ,z | | 2 + | | y , z | | 2 - 4 ( z , y | z ) 

which implies (14). • 

THEOREM 2 . 8 . For every non-zero x,y,z £ X with z £ V(x,y) we have 

( 1 5 ) ( | | * , Z | | + | | Y , * | | ) 2 ( 
y + 

\x,z\\ | | y , « 

<8( | |* ,z | | 2 + | | M I 2 ) -

x y z 

I I M I ' 
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P r o o f . By (14) we have 

M + I I M I ) 2 ( 
X y 

\x,z\\ M " 
+ \x,z\\ + y 

M " 
<4(\\x-y,z\\* + \\x + y,z\\*) 

and, by a 2—dimensional analogue of the parallelogram law, we get (15). • 

REMARK 2.2 . For some similar results in inner product spaces, see [7]. 

3. Aczel's Inequality 
In this section, we shall point out some results in 2—inner product spaces 

in connection to Aczel's inequality [12]. For some other similar results in 
inner products, see [8]. We note that the results obtained here, in 2—inner 
product spaces used different techniques as those in [8]. 

THEOREM 3.1. Let (X, (•,• | •)) be a 2-inner product space, M\,M2 G R 
and x,y,z € X such that ||»,2|| < \M\\, z\\ < \M2\, then 

(16) {Ml - | | M | 2 ) ( M 2 - \\y,z\\2) < {\MXM2\ - (x,y \ z))\ 

P r o o f . Using the elementary inequality (5), we get 

0 < ( M I - | |X ,Z | | 2 ) (M 2
2 - HI/,,112) < ( | M I M 2 | - | |A;,Z| | | |Y,Z| | )2 

and, by Cauchy-Schwarz's inequality, 

Q<\M1M2\-\\x,z\\\\y,z\\<\M1M2\-(x,y\z) 

implying (16). • 

COROLLARY 3.2. Ifx,y,zeX and M > 0 are such that z\\ < M, 
then we have the inequality 

(17) 0 < | | Z , Z | | 2 | | M | 2 - («,Y I zf < M2\\x - y,z\\2 

which is a counterpart of Cauchy-Schwarz's inequality. 

Another result similar to the generalization (16) of Aczel's inequality, is 
the following one 

THEOREM 3.3. Let (X, (•,• | •)) be a 2-inner product space, MI ,M 2 € R 
and x,y,z € X such that ||ar,z|| < |MI|, ||Y, z\\ < Then 

(18 ) ( | M I | - \\x,z\\)Hm - | | Y > , | | ) I < | M ! M 2 | I - \(x,y \ z)|I. 

P r o o f . Applying (5) for m = s/\Mi\, p = y/\M2\, n = \Zp7z|f, q = 
v/jj^lff and using Cauchy-Schwarz's inequality for 2—inner products we 
deduce, (18). • 
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COROLLARY 3.4 . Suppose that x,y,z € X and M > 0 are such that ||x,z||, 
||j/, z|| < M. Then we have the following converse of Cauchy-Schwarz's in-
equality 

(19) 0 < ||x, z||||j/, — 1(2,3/ | z)\ 
<M(\\x,z\\ + \\y,z\\-2\(x,y\z)\1'3). 

THEOREM 3 .5 . Let (•,• | •) be a 2—inner product and {(•,• | - ) J } teN a se~ 
quence of 2—inner products satisfying 

oo 
(20) ||x,*||2> J > , * | l ? 

¿=0 
for all x,z, being linearly independent. Then we have the following refine-
ment of Cauchy-Schwarz's inequality 

> 0 (21) M U M ! - l (* ,y I *)\ > [ E M E M i - l(®»y I *)l 
t=0 t'=0 

for all x,y,z € X. 

P r o o f . Let n G N and n > 1. Define the mapping 
n 

0*. y \z)n = (x, y\z)~ y I zh x,y,ze x. 
i=0 

We observe, by (20), that the mapping (•, • | -)n satisfies the properties 

(i) ( x , x | * ) n > 0 , 
(ii) (ax + fix', y \ z)n = a(x, y\z)n + /?(x', y \ z)n, 

(iii) (x, y\z)n = (y, x | z)n 

for every x, x', y,z 6 X and a, a' (E R . 
By a similar proof to that in Theorem 2.4, we can state Cauchy-Schwarz's 

inequality 

(x, x | z)„(y, y | z)n > |(x, y \ z)n|2, x, y, z 6 X, 

that is 

(22) (||x, z||2 - E ||x, z||?) (||y, z||2 - E ||j/, z\\t) 
i=0 i—0 

, 2 
( ( x , j / | z ) - E ( ® , i / U ) . ) • > 

¿=0 
Using Aczel's inequality [12] 

Til 771 771 n 
{ a 2 - < ( < * - £ « * ) , 

i=0 t'=0 «=0 
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where a, 6, a,, £>,- G R for i = 0 , . . . , m; we can prove that 

(23) { \ \ x , z \ \ \ \ y , z \ \ - j 2 \ \ ^ 4 i \ \ y , 4 i y 
i=0 

1=0 «'=0 
for all x, y, z G X. Since, by Cauchy-Buniakowski-Schwarz's inequality, 

I I M I M > ( ¿ l k ^ l L 2 E l l y ^ l l t
? ) 1 / 2 ^ ¿ M . I I M I i , 

»'=0 »'=0 t'=0 
then, by (22) and (23), we deduce 

n 

H ^ l l l l y ^ l l - X i l l ^ l W I M I ' ' 
¿=0 

= II*, z\\\\y, z\\ - £ 11«, ,||,-||y, *||(-| > |(s, y \ z)\ - £ |(*. 2/ | *)i| 
¿=0 ¿=0 

which implies (21), by using the inequality 

ll*>*IMItf>*ll«"- !(*>» I z)i\ ^ 
The theorem is thus proved. • 

The following corollaries are interesting as refinements of the triangle 
inequality for 2-norms generated by 2-inner products. 

COROLLARY 3 . 6 . With the assumptions from Theorem, we have the following 
refinement of the triangle inequality 

(\\x,z\\ + \\y,z\\)2-\\x + y,z\\2 

oo 
> D d l M I < + I IMI . ) 2 - Ik + v,4i] > 0, X. 

«'=0 
COROLLARY 3 . 7 . Let (.,. | . ) I , (.,. | .)2 be two 2-inner products such that 

\\x,z\\2 > ||®,*||i 

for all x, z being linearly independent in X. Then 

\\x,z\\2\\y,z\\2- | (*,y | , ) 2 | 

> ||®,*||i||y,*||i - \(x,y | z)a| > 0 , x,y,z G X. 

COROLLARY 3 . 8 . Let (.,. | .)i,(.,. | O2 be as above. Then 

(\\x,z\\2 + \\y,z\\2)*-\\x + y,z\\l 

> ( IK z||i + ||y, ¿| | i)2 - \\x + y, z\\\ > 0, x, y, z G X. 
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