

Jan Jakóbowski

A GEOMETRICAL CHARACTERIZATION OF MINKOWSKI PLANES OF ORDER 3 AND 4

Abstract. In [5] H. A. Wilbrink proved that a certain class of Minkowski planes induce nearaffine planes. Of course, this class contains all Minkowski planes over fields. But only Minkowski planes of order 3 and 4 induce nearaffine planes which are also Minkowski planes (moreover they are affine planes, too).

1. Basic concept

Let Π be a set of points provided with a family Λ of subsets called circles, and two other families Σ_+ , Σ_- of subsets called (+)generators and (-)generators, respectively. Elements of $\Sigma_+ \cup \Sigma_-$ will just be called generators.

DEFINITION 1. The quadruple $M = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ is a Minkowski plane if the following axioms hold ([3, p. 269]):

- (M1) For every point P there exists a unique (+)generator, denoted by $[P]_+$, and a unique (-)generator, denoted by $[P]_-$, containing P .
- (M2) Every (+)generator meets every (-)generator in a unique point.
- (M3) There is a circle containing at least three points.
- (M4) Through three distinct points A, B, C , no two of which are on a common generator there is a unique circle, denoted by (A, B, C) .
- (M5) Every circle intersects every generator in a unique point.
- (T) Given a circle λ , a point $P \in \lambda$ and a point $Q \notin \lambda$ with P and Q not on a generator, there is one and only one circle μ through Q such that $\lambda \cap \mu = \{P\}$.

COROLLARY 1. *In the case of finite Minkowski planes (i.e. if Π is finite) the axiom (T) follows immediately from (M1) - (M5) (cf. [3, p.269]).*

DEFINITION 2. Let $\mathbf{M} = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ and $\mathbf{M}' = (\Pi', \Sigma'_+, \Sigma'_-, \Lambda')$ are Minkowski planes. A bijection $\varphi : \Pi \rightarrow \Pi'$ is called an isomorphism from \mathbf{M} to \mathbf{M}' if the following conditions hold:

$$\lambda \in \Lambda \iff \varphi(\lambda) \in \Lambda'$$

$$\sigma \in \Sigma_+ \cup \Sigma_- \iff \varphi(\sigma) \in \Sigma'_+ \cup \Sigma'_-.$$

PROPOSITION 1. Let P be a point of a Minkowski plane $\mathbf{M} = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ and let

$$\Pi_P = \Pi - ([P]_+ \cup [P]_-)$$

$$\mathbf{N} = \{\lambda \cap \Pi_P; \lambda \in \Lambda, P \in \lambda\} \cup \{\sigma \cap \Pi_P; \sigma \in \Sigma_+ \cup \Sigma_-, [P]_+ \neq \sigma \neq [P]_-\}.$$

Then the incidence structure $\mathbf{M}_P = (\Pi_P, \mathbf{N})$ is an affine plane, called the derived plane with respect to P , where $\infty_1 = \{\sigma \cap \Pi_P; \sigma \in \Sigma_+ - \{[P]_+\}\}$ and $\infty_2 = \{\sigma \cap \Pi_P; \sigma \in \Sigma_- - \{[P]_-\}\}$ are two classes of parallel lines, i.e. ∞_1 and ∞_2 are ideal points in the projective extension $\overline{\mathbf{M}_P}$ of \mathbf{M}_P (cf. [1, p. 116]). Moreover, for every circle λ not passing through P the set $(\lambda \cap \Pi_P) \cup \{\infty_1, \infty_2\}$ is an oval in $\overline{\mathbf{M}_P}$ ([3, p. 273]).

Proof. The proof of the first part is classical (one must verify axioms of an affine plane - cf. [1]). In order to demonstrate the last part, note that three points of $(\lambda \cap \Pi_P) \cup \{\infty_1, \infty_2\}$ cannot be on a line obtained from a circle passing through P (because of (M4)) nor on a line obtained from a generator (because of (M5)). For every point $Q \in \lambda \cap \Pi_P$ a line obtained from a circle μ such that $\mu \cap \lambda = \{Q\}$, $P \in \mu$ is a unique tangent in Q . Let $[P]_+ \cap \lambda = \{R\}$, $[P]_- \cap \lambda = \{S\}$. Then $([R]_- \cap \Pi_P) \cup \{\infty_2\}$ and $([S]_+ \cap \Pi_P) \cup \{\infty_1\}$ are the unique tangents in ∞_2 and ∞_1 , respectively.

DEFINITION 3. A number n ($n \geq 2$) is called the order of a Minkowski plane \mathbf{M} if every circle of \mathbf{M} contains exactly $n+1$ points ([3, p. 269], see Figure 1).

PROPOSITION 2. Let F be any commutative field and let $\overline{F} = F \cup \{\infty\}$, where $\infty \notin F$, and extend operations from F to \overline{F} as follows:

$$a + \infty = \infty + a \text{ for every } a \in \overline{F}$$

$$a \cdot \infty = \infty \cdot a \text{ for every } a \in \overline{F}, a \neq 0.$$

Then the set of all permutations on \overline{F} given by

$$x \mapsto \frac{ax + b}{cx + d}, \quad a, b, c, d \in F, \quad ad - bc \neq 0$$

determines the set of circles in the Minkowski planes over F (cf. [3, p. 271]).

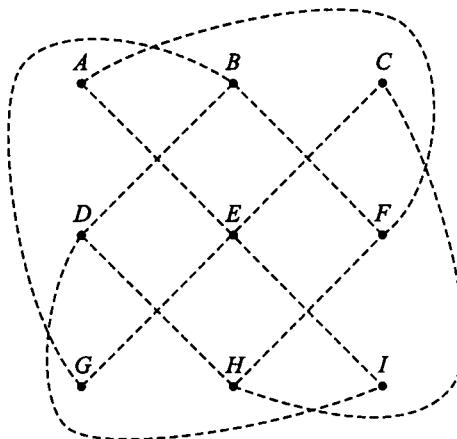


Fig. 1

Generators are given by

$$\Sigma_+ = \{(c, y); y \in \overline{F}; c \in \overline{F}\}, \quad \Sigma_- = \{(x, c); x \in \overline{F}; c \in \overline{F}\}$$

and the point set is given by $\Pi = \overline{F} \times \overline{F}$.

COROLLARY 2. For every pair of points Z, W on a Minkowski plane M over a field F there exists an automorphism φ of M such that $\varphi(Z) = W$.

Proof. For $Z, W \in \overline{F} \times \overline{F}$, where $Z = (z_1, z_2)$, $W = (w_1, w_2)$ a bijection $\varphi(x, y) = (x + w_1 - z_1, y + w_2 - z_2)$ is a required automorphism.

REMARK 1. For every $n \in \{2, \dots, 5, 7, 8\}$ there exists exactly one (up to isomorphism) Minkowski plane of order n , namely a plane over the uniquely determined field.

Let Ω be a set of elements called points with at least two points, Ψ a set of subsets of Ω called lines. Let \triangleright be an operation called *join* mapping the ordered pairs (X, Y) , $X, Y \in \Omega$, $X \neq Y$ onto Ψ ($X \triangleright Y$ denotes joining from X to Y), and \equiv an equivalence relation called *parallelism* on Ψ . A line $X \triangleright Y$ will be called *straight* if $X \triangleright Y = Y \triangleright X$, the remaining lines are called *proper*. The set of all straight lines will be denoted by Γ . X is called the *base point* for $X \triangleright Y$.

DEFINITION 4. $(\Omega, \Psi, \triangleright, \equiv)$ is called a *nearaffine plane* if the following three groups of axioms are satisfied [6, p. 53-54].

(I) Axioms of lines

(L1) $X, Y \in X \triangleright Y$ for all $X, Y \in \Omega$, $X \neq Y$

(L2) $Z \in X \triangleright Y - \{X\} \iff X \triangleright Y = X \triangleright Z$ for all $X, Y, Z \in \Omega$, $X \neq Y$

(L3) $(X \triangleright Y = Y \triangleright X = X \triangleright Z) \Rightarrow X \triangleright Z = Z \triangleright X$ for all $X, Y, Z \in \Omega$, $Y \neq X \neq Z$.

(II) Axioms of parallelism

- (P1) For every $k \in \Psi$, $X \in \Omega$ there exists exactly one line with base point X parallel to k . We denote this line by $(X \equiv k)$,
- (P2) $X \triangleright Y \equiv Y \triangleright X$ for all $X, Y \in \Omega$, $X \neq Y$,
- (P3) $(k \equiv l) \Rightarrow l \in \Gamma$ for all $k \in \Gamma$, $l \in \Psi$.

(III) Axioms of richness

- (R1) There exist at least two non-parallel straight lines
- (R2) Every line l meets every straight line k with $\neg(k \equiv l)$ in exactly one point.

COROLLARY 3. *Every proper line has exactly one base point. Each point of a straight line is its base point.*

COROLLARY 4. *A nearaffine plane is an affine plane if and only if no proper line exists in it.*

DEFINITION 5. Let $M = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ be a Minkowski plane. Fix a point $Z \in \Pi$ and define

$$\Pi_Z = \Pi - ([Z]_+ \cup [Z]_-)$$

$$\lambda^* = \lambda \cap \Pi_Z \text{ and } \sigma^* = \sigma \cap \Pi_Z \text{ for all } \lambda \in \Lambda, \sigma \in \Sigma_+ \cup \Sigma_-.$$

We will use denotations $[P]_- \cap [Z]_+ = \{P^+\}$, $[P]_+ \cap [Z]_- = \{P^-\}$ (see Figure 2)

a) For $P, Q \in \Pi_Z$, $P \neq Q$ we define

$$P \triangleright Q = \begin{cases} \sigma^* & \text{if } P, Q \in \sigma \text{ for some } \sigma \in \Sigma_+ \cup \Sigma_- \\ \{P\} \cup (P^+, P^-, Q)^* & \text{if } P \text{ and } Q \text{ are not on a generator,} \end{cases}$$

$$\Psi = \{P \triangleright Q; P, Q \in \Pi_Z\}.$$

b) We define $P_1 \triangleright Q_1 \equiv P_2 \triangleright Q_2$ for the following cases:

- i) $P_1 \triangleright Q_1 = \sigma_1^*$ for some $\sigma_1 \in \Sigma_+$ ($\sigma_1 \in \Sigma_-$). Then $P_2 \triangleright Q_2 = \sigma_2^*$ for some $\sigma_2 \in \Sigma_+$ ($\sigma_2 \in \Sigma_-$, respectively),
- ii) $[P_1]_+ \neq [Q_1]_+$, $[P_1]_- \neq [Q_1]_-$ and $P_1, P_2 \in \sigma$ for some $\sigma \in \Sigma_+ \cup \Sigma_-$. Then $P_1 \triangleright Q_1 = P_2 \triangleright Q_2$ or $P_1 \triangleright Q_1 \cap P_2 \triangleright Q_2 = \emptyset$,
- iii) $[P_1]_+ \neq [Q_1]_+$, $[P_1]_- \neq [Q_1]_-$, $[P_1]_+ \neq [P_2]_+$, $[P_1]_- \neq [P_2]_-$. Then there exists $P_3 \triangleright Q_3$ such that $P_1 \triangleright Q_1 \cap P_3 \triangleright Q_3 = \emptyset = P_2 \triangleright Q_2 \cap P_3 \triangleright Q_3$, and P_3, P_i ($i = 1, 2$) are on a common generator.

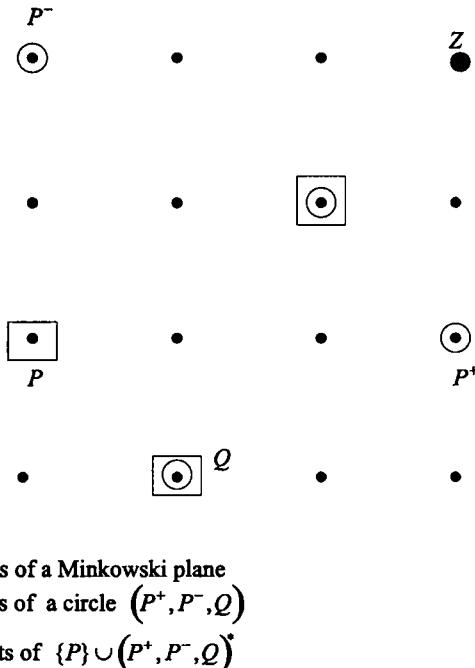


Fig. 2

THEOREM 1. *The structure $M^Z = (\Pi_Z, \Psi, \triangleright, \equiv)$ is a nearaffine plane if and only if the following conditions hold (cf. [5, p. 121-122]):*

- (A) *Let $P_1, Q_1, P_2, Q_2 \in \Pi_Z$ and suppose that P_1 and Q_1 , P_2 and Q_2 , P_1 and P_2 are not on a common generator. If there exists a circle λ touching (P_1^+, P_1^-, Q_1) in P_1^- and touching (P_2^+, P_2^-, Q_2) in P_2^+ then there exists a circle μ touching (P_1^+, P_1^-, Q_1) in P_1^+ and touching (P_2^+, P_2^-, Q_2) in P_2^- (see Figure 3).*
- (B) *Let P_1, Q_1, P_2, Q_2 be points as in (A). If $P_1 \in (P_2^+, P_2^-, Q_2)$ and $P_2 \in (P_1^+, P_1^-, Q_1)$ then circles λ and μ , as described in (A), exist.*

COROLLARY 5. *If M is a Minkowski plane over a field then every point Z induces a nearaffine plane M^Z and for every point W , planes M^Z and M^W are isomorphic.*

Proof. By Corollary 2, it is enough to consider the conditions (A) and (B) with respect to $M^{(\infty, \infty)}$ (i.e. $Z = (\infty, \infty)$). Let us denote $P_i^+ = (\infty, p_i^+)$, $P_i^- = (p_i^-, \infty)$, $Q_i = (q_i, r_i)$, $i = 1, 2$. Therefore a circle (P_i^+, P_i^-, Q_i) is given by $(x - p_i^-)(y - p_i^+) = (q_i - p_i^-)(r_i - p_i^+)$. A circle λ touching (P_1^+, P_1^-, Q_1) in P_1^- and touching (P_2^+, P_2^-, Q_2) in P_2^+ must be given by

$$(x - p_1^-)(y - p_2^+) = (q_1 - p_1^-)(r_1 - p_1^+) = (q_2 - p_2^-)(r_2 - p_2^+)$$

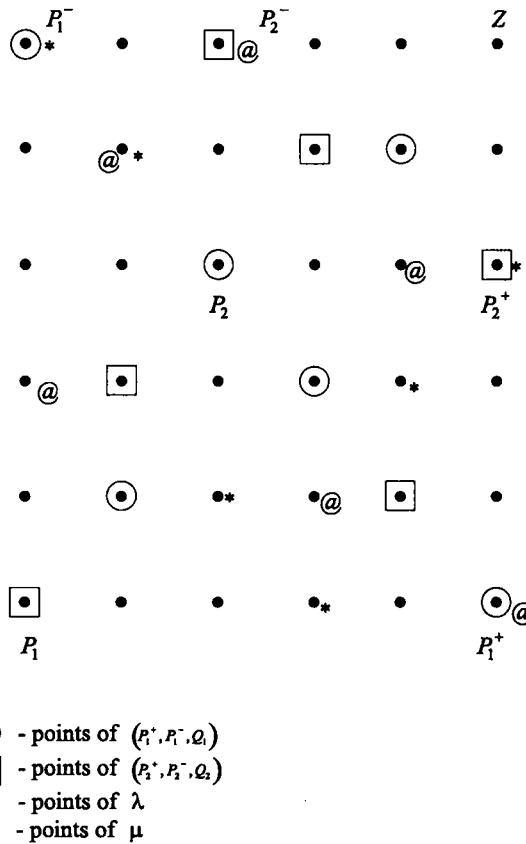


Fig. 3

The latter equality implies that a circle μ given by

$$(x - p_2^-)(y - p_1^+) = (q_1 - p_1^-)(r_1 - p_1^+) = (q_2 - p_2^-)(r_2 - p_2^+)$$

is touching (P_1^+, P_1^-, Q_1) in P_1^+ and touching (P_2^+, P_2^-, Q_2) in P_2^- . Thus (A) holds. If now $P_1 \in (P_2^+, P_2^-, Q_2)$ and $P_2 \in (P_1^+, P_1^-, Q_1)$, where $P_i = (p_i^-, p_i^+)$ then using the equation of (P_i^+, P_i^-, Q_i) , $i = 1, 2$, we have

$$(p_1^- - p_2^-)(p_1^+ - p_2^+) = (q_2 - p_2^-)(r_2 - p_2^+)$$

and

$$(p_2^- - p_1^-)(p_2^+ - p_1^+) = (q_1 - p_1^-)(r_1 - p_1^+).$$

Left sides are equal and so must be right.

COROLLARY 6. *For any Minkowski plane over a field F and a point $Z = (\infty, \infty)$ we have:*

a) every line $P \triangleright Q = \sigma^*$, where $\sigma \in \Sigma_+ \cup \Sigma_-$ is a straight line (see Corollary 3);
 b) all lines of type $\{P\} \cup (P^+, P^-, Q)^*$ constitute a set

$$\begin{aligned} & \left\{ \left\{ (x, y) \in F \times F; y = \frac{ax+b}{cx+d} \right\}; a, b, c, d \in F, ad - bc \neq 0, c \neq 0 \right\} = \\ & \left\{ \left\{ (x, y) \in F \times F; y = \frac{ax+b}{x+d} \right\}; a, b, d \in F, ad - b \neq 0 \right\} = \\ & \{(x, y) \in F \times F; (x+d)(y-a) = b - ad\}; a, b, d \in F, ad - b \neq 0 \}. \end{aligned}$$

2. General results

DEFINITION 6. Let $M = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ be a Minkowski plane such that there exists a point Z inducing a nearaffine plane M^Z and let $\lambda, \mu \in \Lambda$, $Z \notin \lambda \cup \mu$. λ is congruent to μ ($\lambda \cong \mu$) if and only if in M^Z lines obtained from λ^* and μ^* have the same set of points (more precisely: if $\lambda = (P^+, P^-, Q)$ and $\mu = (R^+, R^-, S)$ for some $P^+, R^+ \in [Z]_+$, $P^-, R^- \in [Z]_-$, and $Q, S \in \Pi_Z$ then $\{P\} \cup \lambda^* = \{R\} \cup \mu^*$).

COROLLARY 7. The relation \cong is an equivalence relation.

COROLLARY 8. A line determined by a circle λ ($\lambda = (P^+, P^-, Q)$ for some $P, Q \in \Pi_Z$) is proper iff $[\lambda]_{\cong} = \{\lambda\}$ (see Corollary 3).

2.1. A Minkowski plane of order 3

In virtue of Remark 1, one can investigate a plane over the field $Z_3 = \{0, 1, 2\}$. Let

$$\Pi = \{P_1, P_2, \dots, P_{16}\}, \Sigma_+ = \{\sigma_1, \dots, \sigma_4\}, \Sigma_- = \{\tau_1, \dots, \tau_4\}$$

where

$$\begin{aligned} P_1 &= (0, 0), P_2 = (0, 1), P_3 = (0, 2), P_4 = (1, 0), P_5 = (1, 1), P_6 = (1, 2), \\ P_7 &= (2, 0), P_8 = (2, 1), P_9 = (2, 2), P_{10} = (\infty, 0), P_{11} = (\infty, 1), \\ P_{12} &= (\infty, 2), P_{13} = (0, \infty), P_{14} = (1, \infty), P_{15} = (2, \infty), P_{16} = (\infty, \infty), \\ \sigma_1 &= \{P_1, P_2, P_3, P_{13}\}, \sigma_2 = \{P_4, P_5, P_6, P_{14}\}, \sigma_3 = \{P_7, P_8, P_9, P_{15}\}, \\ \sigma_4 &= \{P_{10}, P_{11}, P_{12}, P_{16}\}, \tau_1 = \{P_1, P_4, P_7, P_{10}\}, \tau_2 = \{P_2, P_5, P_8, P_{11}\}, \\ \tau_3 &= \{P_3, P_6, P_9, P_{12}\}, \tau_4 = \{P_{13}, P_{14}, P_{15}, P_{16}\}. \end{aligned}$$

Because of Definition 5, only circles not passing through P_{16} are used to construct the nearaffine plane $M^{P_{16}}$. So Table 1 presents all such circles and the way to obtain the lines determined by them in $M^{P_{16}}$. One can easily verify that every class of congruent circles consists of three elements, e.g. $[\lambda_1]_{\cong} = \{\lambda_1, \lambda_{11}, \lambda_{15}\}$. Therefore the lines are straight, by Corollary 8. Let us identify every class with the set of points belonging to the line determined

Table 1

Circle λ_i	Equation of λ_i	Points on λ_i	$\{Q\} =$ $P_{\lambda_i \cap \sigma_4}$	$\{R\} =$ $\lambda_i \cap \tau_4$	$\{S\} =$ $[Q]_- \cap [R]_+$	Points on $\{S\} \cup \lambda_i^*$
λ_1	$y = \frac{1}{x}$	P_5, P_9, P_{10}, P_{13}	P_{10}	P_{13}	P_1	P_1, P_5, P_9
λ_2	$y = \frac{2}{x}$	P_6, P_8, P_{10}, P_{13}	P_{10}	P_{13}	P_1	P_1, P_6, P_8
λ_3	$y = \frac{1}{x+1}$	P_2, P_6, P_{10}, P_{15}	P_{10}	P_{15}	P_7	P_2, P_6, P_7
λ_4	$y = \frac{2}{x+1}$	P_3, P_5, P_{10}, P_{15}	P_{10}	P_{15}	P_7	P_3, P_5, P_7
λ_5	$y = \frac{1}{x+2}$	P_3, P_8, P_{10}, P_{14}	P_{10}	P_{14}	P_4	P_3, P_4, P_8
λ_6	$y = \frac{2}{x+2}$	P_2, P_9, P_{10}, P_{14}	P_{10}	P_{14}	P_4	P_2, P_4, P_9
λ_7	$y = \frac{x+1}{x}$	P_6, P_7, P_{11}, P_{13}	P_{11}	P_{13}	P_2	P_2, P_6, P_7
λ_8	$y = \frac{x+2}{x}$	P_4, P_9, P_{11}, P_{13}	P_{11}	P_{13}	P_2	P_2, P_4, P_9
λ_9	$y = \frac{x}{x+1}$	P_1, P_6, P_{11}, P_{15}	P_{11}	P_{15}	P_8	P_1, P_6, P_8
λ_{10}	$y = \frac{x+2}{x+1}$	P_3, P_4, P_{11}, P_{15}	P_{11}	P_{15}	P_8	P_3, P_4, P_8
λ_{11}	$y = \frac{x}{x+2}$	P_1, P_9, P_{11}, P_{14}	P_{11}	P_{14}	P_5	P_1, P_5, P_9
λ_{12}	$y = \frac{x+1}{x+2}$	P_3, P_7, P_{11}, P_{14}	P_{11}	P_{14}	P_5	P_3, P_5, P_7
λ_{13}	$y = \frac{2x+1}{x}$	P_4, P_8, P_{12}, P_{13}	P_{12}	P_{13}	P_3	P_3, P_4, P_8
λ_{14}	$y = \frac{2x+2}{x}$	P_5, P_7, P_{12}, P_{13}	P_{12}	P_{13}	P_3	P_3, P_5, P_7
λ_{15}	$y = \frac{2x}{x+1}$	P_1, P_5, P_{12}, P_{15}	P_{12}	P_{15}	P_9	P_1, P_5, P_9
λ_{16}	$y = \frac{2x+1}{x+1}$	P_2, P_4, P_{12}, P_{15}	P_{12}	P_{15}	P_9	P_2, P_4, P_9
λ_{17}	$y = \frac{2x}{x+2}$	P_1, P_8, P_{12}, P_{14}	P_{12}	P_{14}	P_6	P_1, P_6, P_8
λ_{18}	$y = \frac{2x+2}{x+2}$	P_2, P_7, P_{12}, P_{14}	P_{12}	P_{14}	P_6	P_2, P_6, P_7

by it, and denote them by

$$\begin{aligned} \alpha_1 &= \{P_1, P_5, P_9\}, \quad \alpha_2 = \{P_1, P_6, P_8\}, \quad \alpha_3 = \{P_2, P_4, P_9\}, \quad \alpha_4 = \{P_2, P_6, P_7\}, \\ \alpha_5 &= \{P_3, P_4, P_8\}, \quad \alpha_6 = \{P_3, P_5, P_7\}. \end{aligned}$$

Further, in virtue of Definition 5, Corollary 5, and Corollary 6, a) we have

straight lines

$$\begin{aligned}\sigma_1^* &= \{P_1, P_2, P_3\}, \quad \sigma_2^* = \{P_4, P_5, P_6\}, \quad \sigma_3^* = \{P_7, P_8, P_9\}, \\ \tau_1^* &= \{P_1, P_4, P_7\}, \quad \tau_2^* = \{P_2, P_5, P_8\}, \quad \tau_3^* = \{P_3, P_6, P_9\}.\end{aligned}$$

Now we put $\Pi' = \Pi_{P_{16}} = \{P_1, \dots, P_9\}$, $\Sigma'_+ = \{\sigma_1^*, \sigma_2^*, \sigma_3^*\}$, $\Sigma'_- = \{\tau_1^*, \tau_2^*, \tau_3^*\}$, $\Lambda' = \{\alpha_1, \alpha_2, \dots, \alpha_6\}$. One can easily verify that $M' = (\Pi', \Sigma'_+, \Sigma'_-, \Lambda')$ is a Minkowski plane of order 2 (see Figure 4).

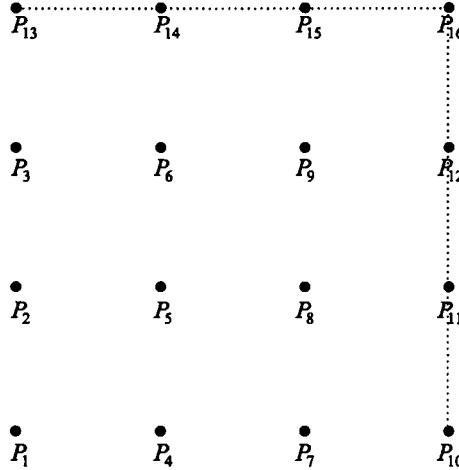


Fig. 4

From Corollary 4 and Corollary 5 we obtain

COROLLARY 9. *If M is a Minkowski plane of order 3 then for every point Z all lines of M^Z are straight and so M^Z is an affine plane.*

2.2. A Minkowski plane of order 4

In the same way as before, we investigate a plane over the field $K = \{0, 1, a, b\}$ with $1 + 1 = a + a = b + b = 0$, $1 + a = b$, $1 + b = a$, $a + b = 1$, $a \cdot b = 1$, $a \cdot a = b$, $b \cdot b = a$ (cf. [2]), where we put:

$$\begin{aligned}P_1 &= (0, 0), \quad P_2 = (0, 1), \quad P_3 = (0, a), \quad P_4 = (0, b), \quad P_5 = (1, 0), \quad P_6 = (1, 1), \\ P_7 &= (1, a), \quad P_8 = (1, b), \quad P_9 = (a, 0), \quad P_{10} = (a, 1), \quad P_{11} = (a, a), \\ P_{12} &= (a, b), \quad P_{13} = (b, 0), \quad P_{14} = (b, 1), \quad P_{15} = (b, a), \quad P_{16} = (b, b), \\ P_{17} &= (\infty, 0), \quad P_{18} = (\infty, 1), \quad P_{19} = (\infty, a), \quad P_{20} = (\infty, b), \quad P_{21} = (0, \infty), \\ P_{22} &= (1, \infty), \quad P_{23} = (a, \infty), \quad P_{24} = (b, \infty), \quad P_{25} = (\infty, \infty), \\ \sigma_1 &= \{P_1, P_2, P_3, P_4, P_{21}\}, \quad \sigma_2 = \{P_5, P_6, P_7, P_8, P_{22}\}, \\ \sigma_3 &= \{P_9, P_{10}, P_{11}, P_{12}, P_{23}\}, \quad \sigma_4 = \{P_{13}, P_{14}, P_{15}, P_{16}, P_{24}\}, \\ \sigma_5 &= \{P_{17}, P_{18}, P_{19}, P_{20}, P_{25}\}, \quad \tau_1 = \{P_1, P_5, P_9, P_{13}, P_{17}\},\end{aligned}$$

Table 2

Circle λ_i	Equation of λ_i	Points on λ_i	$\{Q\} =$ $\lambda_i \cap \sigma_5$	$\{R\} =$ $\lambda_i \cap \tau_5$	$\{S\} =$ $[Q]_- \cap [R]_+$	Points on $\{S\} \cup \lambda_i^*$
λ_1	$y = \frac{1}{x}$	$P_6, P_{12}, P_{15}, P_{17}, P_{21}$	P_{17}	P_{21}	P_1	P_1, P_6, P_{12}, P_{15}
λ_2	$y = \frac{a}{x}$	$P_7, P_{10}, P_{16}, P_{17}, P_{21}$	P_{17}	P_{21}	P_1	P_1, P_7, P_{10}, P_{16}
λ_3	$y = \frac{b}{x}$	$P_8, P_{11}, P_{14}, P_{17}, P_{21}$	P_{17}	P_{21}	P_1	P_1, P_8, P_{11}, P_{14}
λ_4	$y = \frac{1}{x+1}$	$P_2, P_{11}, P_{16}, P_{17}, P_{22}$	P_{17}	P_{22}	P_5	P_2, P_5, P_{11}, P_{16}
λ_5	$y = \frac{a}{x+1}$	$P_3, P_{12}, P_{14}, P_{17}, P_{22}$	P_{17}	P_{22}	P_5	P_3, P_5, P_{12}, P_{14}
λ_6	$y = \frac{b}{x+1}$	$P_4, P_{10}, P_{15}, P_{17}, P_{22}$	P_{17}	P_{22}	P_5	P_4, P_5, P_{10}, P_{15}
λ_7	$y = \frac{1}{x+a}$	$P_4, P_7, P_{14}, P_{17}, P_{23}$	P_{17}	P_{23}	P_9	P_4, P_7, P_9, P_{14}
λ_8	$y = \frac{a}{x+a}$	$P_2, P_8, P_{15}, P_{17}, P_{23}$	P_{17}	P_{23}	P_9	P_2, P_8, P_9, P_{15}
λ_9	$y = \frac{b}{x+a}$	$P_3, P_6, P_{16}, P_{17}, P_{23}$	P_{17}	P_{23}	P_9	P_3, P_6, P_9, P_{16}
λ_{10}	$y = \frac{1}{x+b}$	$P_3, P_8, P_{10}, P_{17}, P_{24}$	P_{17}	P_{24}	P_{13}	P_3, P_8, P_{10}, P_{13}
λ_{11}	$y = \frac{a}{x+b}$	$P_4, P_6, P_{11}, P_{17}, P_{24}$	P_{17}	P_{24}	P_{13}	P_4, P_6, P_{11}, P_{13}
λ_{12}	$y = \frac{b}{x+b}$	$P_2, P_7, P_{12}, P_{17}, P_{24}$	P_{17}	P_{24}	P_{13}	P_2, P_7, P_{12}, P_{13}
λ_{13}	$y = \frac{x+1}{x}$	$P_5, P_{11}, P_{16}, P_{18}, P_{21}$	P_{18}	P_{21}	P_2	P_2, P_5, P_{11}, P_{16}
λ_{14}	$y = \frac{x+a}{x}$	$P_8, P_9, P_{15}, P_{18}, P_{21}$	P_{18}	P_{21}	P_2	P_2, P_8, P_9, P_{15}
λ_{15}	$y = \frac{x+b}{x}$	$P_7, P_{12}, P_{13}, P_{18}, P_{21}$	P_{18}	P_{21}	P_2	P_2, P_7, P_{12}, P_{13}
λ_{16}	$y = \frac{x}{x+1}$	$P_1, P_{12}, P_{15}, P_{18}, P_{22}$	P_{18}	P_{22}	P_6	P_1, P_6, P_{12}, P_{15}
λ_{17}	$y = \frac{x+a}{x+1}$	$P_3, P_9, P_{16}, P_{18}, P_{22}$	P_{18}	P_{22}	P_6	P_3, P_6, P_9, P_{16}
λ_{18}	$y = \frac{x+b}{x+1}$	$P_4, P_{11}, P_{13}, P_{18}, P_{22}$	P_{18}	P_{22}	P_6	P_4, P_6, P_{11}, P_{13}
λ_{19}	$y = \frac{x}{x+a}$	$P_1, P_7, P_{16}, P_{18}, P_{23}$	P_{18}	P_{23}	P_{10}	P_1, P_7, P_{10}, P_{16}
λ_{20}	$y = \frac{x+1}{x+a}$	$P_4, P_5, P_{15}, P_{18}, P_{23}$	P_{18}	P_{23}	P_{10}	P_4, P_5, P_{10}, P_{15}
λ_{21}	$y = \frac{x+b}{x+a}$	$P_3, P_8, P_{13}, P_{18}, P_{23}$	P_{18}	P_{23}	P_{10}	P_3, P_8, P_{10}, P_{13}
λ_{22}	$y = \frac{x}{x+b}$	$P_1, P_8, P_{11}, P_{18}, P_{24}$	P_{18}	P_{24}	P_{14}	P_1, P_8, P_{11}, P_{14}
λ_{23}	$y = \frac{x+1}{x+b}$	$P_3, P_5, P_{12}, P_{18}, P_{24}$	P_{18}	P_{24}	P_{14}	P_3, P_5, P_{12}, P_{14}
λ_{24}	$y = \frac{x+a}{x+b}$	$P_4, P_7, P_9, P_{18}, P_{24}$	P_{18}	P_{24}	P_{14}	P_4, P_7, P_9, P_{14}

Table 2 (cont.)

Circle λ_i	Equation of λ_i	Points on λ_i	$\{Q\} =$ $\lambda_i \cap \sigma_4$	$\{R\} =$ $\lambda_i \cap \tau_4$	$\{S\} =$ $[Q]_- \cap [R]_+$	Points on $\{S\} \cup \lambda_i^*$
λ_{25}	$y = \frac{ax + 1}{x}$	$P_8, P_{10}, P_{13}, P_{19}, P_{21}$	P_{19}	P_{21}	P_3	P_3, P_8, P_{10}, P_{13}
λ_{26}	$y = \frac{ax + a}{x}$	$P_5, P_{12}, P_{14}, P_{19}, P_{21}$	P_{19}	P_{21}	P_3	P_3, P_5, P_{12}, P_{14}
λ_{27}	$y = \frac{ax + b}{x}$	$P_6, P_9, P_{16}, P_{19}, P_{21}$	P_{19}	P_{21}	P_3	P_3, P_6, P_9, P_{16}
λ_{28}	$y = \frac{ax}{x + 1}$	$P_1, P_{10}, P_{16}, P_{19}, P_{22}$	P_{19}	P_{22}	P_7	P_1, P_7, P_{10}, P_{16}
λ_{29}	$y = \frac{ax + 1}{x + 1}$	$P_2, P_{12}, P_{13}, P_{19}, P_{22}$	P_{19}	P_{22}	P_7	P_2, P_7, P_{12}, P_{13}
λ_{30}	$y = \frac{ax + b}{x + 1}$	$P_4, P_9, P_{14}, P_{19}, P_{22}$	P_{19}	P_{22}	P_7	P_4, P_7, P_9, P_{14}
λ_{31}	$y = \frac{ax}{x + a}$	$P_1, P_8, P_{14}, P_{19}, P_{23}$	P_{19}	P_{23}	P_{11}	P_1, P_8, P_{11}, P_{14}
λ_{32}	$y = \frac{ax + 1}{x + a}$	$P_4, P_6, P_{13}, P_{19}, P_{23}$	P_{19}	P_{23}	P_{11}	P_4, P_6, P_{11}, P_{13}
λ_{33}	$y = \frac{ax + a}{x + a}$	$P_2, P_5, P_{16}, P_{19}, P_{23}$	P_{19}	P_{23}	P_{11}	P_2, P_5, P_{11}, P_{16}
λ_{34}	$y = \frac{ax}{x + b}$	$P_1, P_6, P_{12}, P_{19}, P_{24}$	P_{19}	P_{24}	P_{15}	P_1, P_6, P_{12}, P_{15}
λ_{35}	$y = \frac{ax + a}{x + b}$	$P_4, P_5, P_{10}, P_{19}, P_{24}$	P_{19}	P_{24}	P_{15}	P_4, P_5, P_{10}, P_{15}
λ_{36}	$y = \frac{ax + b}{x + b}$	$P_2, P_8, P_9, P_{19}, P_{24}$	P_{19}	P_{24}	P_{15}	P_2, P_8, P_9, P_{15}
λ_{37}	$y = \frac{bx + 1}{x}$	$P_7, P_9, P_{14}, P_{20}, P_{21}$	P_{20}	P_{21}	P_4	P_4, P_7, P_9, P_{14}
λ_{38}	$y = \frac{bx + a}{x}$	$P_6, P_{11}, P_{13}, P_{20}, P_{21}$	P_{20}	P_{21}	P_4	P_4, P_6, P_{11}, P_{13}
λ_{39}	$y = \frac{bx + b}{x}$	$P_5, P_{10}, P_{15}, P_{20}, P_{21}$	P_{20}	P_{21}	P_4	P_4, P_5, P_{10}, P_{15}
λ_{40}	$y = \frac{bx}{x + 1}$	$P_1, P_{11}, P_{14}, P_{20}, P_{22}$	P_{20}	P_{22}	P_8	P_1, P_8, P_{11}, P_{14}
λ_{41}	$y = \frac{bx + 1}{x + 1}$	$P_2, P_9, P_{15}, P_{20}, P_{22}$	P_{20}	P_{22}	P_8	P_2, P_8, P_9, P_{15}
λ_{42}	$y = \frac{bx + a}{x + 1}$	$P_3, P_{10}, P_{13}, P_{20}, P_{22}$	P_{20}	P_{22}	P_8	P_3, P_8, P_{10}, P_{13}
λ_{43}	$y = \frac{bx}{x + a}$	$P_1, P_6, P_{15}, P_{20}, P_{23}$	P_{20}	P_{23}	P_{12}	P_1, P_6, P_{12}, P_{15}
λ_{44}	$y = \frac{bx + a}{x + a}$	$P_2, P_7, P_{13}, P_{20}, P_{23}$	P_{20}	P_{23}	P_{12}	P_2, P_7, P_{12}, P_{13}
λ_{45}	$y = \frac{bx + b}{x + a}$	$P_3, P_5, P_{14}, P_{20}, P_{23}$	P_{20}	P_{23}	P_{12}	P_3, P_5, P_{12}, P_{14}
λ_{46}	$y = \frac{bx}{x + b}$	$P_1, P_7, P_{10}, P_{20}, P_{24}$	P_{20}	P_{24}	P_{16}	P_1, P_7, P_{10}, P_{16}
λ_{47}	$y = \frac{bx + 1}{x + b}$	$P_3, P_6, P_9, P_{20}, P_{24}$	P_{20}	P_{24}	P_{16}	P_3, P_6, P_9, P_{16}
λ_{48}	$y = \frac{bx + b}{x + b}$	$P_2, P_5, P_{11}, P_{20}, P_{24}$	P_{20}	P_{24}	P_{16}	P_2, P_5, P_{11}, P_{16}

$$\begin{aligned}\tau_2 &= \{P_2, P_6, P_{10}, P_{14}, P_{18}\}, \quad \tau_3 = \{P_3, P_7, P_{11}, P_{15}, P_{19}\}, \\ \tau_4 &= \{P_4, P_8, P_{12}, P_{16}, P_{20}\}, \quad \tau_5 = \{P_{21}, P_{22}, P_{23}, P_{24}, P_{25}\}, \\ \Pi &= \{P_1, P_2, \dots, P_{25}\}, \quad \Sigma_+ = \{\sigma_1, \dots, \sigma_5\} \quad \Sigma_- = \{\tau_1, \dots, \tau_5\}.\end{aligned}$$

The set of all circles not passing through $P_{25} = (\infty, \infty)$ and the construction of the line determined by a circle, are presented in Table 2. Now every class of congruent circles consists of four elements, e.g. $[\lambda_1] \cong = \{\lambda_1, \lambda_{16}, \lambda_{34}, \lambda_{43}\}$. Hence the lines obtained from circles are straight, by Corollary 8. Identifying each class with the set of points belonging to each of its elements, we obtain

$$\begin{aligned}\alpha_1 &= \{P_1, P_6, P_{12}, P_{15}\}, \quad \alpha_2 = \{P_1, P_7, P_{10}, P_{16}\}, \quad \alpha_3 = \{P_1, P_8, P_{11}, P_{14}\}, \\ \alpha_4 &= \{P_2, P_5, P_{11}, P_{16}\}, \quad \alpha_5 = \{P_3, P_5, P_{12}, P_{14}\}, \quad \alpha_6 = \{P_4, P_5, P_{10}, P_{15}\}, \\ \alpha_7 &= \{P_4, P_7, P_9, P_{14}\}, \quad \alpha_8 = \{P_2, P_8, P_9, P_{15}\}, \quad \alpha_9 = \{P_3, P_6, P_9, P_{16}\}, \\ \alpha_{10} &= \{P_3, P_8, P_{10}, P_{13}\}, \quad \alpha_{11} = \{P_4, P_6, P_{11}, P_{13}\}, \quad \alpha_{12} = \{P_2, P_7, P_{12}, P_{13}\}.\end{aligned}$$

Further we have straight lines

$$\begin{aligned}\sigma_1^* &= \{P_1, P_2, P_3, P_4\}, \quad \sigma_2^* = \{P_5, P_6, P_7, P_8\}, \\ \sigma_3^* &= \{P_9, P_{10}, P_{11}, P_{12}\}, \quad \sigma_4^* = \{P_{13}, P_{14}, P_{15}, P_{16}\}, \\ \tau_1^* &= \{P_1, P_5, P_9, P_{13}\}, \quad \tau_2^* = \{P_2, P_6, P_{10}, P_{14}\}, \\ \tau_3^* &= \{P_3, P_7, P_{11}, P_{15}\}, \quad \tau_4^* = \{P_4, P_8, P_{12}, P_{16}\}.\end{aligned}$$

Thus for $\Pi' = \Pi_{P_{25}} = \{P_1, \dots, P_{16}\}$, $\Sigma'_+ = \{\sigma_1^*, \sigma_2^*, \sigma_3^*, \sigma_4^*\}$, $\Sigma'_- = \{\tau_1^*, \tau_2^*, \tau_3^*, \tau_4^*\}$ and $\Lambda' = \{\alpha_1, \alpha_2, \dots, \alpha_{12}\}$ we have obtained a Minkowski plane $M' = (\Pi', \Sigma'_+, \Sigma'_-, \Lambda')$ of order 3. Really, axioms (M1)-(M3), (M5) are obvious. In order to prove (M4) note that every three points of $\Pi_{P_{25}}$, no two of which on common generator, uniquely determine the 4-th point and these four points constitute a circle α_i for some $i = 1, 2, \dots, 12$ (see Figure 5).

Analogously as Corollary 9 we obtain

COROLLARY 10. *If M is a Minkowski plane of order 4 then for every point Z all lines of M^Z are straight and so M^Z is an affine plane.*

2.3. A Minkowski plane of order different from 3 and 4

LEMMA 1. *If $M = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ is a Minkowski plane of order at least 5 then for every $\lambda, \mu \in \Lambda$ there is $\lambda \cong \mu \Leftrightarrow \lambda = \mu$.*

Proof. Of course, if $\lambda = \mu$ then $\lambda \cong \mu$. Fix a point Z and suppose that $\lambda \cong \mu$ for some circles λ, μ , where $Z \notin \lambda \cup \mu$. Let us denote

$$\begin{aligned}[Z]_+ \cap \lambda &= \{P^+\}, [Z]_- \cap \lambda = \{P^-\}, [Z]_+ \cap \mu = \{Q^+\} \\ [Z]_- \cap \mu &= \{Q^-\}, [P^+]_- \cap [P^-]_+ = \{P\}, [Q^+]_- \cap [Q^-]_+ = \{Q\}\end{aligned}$$

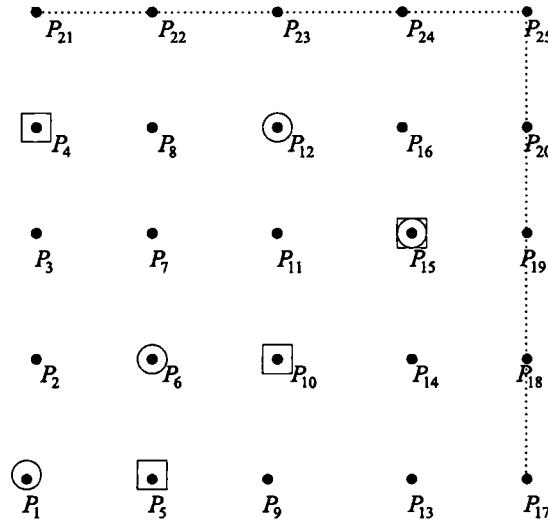


Fig. 5

Then $\{P\} \cup \lambda^* = \{Q\} \cup \mu^*$ as $\lambda \cong \mu$. Let $P^+ \neq Q^+$, $P^- \neq Q^-$, whence $P \in \mu^*$, $Q \in \lambda^*$. But, by the assumption of order at least 5, there are at least three (+)generators different from $[P]_+, [Q]_+, [Z]_+$ (see Figure 6) and points of λ lying on them must be the same as points of μ (otherwise $\{P\} \cup \lambda^* \neq \{Q\} \cup \mu^*$). In virtue of (M4) we have $\lambda = \mu$. If, for example $P^+ = Q^+$ then there are at least four (+)generators on which points of λ and μ must be the same.

LEMMA 2. *No point Z in a Minkowski plane M of order n , where $n \neq 3$ and $n \neq 4$, can induce a nearaffine plane M^Z which is also a Minkowski plane.*

P r o o f. It is trivial for $n = 2$ so let $M = (\Pi, \Sigma_+, \Sigma_-, \Lambda)$ be a Minkowski plane of order at least 5. We shall show that then M^Z cannot satisfy (M4). Let $\lambda \in \Lambda$, $Z \notin \lambda$ and fix a point $Q_1 \in \lambda \cap \Pi_Z$. We have two possibilities:

- There exist distinct points $Q_2, Q_3 \in \Pi_Z$ such that $\lambda \cap (Q_1^+, Q_1^-, Q_2) = \{Q_2, Q_3\}$. Because of Lemma 1, circles λ and $\mu = (Q_1^+, Q_1^-, Q_2)$ are in distinct classes with respect to \cong . Thus in M^Z there would exist two distinct circles $\{P\} \cup \lambda^*$ (where $[P]_+ \cap \lambda = [Z]_- \cap \lambda$ and $[P]_- \cap \lambda = [Z]_+ \cap \lambda$) and $\{Q_1\} \cup (Q_1^+, Q_1^-, Q_2)^*$ containing Q_1, Q_2, Q_3 .
- Points $Q_2, Q_3 \in \Pi_Z$ such that $\lambda \cap (Q_1^+, Q_1^-, Q_2) = \{Q_2, Q_3\}$ do not exist. It means that for every $Q \in \lambda$, $Q \neq Q_1$, a circle (Q_1^-, Q_1^+, Q) is tangent to λ at Q (see Figure 7). But in the projective derived

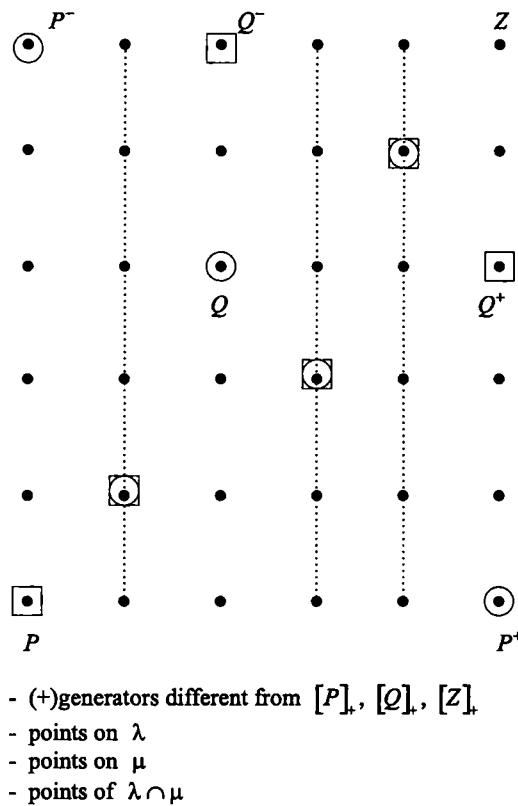


Fig. 6

plane $\overline{M_{Q_1^-}}$ such a circle becomes a tangent of an oval obtained from λ (see Proposition 1), and Q_1^+ is on this tangent. It is well known that the number of tangents of an oval passing through a point R not belonging to the oval, is 0 or 2, unless all tangents contain R ([4, p.10]). By the assumption $n \geq 5$, we have that all tangents of an oval obtained from λ should contain Q_1^+ . Let $[Q_1^-]_- \cap \lambda = [Z]_- \cap \lambda = \{S\}$. In particular $p = ([S]_+ \cap \Pi_{Q_1^-}) \cup \{\infty_1\}$ is a tangent (see the proof of Proposition 1) but $[Z]_+ = [Q_1^+]_+ \neq [S]_+$ so $Q_1^+ \notin p$, a contradiction.

From Lemma 2, Corollary 5, and our consideration in 2.1 and 2.2 the following characterization is immediate.

THEOREM 2. *A Minkowski plane M is of order 3 or of order 4 if and only if every point Z induces a nearaffine plane M^Z , which is also a Minkowski plane.*

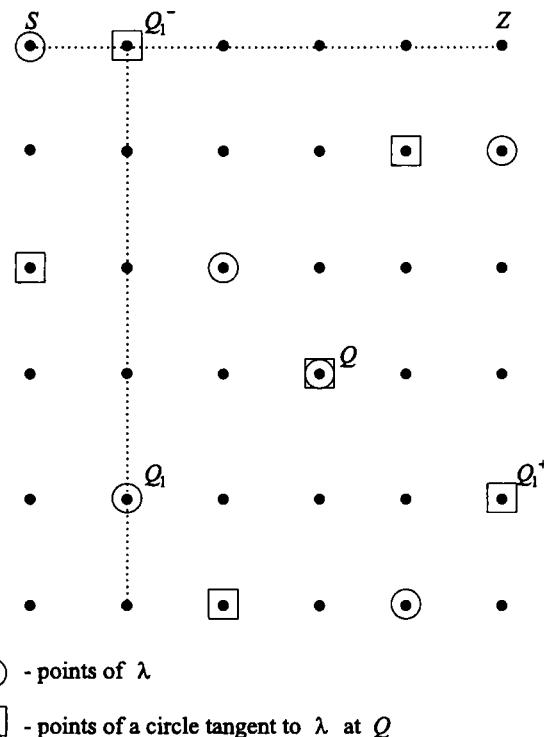


Fig. 7

REMARK 2. The “true” reason of our result obtained in Theorem 2 is quite trivial. Simply, it is caused by very small order.

One can trivially show that if M is a Minkowski plane of order 2 then for every point Z , M^Z is an affine plane. Thus, using Lemma 1, Corollary 8 and Corollary 4, we obtain the following characterization of Minkowski planes of order 2, 3, and 4.

COROLLARY 11. For any Minkowski plane M and a point Z a residual plane M^Z is an affine plane if and only if M is of order 2, 3 or 4.

References

- [1] P. Dembowski, *Finite Geometries*, Springer-Verlag, Berlin, Heidelberg, New York, 1968.
- [2] S. Lang, *Algebra*, Addison-Wesley Publishing Company, California, London, Sydney, Manila, 1970.
- [3] N. Percsy, Finite Minkowski planes in which every circle-symmetry is an automorphism, *Geom. Dedicata* 10 (1981), 269–282.

- [4] B. Quist, Some remark concerning curves of the second degree in a finite plane, *Ann. Acad. Sci. Fenn.* **134** (1952), 1–27.
- [5] H. A. Wilbrink, Finite Minkowski planes, *Geom. Dedicata* **12** (1982), 119–129.
- [6] H. A. Wilbrink, Nearaffine planes, *Geom. Dedicata* **12** (1982), 53–62.

PEDAGOGICAL UNIVERSITY,
INSTITUTE OF MATHEMATICS AND PHYSICS
ul. Żołnierska 14
10-561 OLSZTYN, POLAND
e-mail: jjakob@tufi.wsp.olsztyn.pl

Received September 8, 1997.

