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SOME INEQUALITIES IN 2-INNER PRODUCT SPACES

Abstract. In this paper we extend some results on the refinement of Cauchy-Buniakowski-
Schwarz’s inequality and Adzel’s inequality in inner product spaces to 2—inner product
spaces.

1. Introduction

Let X be a real linear space of dimension greater than 1 and let ||-, || be
a real-valued function on X X X satisfying the following conditions:

(V1) llz,y|| = 0 if and only if z and y are linearly dependent;

(Vo) Mz, ol = lly, =lf;
(N3) llaz, y|| = |||z, y|| for any real number «;

(No)  llzsy + 2l < lz, yll + I, 2]l

|I,<]| is called a 2—norm on X and (X,||:,-||) a linear 2-normed space
(cf. [10]). Some of the basic properties of the 2-norms are that they are
nonnegative, and ||z,y + az|| = ||z, y|| for every z,y in X and every real
number a.

For any non-zero z1, z2,...,Z, in X,let V(zy, 29, ..., z,) denote the sub-
space of X generated by 1, z9,...,z,. Whenever the notation V(z1,z2,...
...y Tp) is used, we will understand that z;,zs,...,z, are linearly indepen-
dent.

A concept which is closely related to linear 2-normed space is that of
2-inner product spaces. For a linear space X of dimension greater than 1 let
(-, | -) be a real-valued function on X x X x X which satisfies the following
conditions:
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(I) (z,z | 2) 2 0;(z,z | 2) = 0 if and only if z and z are linearly
dependent;

(1) (z,2]2) =(2,2] z);

(I3) (w,ylz):(y,zlz);

(1y) (az,y | 2) = a(z,y| z) for any real number ¢;

(Is)  (z+2y]2) = (9] 2)+ (9] 2).

(-y+ | -) is called a 2—inner product and (X, (-, ] :)) a 2—inner product
space ([3])-

These spaces are studied extensively in [1], [2], [4]-[6] and [11]. In [3] it

is shown that ||z, z|| = (z,z | z)% is a 2—norm on (X, ||-,¢||). Every 2—inner
product space will be considered to be a linear 2—normed space with the
1

2—norm ||z, z|| = (z,z | 2)2. R. Ehret [9] has shown that for any 2—inner
product space (X, (-, | ), |z, 2| = (z, 2z | z)%’ defines a 2-norm for which
(1) (z,912) = 3(llz + 9, 2l* = lz — g, 2lI*),
(2) e+, 2I” + lle — y, 2l1* = 2(/|=, 211> + [|y, 2[1%).

Besides, if (X, ||+,+]]) is a linear 2—normed space in which condition (2),

being a 2-dimensional analogue of the parallelogram law, is satisfied for every
z,y,z € X, then a 2-inner product on X is defined on by (1).
For a 2-inner product space (X, (-,-| -)) Cauchy-Schwarz’s inequality
1 1
l(z,y | 2)| < (2,2 | 2)2(y, 9 | 2)2 = ||z, 2]|||y, 2],

a 2—dimensional analogue of Cauchy-Buniakowski-Schwarz’s inequality,

holds (cf. [3]).

2. Refinements of Cauchy-Schwarz’s Inequality
Throughout this paper, let (X, (-, | -)) denote a 2—inner product space

with ||z, 2|| = (z,z | z)%, R the set of real numbers and N the set of natural
numbers.

THEOREM 2.1. Let z,y,z,u,v € X with z ¢ V(z,y,u,v) be such that
(3) v, 21> < 2z, u | 2), v, 2l1° < 2(y,v] 2).
Then, we have the inequality
@) (2z,u]2) - w2520 2) - ||, 2]1%)?

iz, y | 2) = (2,0] 2) = (v, 9] 2) + (w, v | 2)| < |2, 2llly, 2.
Proof. Note that
(5) (m? - a®)(p* - ¢*) < (mp - ng)?
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for every m,n,p,q € R. Since
(2,91 2) = (z,0] 2) = (v, y | 2) + (u,v ] 2)I?
=|(z - uy—v|2) < llz = u, 2|y - v, 2|
= (Il 201* + llu, 211> = 2(z, u | 2))(|ly, 2lI* + llo, 21 — 2(y, v | 2)),
by (5), we have
(6) (2,91 2) = (z,v] 2) = (u, 9| 2) + (u,v ] 2)|?
1 1
< Alle, 2lllly, 2ll = (2(z, u | 2) = llu, 211?)2 (2(y, v | 2) = [lv, 2[|*)7}>.
On the other hand
0< (2a,ul 2) = w27 < iz, 2],
1
0<(2y,v|2) — v, 2142 < Iy, 2],
which imply
1 1
2z, u | 2) = flu, 212 (2(y, v | 2) = ||v, 2l1*)7 < |, 2[llly, =]I-

Therefore, from (6), we have the inequality (4). This completes the
proof. m

COROLLARY 2.2. Let z,y,2z,e € X be such that |e,2|| = 1 and z &€ V(z,y,e).
Then
(7) I,y 1 2)| < (2,9 2) - (2,¢€]| 2)(e, ¥ | 2)|

+(z,e| 2)(e,y | 2)| < [z, 2[llly, =II.

Proof. If we put u = (z,e| 2)e and v = (y, e | 2)e, then the conditions (3)
hold. In fact,

2(27,11 | z) - I|U,2”2 = 2(1’,(3},6 | z)e l Z) - ||(a:,e I 2)6,2”2
=2z,e| 2)(z,e| 2) — (z,e]| 2)? = (z,e ]| z)(z,e| 2) > 0.

And similarly for the second condition in (3).
Moreover,

l(z,y|2) = (2,0 2) — (v,9]| 2) + (u,v ] 2)]4
=|(z,y|2) — (z,e| 2)(y,e| 2) = (z,e| 2)(e,y | 2) + (z,¢| 2)(y, | 2)|
=|(z,y|z) — (z,e | 2)(e,y | 2)l,
so, by Theorem 2.1, we have (7). =
COROLLARY 2.3. Let z,y,2 € X be such that ||z, z||? < 2,||y,2]|> < 2 and
z ¢ V(z,y). Then
(®) (@ y | P2 = llz, 2I?)3 (2 - lly, 2II%)=
H(z,y | 211 = llz, 2l = lly, 211> + (2,9 | 2)I* < |2, 2lllly, 2.
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Proof. If we put u = (z,y | z)y and v = (y,z | 2)z, then the inequality (5)
holds. Moreover, we have

(2=, 2) = llu, 222 2y, v | 2) = [lo, 2|1%)2
= |(z,9 | )2 = lle, 2l (2 = lly, 2lI)?,
l(z,y12) = (z,v]2) = (v, y| 2) + (v, v | 2)|
= (2,91 211 = llz, 21> = lly, 2l1* + |(z, 5 | 2)I?)-
Therefore, by Theorem 2.1, we have the inequality (8). =

THEOREM 2.4. Let z,y,2,e € X be such that |le,z|| = 1 and z & V(z,y,¢€).
Then

(9) |(z,y|z)—(z,e| z)(e,ylz)|2

< (ll2, 2l1? = I(=z, ] 2)12)lly, 211? = (v, e | 2)I?).

Proof. Consider a mapping P : X x X X X — R defined by P(z,y,2) =
(z,y| 2)— (z,e| 2)(e,y | 2) for every z,y, 2,e € X, having the properties:

(i) P(z,z,2) >0, ‘
(ii) P(az + Pz’ y,2) = P(z,y,2)+ BP(z,y,2),
(i) P(z,y,2) = P(3,2,2).

Then Cauchy-Schwarz’s inequality
(10) |P(z,v,2)|* < P(z,z,2)P(y,9, 2)
holds. Indeed, we observe that .
0< P(z+aP(z,y,2)y,z + aP(z,y,2)y,2)
= P(z,z,2) + 2aP(z,y,2)* + o*P(z,y,2)*P(y,y,2), Ve €R.

It is well known that if @ > 0 and aa? + ba+ ¢ > 0 for all & € R then
A = b? — 4ac < 0. By the above inequality we deduce

(11) P(z,y,2)* < P(z,2,2)P(y,y,2)P(,y,2)".

If P(z,y,2) = 0 then (10) holds. If P(z,y, 2) # 0 then we can devide in (11)
by P(z,y,2)? and obtain (10).
The theorem is thus proved. =

REMARK 2.1. By the inequalities (5) and (9), we have
I(z, 9 2) = (z,¢e] 2)(e,y | 2)|?
< (lle, 201 = |(z e | 2)1*)(Ilys 211> = (v, € | 2)I?)

< (llz, 2lllly, 2l = (=, e | 2)(e, y | 2)])*.
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Since [z, 2lllly, 2l > I(z,¢ | 2)(e, y | 2)], we get
(z,y12) = (z,e| 2)(e, 9 | 2)| < |z, zlllly, 2l| = |(=z, e | 2)(e, 9| 2)]
which yields the inequality (7).

COROLLARY 2.5. Let z,y,2,e € X be such that |le,z|| =1 and 2 ¢ V(z,y,e).
Then

(12) (e + 9,212 = |(z + y,e | 2)|?)?
< (lz, 2112 = [(z,e | 2)2)7 + (lly 211 = (v, € | 2)?)5.

Proof. If we define S : X x X —» R by S(z,2) = P(m,z,z)% for every
z,y € X and use the triangle inequality for S(z, z), then we have (12). »

COROLLARY 2.6. For every non-zero z,y,z,u € X, with 2 ¢ V(z,y,u), we
have

1) (@912 P | @l [ | (2]
o, 2llys 201 (T, 2,201 1Mo 2z, 21
(2912w, u| (w2 | 2)
<142
Iz, 21y, 2 llu, 211

For the proof of next theorem, we need the following lemma.

LEMMA 2.7. For every non-zero z,y,z € X with z & V(z,y), we have

¥y
14 z,z|| + lly, 2 z“SZ:v—yz.
19 e =D oy - ] < 2 -
Proof. Since
llz, 2l v, 2ll
+ >2
ly, 2l * lle,2ll =
we have the inequality
llz, 2l

(e, 21+ 217 - (21 2 (J) + 122 - 262,912
< 2,2 + g, =[P - 42,y 2
which implies (14). »

THEOREM 2.8. For every non-zero z,y,z € X with z ¢ V(z,y) we have

(15) (.2l + lls 24 2 )

Yy 2

—_—— 7
lz, 2l lly, 2l’
< 8(|l=, 2% + [y, 2If?)-

Y
— + ——
llz, 2l lly, 2|
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Proof. By (14) we have
2 z Y T Y
z,2||+ (Y, 2 (————z —_—— 2
N AN [ R 1 Bl P I e

)
<4(lle -y, 20 + llz + , 2]1?)
and, by a 2—dimensional analogue of the parallelogram law, we get (15). =

2
+

REMARK 2.2. For some similar results in inner product spaces, see [7].

3. Aézel’s Inequality

In this section, we shall point out some results in 2—inner product spaces
in connection to Aézel’s inequality [12]. For some other similar results in
inner products, see [8]. We note that the results obtained here, in 2—inner
product spaces used different techniques as those in [8].

THEOREM 3.1. Let (X,(-,- | +)) be a 2—inner product space, M1, M, € R
and z,y,2 € X such that ||z, 2|| < |Ma], ||y, 2| < |Mz], then

(16) (M3 = ||z, 2|*)( M3 = lly, 2]1*) < (1ML M) = (2, | 2))%
Proof. Using the elementary inequality (5), we get
0 < (M}~ ||z, 2l1*) (M3 — lly, 2I1?) < (1M1 Ma| = ||z, ]}||y, 2[])?
and, by Cauchy-Schwarz’s inequality,
0 < |MyM;| - ||z, 2|ll}y, z|| < |MaMz| ~ (2, y | 2)
implying (16). =

COROLLARY 3.2. If 2,y,2 € X and M > 0 are such that ||z, z||, ||y, 2| < M,
then we have the inequality

(17) 0 < iz, 2P|y, 211> - (2,9 | 2)* < M2||z — g, 2]|?
which is a counterpart of Cauchy-Schwarz’s inequality.

Another result similar to the generalization (16) of Aézel’s inequality, is
the following one

THEOREM 3.3. Let (X,(-,- | -)) be a 2—inner product space, M1, M2 € R
and z,y,z € X such that ||z, z|| < | M), ||y, z|| £ |Mq|. Then

(18)  (IMy] = lla, 2| (IMa] - lly, 2l))F < |MyMa|7 = |(2, 9| 2)]2.

Proof. Applying (5) for m = /[My], p = VIM:], n = /Jz,2]], ¢ =
V¥, 2]] and using Cauchy-Schwarz’s inequality for 2—inner products we
deduce, (18). =
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COROLLARY 3.4. Suppose that z,y,z € X and M > 0 are such that ||z, 2||,
lly, z|| £ M. Then we have the following converse of Cauchy-Schwarz’s in-
equality
(19) 0 < |z, 2lllly, 21l — (=, y | 2)]

< M(lla, 2l + lly, 2ll - 2|(=, v | 2)'/?).
THEOREM 3.5. Let (-, | -) be a 2—inner product and {(-,- | -)i}ieN @ se-
quence of 2—inner products satisfying

oo
(20) llz, 2l > 3 llz, 2112

=0
for all z,z, being linearly independent. Then we have the following refine-
menet of Cauchy-Schwarz’s inequality

@1) lle 2lllg, 2 = (2,91 2)] 2 [ D lles 20 3 N1y, 2lls = (25w [ 2)[] > 0
=0 =0

forallz,y,z€ X.
Proof. Let n € N and n > 1. Define the mapping

n
@,y 2)n = (2,91 2) - ) (5,9]2)i, z,9,2€X.
=0

We observe, by (20), that the mapping (:,- | -) satisfies the properties

(i) (z,2| 2)n 20,

(ii) (az + Bz',y | 2)n = o2,y | 2)n + B(z', y | 2)n,

(lll) (z‘)y | z)n = (y,:z: ' z)n
for every z,2',y,z € X and a,a’ € R.

By a similar proof to that in Theorem 2.4, we can state Cauchy-Schwarz’s
inequality
(2,2 | 2)a(,y | 2)n 2 (2,9 | 2)al’s 2,9,2€ X,

that is

(22) (e 2l = 3=l 212) (s 217 = 3 s 212)

1=0 1=0

> ((ev12)- Lol 2)"

i=0
Using Aézel’s inequality [12]
m

(-3 @) (- 3o82) < (b= Sa)’,

1=0 1=0 =0
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where a,b,a;,b; € R for ¢ = 0,...,m; we can prove that

23) (e, 2l )= 3l il 1)

=0
n n
> (llz, 212 = 3" lles 2l) (llys 212 = 3 My, 2112)
=0 =0
for all z,y,z € X. Since, by Cauchy-Buniakowski-Schwarz’s inequality,

n n 1/2 n
o, 2llly, 2l 2 (3 lhes 2023 My, 2l12) 7 = 3l 2l 2l
=0 =0 =0
then, by (22) and (23), we deduce
n
I, zlllly, 2l = > Iz, 2lldly, 21l:

1=0

n
= ll2, 2lllly, 2l = 3 lle, 2llly

1=0

> Wz, y | 2) =D (=, y1 2)il
1=0

which implies (21), by using the inequality
lz, zllilly, zll: — [(z,y | 2)i] 2 0.
The theorem is thus proved. =

The following corollaries are interesting as refinements of the triangle
inequality for 2-norms generated by 2-inner products.

COROLLARY 3.6. With the assumptions from Theorem, we have the following
refinement of the triangle inequality

(llz, 2l + lly, 2I)* = ll= + v, 21
0
> (e, zlli + lly, 2ll:)?* = lle + 9,271 2 0,  =,9,2€ X.

=0

CoRroLLARY 3.7. Let (.,.| )1,(-,.| -)2 be two 2-inner products such that
||a:,z||2 > ||1‘,2||1
for all z, z being linearly independent in X. Then
=, 2ll2lly, 2ll2 - 1(z, ¥ | 2)z]
Z ”:I:,z||1||y,z||1—l(:z:,ylz)ll 207 z,y,ZEX-

COROLLARY 3.8. Let (.,.]| )1,(.,.| .)2 be as above. Then

(e, 2ll2 + lly, 2ll12)* = ll= + v, 2113
> (||, 2ll1 + lly, 2l11)* = ll= + v, 21 2 0,2,9,z € X.
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