

Y. J. Cho, S. S. Dragomir, A. White, S. S. Kim

SOME INEQUALITIES IN 2-INNER PRODUCT SPACES

Abstract. In this paper we extend some results on the refinement of Cauchy-Buniakowski-Schwarz's inequality and Aczel's inequality in inner product spaces to 2-inner product spaces.

1. Introduction

Let X be a real linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ satisfying the following conditions:

- (N_1) $\|x, y\| = 0$ if and only if x and y are linearly dependent;
- (N_2) $\|x, y\| = \|y, x\|$;
- (N_3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ for any real number α ;
- (N_4) $\|x, y + z\| \leq \|x, y\| + \|x, z\|$.

$\|\cdot, \cdot\|$ is called a *2-norm* on X and $(X, \|\cdot, \cdot\|)$ a *linear 2-normed space* (cf. [10]). Some of the basic properties of the 2-norms are that they are nonnegative, and $\|x, y + \alpha x\| = \|x, y\|$ for every x, y in X and every real number α .

For any non-zero x_1, x_2, \dots, x_n in X , let $V(x_1, x_2, \dots, x_n)$ denote the subspace of X generated by x_1, x_2, \dots, x_n . Whenever the notation $V(x_1, x_2, \dots, x_n)$ is used, we will understand that x_1, x_2, \dots, x_n are linearly independent.

A concept which is closely related to linear 2-normed space is that of 2-inner product spaces. For a linear space X of dimension greater than 1 let $(\cdot, \cdot | \cdot)$ be a real-valued function on $X \times X \times X$ which satisfies the following conditions:

1991 *Mathematics Subject Classification*: Primary 26D99; Secondary 46Cxx.

Key words and phrases: 2-Inner Product, Cauchy-Buniakowski-Schwarz's Inequality, Triangle Inequality, Aczel's Inequality.

This paper has been supported in part by NON-DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

(I_1) $(x, x | z) \geq 0$; $(x, x | z) = 0$ if and only if x and z are linearly dependent;

$$(I_2) \quad (x, x | z) = (z, z | x);$$

$$(I_3) \quad (x, y | z) = (y, x | z);$$

$$(I_4) \quad (\alpha x, y | z) = \alpha(x, y | z) \text{ for any real number } \alpha;$$

$$(I_5) \quad (x + x', y | z) = (x, y | z) + (x', y | z).$$

$(\cdot, \cdot | \cdot)$ is called a 2-*inner* product and $(X, (\cdot, \cdot | \cdot))$ a 2-*inner product space* ([3]).

These spaces are studied extensively in [1], [2], [4]-[6] and [11]. In [3] it is shown that $\|x, z\| = (x, x | z)^{\frac{1}{2}}$ is a 2-norm on $(X, \|\cdot, \cdot\|)$. Every 2-inner product space will be considered to be a linear 2-normed space with the 2-norm $\|x, z\| = (x, x | z)^{\frac{1}{2}}$. R. Ehret [9] has shown that for any 2-inner product space $(X, (\cdot, \cdot | \cdot))$, $\|x, z\| = (x, x | z)^{\frac{1}{2}}$ defines a 2-norm for which

$$(1) \quad (x, y | z) = \frac{1}{4}(\|x + y, z\|^2 - \|x - y, z\|^2),$$

$$(2) \quad \|x + y, z\|^2 + \|x - y, z\|^2 = 2(\|x, z\|^2 + \|y, z\|^2).$$

Besides, if $(X, \|\cdot, \cdot\|)$ is a linear 2-normed space in which condition (2), being a 2-dimensional analogue of the parallelogram law, is satisfied for every $x, y, z \in X$, then a 2-inner product on X is defined on by (1).

For a 2-inner product space $(X, (\cdot, \cdot | \cdot))$ Cauchy-Schwarz's inequality

$$|(x, y | z)| \leq (x, x | z)^{\frac{1}{2}}(y, y | z)^{\frac{1}{2}} = \|x, z\| \|y, z\|,$$

a 2-dimensional analogue of Cauchy-Buniakowski-Schwarz's inequality, holds (cf. [3]).

2. Refinements of Cauchy-Schwarz's Inequality

Throughout this paper, let $(X, (\cdot, \cdot | \cdot))$ denote a 2-inner product space with $\|x, z\| = (x, x | z)^{\frac{1}{2}}$, \mathbf{R} the set of real numbers and \mathbf{N} the set of natural numbers.

THEOREM 2.1. *Let $x, y, z, u, v \in X$ with $z \notin V(x, y, u, v)$ be such that*

$$(3) \quad \|u, z\|^2 \leq 2(x, u | z), \quad \|v, z\|^2 \leq 2(y, v | z).$$

Then, we have the inequality

$$(4) \quad (2(x, u | z) - \|u, z\|^2)^{\frac{1}{2}}(2(y, v | z) - \|v, z\|^2)^{\frac{1}{2}} \\ + |(x, y | z) - (x, v | z) - (u, y | z) + (u, v | z)| \leq \|x, z\| \|y, z\|.$$

P r o o f. Note that

$$(5) \quad (m^2 - n^2)(p^2 - q^2) \leq (mp - nq)^2$$

for every $m, n, p, q \in \mathbf{R}$. Since

$$\begin{aligned} & |(x, y | z) - (x, v | z) - (u, y | z) + (u, v | z)|^2 \\ &= |(x - u, y - v | z)|^2 \leq \|x - u, z\|^2 \|y - v, z\|^2 \\ &= (\|x, z\|^2 + \|u, z\|^2 - 2(x, u | z))(\|y, z\|^2 + \|v, z\|^2 - 2(y, v | z)), \end{aligned}$$

by (5), we have

$$\begin{aligned} (6) \quad & |(x, y | z) - (x, v | z) - (u, y | z) + (u, v | z)|^2 \\ & \leq \{\|x, z\| \|y, z\| - (2(x, u | z) - \|u, z\|^2)^{\frac{1}{2}} (2(y, v | z) - \|v, z\|^2)^{\frac{1}{2}}\}^2. \end{aligned}$$

On the other hand

$$\begin{aligned} 0 &\leq (2(x, u | z) - \|u, z\|^2)^{\frac{1}{2}} \leq \|x, z\|, \\ 0 &\leq (2(y, v | z) - \|v, z\|^2)^{\frac{1}{2}} \leq \|y, z\|, \end{aligned}$$

which imply

$$(2(x, u | z) - \|u, z\|^2)^{\frac{1}{2}} (2(y, v | z) - \|v, z\|^2)^{\frac{1}{2}} \leq \|x, z\| \|y, z\|.$$

Therefore, from (6), we have the inequality (4). This completes the proof. ■

COROLLARY 2.2. *Let $x, y, z, e \in X$ be such that $\|e, z\| = 1$ and $z \notin V(x, y, e)$. Then*

$$(7) \quad \begin{aligned} |(x, y | z)| &\leq |(x, y | z) - (x, e | z)(e, y | z)| \\ &+ |(x, e | z)(e, y | z)| \leq \|x, z\| \|y, z\|. \end{aligned}$$

P r o o f. If we put $u = (x, e | z)e$ and $v = (y, e | z)e$, then the conditions (3) hold. In fact,

$$\begin{aligned} 2(x, u | z) - \|u, z\|^2 &= 2(x, (x, e | z)e | z) - \|(x, e | z)e, z\|^2 \\ &= 2(x, e | z)(x, e | z) - (x, e | z)^2 = (x, e | z)(x, e | z) \geq 0. \end{aligned}$$

And similarly for the second condition in (3).

Moreover,

$$\begin{aligned} & |(x, y | z) - (x, v | z) - (u, y | z) + (u, v | z)|^2 \\ &= |(x, y | z) - (x, e | z)(y, e | z) - (x, e | z)(e, y | z) + (x, e | z)(y, e | z)| \\ &= |(x, y | z) - (x, e | z)(e, y | z)|, \end{aligned}$$

so, by Theorem 2.1, we have (7). ■

COROLLARY 2.3. *Let $x, y, z \in X$ be such that $\|x, z\|^2 \leq 2, \|y, z\|^2 \leq 2$ and $z \notin V(x, y)$. Then*

$$(8) \quad \begin{aligned} & |(x, y | z)|^2 (2 - \|x, z\|^2)^{\frac{1}{2}} (2 - \|y, z\|^2)^{\frac{1}{2}} \\ &+ |(x, y | z)| |1 - \|x, z\|^2 - \|y, z\|^2 + (x, y | z)|^2 \leq \|x, z\| \|y, z\|. \end{aligned}$$

Proof. If we put $u = (x, y | z)y$ and $v = (y, x | z)x$, then the inequality (5) holds. Moreover, we have

$$\begin{aligned} & (2(x, u | z) - \|u, z\|^2)^{\frac{1}{2}}(2(y, v | z) - \|v, z\|^2)^{\frac{1}{2}} \\ &= |(x, y | z)|^2(2 - \|x, z\|^2)^{\frac{1}{2}}(2 - \|y, z\|^2)^{\frac{1}{2}}, \\ & |(x, y | z) - (x, v | z) - (u, y | z) + (u, v | z)| \\ &= |(x, y | z)||1 - \|x, z\|^2 - \|y, z\|^2 + |(x, y | z)|^2|. \end{aligned}$$

Therefore, by Theorem 2.1, we have the inequality (8). ■

THEOREM 2.4. *Let $x, y, z, e \in X$ be such that $\|e, z\| = 1$ and $z \notin V(x, y, e)$. Then*

$$\begin{aligned} (9) \quad & |(x, y | z) - (x, e | z)(e, y | z)|^2 \\ & \leq (\|x, z\|^2 - |(x, e | z)|^2)(\|y, z\|^2 - |(y, e | z)|^2). \end{aligned}$$

Proof. Consider a mapping $P : X \times X \times X \rightarrow \mathbf{R}$ defined by $P(x, y, z) = (x, y | z) - (x, e | z)(e, y | z)$ for every $x, y, z, e \in X$, having the properties:

- (i) $P(x, x, z) \geq 0$,
- (ii) $P(\alpha x + \beta x', y, z) = P(x, y, z) + \beta P(x', y, z)$,
- (iii) $P(x, y, z) = P(y, x, z)$.

Then Cauchy-Schwarz's inequality

$$(10) \quad |P(x, y, z)|^2 \leq P(x, x, z)P(y, y, z)$$

holds. Indeed, we observe that

$$\begin{aligned} 0 & \leq P(x + \alpha P(x, y, z)y, x + \alpha P(x, y, z)y, z) \\ & = P(x, x, z) + 2\alpha P(x, y, z)^2 + \alpha^2 P(x, y, z)^2 P(y, y, z), \quad \forall \alpha \in \mathbf{R}. \end{aligned}$$

It is well known that if $a \geq 0$ and $a\alpha^2 + b\alpha + c \geq 0$ for all $\alpha \in \mathbf{R}$ then $\Delta = b^2 - 4ac \leq 0$. By the above inequality we deduce

$$(11) \quad P(x, y, z)^4 \leq P(x, x, z)P(y, y, z)P(x, y, z)^2.$$

If $P(x, y, z) = 0$ then (10) holds. If $P(x, y, z) \neq 0$ then we can devide in (11) by $P(x, y, z)^2$ and obtain (10).

The theorem is thus proved. ■

REMARK 2.1. By the inequalities (5) and (9), we have

$$\begin{aligned} & |(x, y | z) - (x, e | z)(e, y | z)|^2 \\ & \leq (\|x, z\|^2 - |(x, e | z)|^2)(\|y, z\|^2 - |(y, e | z)|^2) \\ & \leq (\|x, z\| \|y, z\| - |(x, e | z)(e, y | z)|)^2. \end{aligned}$$

Since $\|x, z\| \|y, z\| \geq |(x, e \mid z)(e, y \mid z)|$, we get

$$|(x, y \mid z) - (x, e \mid z)(e, y \mid z)| \leq \|x, z\| \|y, z\| - |(x, e \mid z)(e, y \mid z)|$$

which yields the inequality (7).

COROLLARY 2.5. *Let $x, y, z, e \in X$ be such that $\|e, z\| = 1$ and $z \notin V(x, y, e)$. Then*

$$(12) \quad \begin{aligned} & (\|x + y, z\|^2 - |(x + y, e \mid z)|^2)^{\frac{1}{2}} \\ & \leq (\|x, z\|^2 - |(x, e \mid z)|^2)^{\frac{1}{2}} + (\|y, z\|^2 - |(y, e \mid z)|^2)^{\frac{1}{2}}. \end{aligned}$$

P r o o f. If we define $S : X \times X \rightarrow \mathbf{R}$ by $S(x, z) = P(x, x, z)^{\frac{1}{2}}$ for every $x, y \in X$ and use the triangle inequality for $S(x, z)$, then we have (12). ■

COROLLARY 2.6. *For every non-zero $x, y, z, u \in X$, with $z \notin V(x, y, u)$, we have*

$$(13) \quad \begin{aligned} & \left| \frac{(x, y \mid z)}{\|x, z\| \|y, z\|} \right|^2 + \left| \frac{(y, u \mid z)}{\|y, z\| \|u, z\|} \right|^2 + \left| \frac{(u, x \mid z)}{\|u, z\| \|x, z\|} \right|^2 \\ & \leq 1 + 2 \left| \frac{(x, y \mid z)(y, u \mid z)(u, x \mid z)}{\|x, z\|^2 \|y, z\|^2 \|u, z\|^2} \right|. \end{aligned}$$

For the proof of next theorem, we need the following lemma.

LEMMA 2.7. *For every non-zero $x, y, z \in X$ with $z \notin V(x, y)$, we have*

$$(14) \quad (\|x, z\| + \|y, z\|) \left\| \frac{x}{\|x, z\|} - \frac{y}{\|y, z\|}, z \right\| \leq 2\|x - y, z\|.$$

P r o o f. Since

$$\frac{\|x, z\|}{\|y, z\|} + \frac{\|y, z\|}{\|x, z\|} \geq 2,$$

we have the inequality

$$\begin{aligned} & (\|x, z\| + \|y, z\|)^2 - (x, y \mid z) \left(\frac{\|x, z\|}{\|y, z\|} + \frac{\|y, z\|}{\|x, z\|} \right) - 2(x, y \mid z) \\ & \leq 2\|x, z\|^2 + \|y, z\|^2 - 4(x, y \mid z) \end{aligned}$$

which implies (14). ■

THEOREM 2.8. *For every non-zero $x, y, z \in X$ with $z \notin V(x, y)$ we have*

$$(15) \quad \begin{aligned} & (\|x, z\| + \|y, z\|)^2 \left(\left\| \frac{x}{\|x, z\|} - \frac{y}{\|y, z\|}, z \right\|^2 + \left\| \frac{x}{\|x, z\|} + \frac{y}{\|y, z\|}, z \right\|^2 \right) \\ & \leq 8(\|x, z\|^2 + \|y, z\|^2). \end{aligned}$$

Proof. By (14) we have

$$\begin{aligned} (\|x, z\| + \|y, z\|)^2 & \left(\left\| \frac{x}{\|x, z\|} - \frac{y}{\|y, z\|}, z \right\|^2 + \left\| \frac{x}{\|x, z\|} + \frac{y}{\|y, z\|}, z \right\|^2 \right) \\ & \leq 4(\|x - y, z\|^2 + \|x + y, z\|^2) \end{aligned}$$

and, by a 2-dimensional analogue of the parallelogram law, we get (15). ■

REMARK 2.2. For some similar results in inner product spaces, see [7].

3. Aczel's Inequality

In this section, we shall point out some results in 2-inner product spaces in connection to Aczel's inequality [12]. For some other similar results in inner products, see [8]. We note that the results obtained here, in 2-inner product spaces used different techniques as those in [8].

THEOREM 3.1. *Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space, $M_1, M_2 \in \mathbf{R}$ and $x, y, z \in X$ such that $\|x, z\| \leq |M_1|$, $\|y, z\| \leq |M_2|$, then*

$$(16) \quad (M_1^2 - \|x, z\|^2)(M_2^2 - \|y, z\|^2) \leq (|M_1 M_2| - (x, y | z))^2.$$

Proof. Using the elementary inequality (5), we get

$$0 \leq (M_1^2 - \|x, z\|^2)(M_2^2 - \|y, z\|^2) \leq (|M_1 M_2| - \|x, z\| \|y, z\|)^2$$

and, by Cauchy-Schwarz's inequality,

$$0 \leq |M_1 M_2| - \|x, z\| \|y, z\| \leq |M_1 M_2| - (x, y | z)$$

implying (16). ■

COROLLARY 3.2. *If $x, y, z \in X$ and $M > 0$ are such that $\|x, z\|, \|y, z\| \leq M$, then we have the inequality*

$$(17) \quad 0 \leq \|x, z\|^2 \|y, z\|^2 - (x, y | z)^2 \leq M^2 \|x - y, z\|^2$$

which is a counterpart of Cauchy-Schwarz's inequality.

Another result similar to the generalization (16) of Aczel's inequality, is the following one

THEOREM 3.3. *Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space, $M_1, M_2 \in \mathbf{R}$ and $x, y, z \in X$ such that $\|x, z\| \leq |M_1|$, $\|y, z\| \leq |M_2|$. Then*

$$(18) \quad (|M_1| - \|x, z\|)^{\frac{1}{2}} (|M_2| - \|y, z\|)^{\frac{1}{2}} \leq |M_1 M_2|^{\frac{1}{2}} - |(x, y | z)|^{\frac{1}{2}}.$$

Proof. Applying (5) for $m = \sqrt{|M_1|}$, $p = \sqrt{|M_2|}$, $n = \sqrt{\|x, z\|}$, $q = \sqrt{\|y, z\|}$ and using Cauchy-Schwarz's inequality for 2-inner products we deduce, (18). ■

COROLLARY 3.4. Suppose that $x, y, z \in X$ and $M > 0$ are such that $\|x, z\|, \|y, z\| \leq M$. Then we have the following converse of Cauchy-Schwarz's inequality

$$(19) \quad \begin{aligned} 0 &\leq \|x, z\| \|y, z\| - |(x, y | z)| \\ &\leq M(\|x, z\| + \|y, z\| - 2|(x, y | z)|^{1/2}). \end{aligned}$$

THEOREM 3.5. Let $(\cdot, \cdot | \cdot)$ be a 2-inner product and $\{(\cdot, \cdot | \cdot)_i\}_{i \in \mathbb{N}}$ a sequence of 2-inner products satisfying

$$(20) \quad \|x, z\|^2 > \sum_{i=0}^{\infty} \|x, z\|_i^2$$

for all x, z , being linearly independent. Then we have the following refinement of Cauchy-Schwarz's inequality

$$(21) \quad \|x, z\| \|y, z\| - |(x, y | z)| \geq \left[\sum_{i=0}^{\infty} \|x, z\|_i \sum_{i=0}^{\infty} \|y, z\|_i - |(x, y | z)| \right] \geq 0$$

for all $x, y, z \in X$.

Proof. Let $n \in \mathbb{N}$ and $n \geq 1$. Define the mapping

$$(x, y | z)_n = (x, y | z) - \sum_{i=0}^n (x, y | z)_i, \quad x, y, z \in X.$$

We observe, by (20), that the mapping $(\cdot, \cdot | \cdot)_n$ satisfies the properties

- (i) $(x, x | z)_n \geq 0$,
- (ii) $(\alpha x + \beta x', y | z)_n = \alpha(x, y | z)_n + \beta(x', y | z)_n$,
- (iii) $(x, y | z)_n = (y, x | z)_n$

for every $x, x', y, z \in X$ and $\alpha, \alpha' \in \mathbb{R}$.

By a similar proof to that in Theorem 2.4, we can state Cauchy-Schwarz's inequality

$$(x, x | z)_n (y, y | z)_n \geq |(x, y | z)_n|^2, \quad x, y, z \in X,$$

that is

$$(22) \quad \begin{aligned} &\left(\|x, z\|^2 - \sum_{i=0}^n \|x, z\|_i^2 \right) \left(\|y, z\|^2 - \sum_{i=0}^n \|y, z\|_i^2 \right) \\ &\geq \left((x, y | z) - \sum_{i=0}^n (x, y | z)_i \right)^2. \end{aligned}$$

Using Aczel's inequality [12]

$$\left(a^2 - \sum_{i=0}^m a_i^2 \right) \left(b^2 - \sum_{i=0}^m b_i^2 \right) \leq \left(ab - \sum_{i=0}^m a_i b_i \right)^2,$$

where $a, b, a_i, b_i \in \mathbf{R}$ for $i = 0, \dots, m$; we can prove that

$$(23) \quad \begin{aligned} & \left(\|x, z\| \|y, z\| - \sum_{i=0}^n \|x, z\|_i \|y, z\|_i \right)^2 \\ & \geq \left(\|x, z\|^2 - \sum_{i=0}^n \|x, z\|_i^2 \right) \left(\|y, z\|^2 - \sum_{i=0}^n \|y, z\|_i^2 \right) \end{aligned}$$

for all $x, y, z \in X$. Since, by Cauchy-Buniakowski-Schwarz's inequality,

$$\|x, z\| \|y, z\| \geq \left(\sum_{i=0}^n \|x, z\|_i^2 \sum_{i=0}^n \|y, z\|_i^2 \right)^{1/2} \geq \sum_{i=0}^n \|x, z\|_i \|y, z\|_i,$$

then, by (22) and (23), we deduce

$$\begin{aligned} & \|x, z\| \|y, z\| - \sum_{i=0}^n \|x, z\|_i \|y, z\|_i \\ & = \left| \|x, z\| \|y, z\| - \sum_{i=0}^n \|x, z\|_i \|y, z\|_i \right| \geq |(x, y | z)| - \sum_{i=0}^n |(x, y | z)_i| \end{aligned}$$

which implies (21), by using the inequality

$$\|x, z\|_i \|y, z\|_i - |(x, y | z)_i| \geq 0.$$

The theorem is thus proved. ■

The following corollaries are interesting as refinements of the triangle inequality for 2-norms generated by 2-inner products.

COROLLARY 3.6. *With the assumptions from Theorem, we have the following refinement of the triangle inequality*

$$\begin{aligned} & (\|x, z\| + \|y, z\|)^2 - \|x + y, z\|^2 \\ & \geq \sum_{i=0}^{\infty} [(\|x, z\|_i + \|y, z\|_i)^2 - \|x + y, z\|_i^2] \geq 0, \quad x, y, z \in X. \end{aligned}$$

COROLLARY 3.7. *Let $(., . | .)_1, (., . | .)_2$ be two 2-inner products such that*

$$\|x, z\|_2 > \|x, z\|_1$$

for all x, z being linearly independent in X . Then

$$\begin{aligned} & \|x, z\|_2 \|y, z\|_2 - |(x, y | z)_2| \\ & \geq \|x, z\|_1 \|y, z\|_1 - |(x, y | z)_1| \geq 0, \quad x, y, z \in X. \end{aligned}$$

COROLLARY 3.8. *Let $(., . | .)_1, (., . | .)_2$ be as above. Then*

$$\begin{aligned} & (\|x, z\|_2 + \|y, z\|_2)^2 - \|x + y, z\|_2^2 \\ & \geq (\|x, z\|_1 + \|y, z\|_1)^2 - \|x + y, z\|_1^2 \geq 0, x, y, z \in X. \end{aligned}$$

References

- [1] Y. J. Cho, S. S. Kim, *Gâteaux derivatives and 2-inner product spaces*, *Glašnik Mat.* 27 (1992), 271–282.
- [2] Y. J. Cho, C. S. Lin, A. Misiak, *Theory of 2-Inner Product Spaces*, unpublished book.
- [3] C. Diminnie, S. Gähler, A. White, *2-inner product spaces*, *Demonstratio Math.* 6 (1973), 525–536.
- [4] C. Diminnie, S. Gähler, A. White, *Remarks on generalizations of 2-inner products*, *Math. Nachr.* 74 (1974), 269–278.
- [5] C. Diminnie, S. Gähler, A. White, *2-inner product spaces II*, *Demonstratio Math.* 10 (1977), 169–188.
- [6] C. Diminnie, A. White, *2-inner product spaces and Gâteaux partial derivatives*, *Comment. Math. Univ. Carolinae*, 16 (1975), 115–119.
- [7] S. S. Dragomir, I. Sándor, *Some inequalities in prehilbertian spaces*, *Studia Univ. Babes-Bolyai, Mathematica*, 32 (1987), 71–78.
- [8] S. S. Dragomir, *A generalization of Aczél's inequality in inner product spaces*, *Acta Math. Hungar.* 65 (1994), 141–148.
- [9] R. Ehret, *Linear 2-normed spaces*, Doctoral Diss., Saint Louis Univ., 1969.
- [10] S. Gähler, *Lineare 2-normierte Räume*, *Math. Nachr.* 28 (1965), 1–43.
- [11] S. Gähler, A. Misiak, *Remarks on 2-inner products*, *Demonstratio Math.* 17 (1984), 655–670.
- [12] D. S. Mitrinović, *Analytic Inequalities*, Springer Verlag, 1970.

Y. J. Cho

DEPARTMENT OF MATHEMATICS
GYEONSANG NATIONAL UNIVERSITY
CHINJU 660-701, KOREA
E-mail: yjcho@nongae.gsnu.ac.kr

S. S. Dragomir

SCHOOL OF COMMUNICATIONS AND INFORMATICS
VICTORIA UNIVERSITY OF TECHNOLOGY
PO Box 14428
MELBOURNE CITY MC
VICTORIA 8001, AUSTRALIA
E-mail: sever@matilda.vut.edu.au

A. White

DEPARTMENT OF MATHEMATICS
ST. BONAVENTURE UNIVERSITY
ST. BONAVENTURE, NY
14778, U.S.A.

S. S. Kim

DEPARTMENT OF MATHEMATICS
DONGEUI UNIVERSITY
PUSAN 614-714

Received January 19, 1998; revised version February 2nd, 1999.

