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A GEOMETRICAL CHARACTERIZATION
OF MINKOWSKI PLANES OF ORDER 3 AND 4

Abstract. In [5) H. A. Wilbrink proved that a certain class of Minkowski planes induce
nearaffine planes. Of course, this class contains all Minkowski planes over fields. But only
Minkowski planes of order 3 and 4 induce nearaffine planes which are also Minkowski
planes (moreover they are affine planes, too).

1. Basic concept

Let II be a set of points provided with a family A of subsets called cir-
cles, and two other families ¥, ¥_ of subsets called (+)generators and
(—)generators, respectively. Elements of ¥, UX_ will just be called genera-
tors.

DEFINITION 1. The quadruple M = (II, £, ,¥_, A) is a Minkowski plane if
the following axioms hold ([3, p. 269]):

(M1) For every point P there exists a unique (+)generator, denoted by
[P]+, and a unique (~)generator, denoted by [P]-, containing P.

(M2) Every (+)generator meets every (—)generator in a unique point.

(M3) There is a circle containing at least three points.

(M4) Through three distinct points A, B, C, no two of which are on a com-
mon generator there is a unique circle, denoted by (A, B, C).

(M5) Every circle intersects every generator in a unique point.

(T) Given a circle A, a point P € X and a point Q ¢ A with P and @ not

on a generator, there is one and only one circle x through @ such that
ANu={P}.

COROLLARY 1. In the case of finite Minkowski planes (i.e. if I is finite) the
aziom (T) follows immediately from (M1) - (M5) (cf. [3, p.269]).
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DEFINITION 2. Let M = (I[,X;,X_,A) and M’ = (II', 2, X", A’) are
Minkowski planes. A bijection ¢ : IT — I is called an isomorphism from M
to M’ if the following conditions hold:

AEA < (N eN
cETLUE_ < p(0)e X UT..

PROPOSITION 1. Let P be a point of a Minkowski plane M = (I, X, ,5_,A)
and let

Ip =1 - ([P]+ U [P]-)
N={AnIlp; A€ A, PeAX}U{oNllp; c € Z,UX_, [P]+ #0 #[P]-}.

Then the incidence structure Mp = (Ilp, N) is an affine plane, called the
derrived plane with respect to P, where co; = {oc N1lp; 0 € T4 — {[P]+}}
and 0oy = {oc NUp; 0 € T_ — {[P]-}} are two classes of parallel lines,
i.e. 001 and ooy are ideal points in the projective extension Mp of Mp
(cf. 1, p. 116]). Moreover, for every circle A not passing through P the set
(ANTIp) U {01,002} is an oval in M p ([3, p. 273)).

Proof. The proof of the first part is classical (one must verify axioms of an
affine plane - cf. [1]). In order to demonstrate the last part, note that three
points of (AN IIp) U {001,002} cannot be on a line obtained from a circle
passing through P (because of (M4)) nor on a line obtained from a generator
(because of (M5)). For every point @ € ANIIp a line obtained from a circle p
such that uN X = {Q}, P € p is a unique tangent in Q. Let [P}y N A = {R},
[Pl-NA={S}. Then ([R]- NIIp) U {02} and ([S]+ NIIp) U {001} are the
unique tangents in oo and oo1, respectively.

DEFINITION 3. A number n (n > 2) is called the order of a Minkowski
plane M if every circle of M contains exactly n + 1 points ([3, p. 269], see
Figure 1).

PROPOSITION 2. Let F be any commutative field and let F = F U {oo},
where co € F, and extend operations from F to F as follows:
a+00=o00+a forevery a € F
a-0c0o=00-aforeverya€ F, a#0.
Then the set of all permutations on F given by
ar+b
_—,
cx+d
determines the set of circles in the Minkowski planes over F (cf. [3, p. 271]).

a,bec,de F, ad—bc #0
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Generators are given by

2 ={{(cy); yeF}; c€F}, =
and the point set is given byII=F x F.

{{(z,c); z€ F}; ce F}

COROLLARY 2. For every pair of points Z, W on a Minkowski plane M
over a field F there erists an automorphism ¢ of M such that o(Z) =W.
Proof. For Z,W € F x F, where Z = (21,22), W = (w1, w2) a bijection
o(z,y) = (z + w1 — 21,y + w2 — 22) is a required automorphism.

REMARK 1. For every n € {2,...,5,7,8} there exists ezactly one (up to
isomorphism) Minkowski plane of order n, namely a plane over the uniquely
determined field.

Let € be a set of elements called points with at least two points, ¥ a set
of subsets of 2 called lines. Let > be an operation called join mapping the

ordered pairs (X,Y), X,Y € Q, X # Y onto ¥ (X > Y denotes joining
from X to Y), and = an equivalence relation called parallelism on ¥. A line
X b Y will be called straight if X Y =Y P X, the remaining lines are

called proper. The set of all straight lines will be denoted by I'. X is called
the base point for X > Y.

DEFINITION 4. (R, ¥, >, =) is called a nearaffine plane if the following three
groups of axioms are satisfied [6, p. 53-54].

(I) Axioms of lines
(L) X,Ye X pY foral X,Y €Q, X £Y

L2) ZeXpY - {X}e XpY=X0pZforal X,Y,Z €9,
X#AY
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W XpbY=YbX=XD2Z) =>XbZ=20X for al
XY, ZeQ,Y+X+2Z.

(IT) Axioms of parallelism

(P1) For every k € ¥, X € Q there exists exactly one line with base
point X parallel to k. We denote this line by (X = k),

P2 XpY=YpbXforal X,)YeQ, X#Y,
(P3) (k=l)=>leTforallkel, l€¥.
(III) Axioms of richness
(R1) There exist at least two non-parallel straight lines

(R2) Every line ! meets every straight line k with —(k = [) in exactly
one point.

COROLLARY 3. Every proper line has exactly one base point. Each point of
a straight line is its base point.

COROLLARY 4. A nearaffine plane is an affine plane if and only if no proper
line exists in it.

DEFINITION 5. Let M = (II,£;,¥_, A) be a Minkowski plane. Fix a point
Z € II and define
Iz =1 - ([Z2)+ u[Z]-)

M=ANMzando* =cNIzforallAeA, ceZ, UT_.
We will use denotations [P]_ N [Z])+ = {P*}, [Pl+ N[Z]- = {P~} (see
Figure 2)
a) For P,Q € Iz, P # Q we define

o* if P,Qeoforsomeo e UT_

{P}u(P*,P~,Q)* if P and Q are not on a generator,
v={PpQ; PQellz}.

b) We define P, b Q1 = P2 b Q2 for the following cases:

i) Py b Q1 =07 for some 01 € 4 (07 € Z_). Then P, > Q2 =03
for some 02 € £ (02 € X_, respectively),
ii) [A]+ # [Qi]+, [P]- # [@1]- and Py, P € o for some o €
2,UZ_Then P> Q1 =P, > QrorPAbQiNP bQy=0,
iii) [P+ # (@4, [P]- # [@Qi]-, [P+ # [P+, [PA]- # [P2]-.
Then there exists P; > Q3 suchthat P, b Q1 NP > Q3 =0 =
P, p>Q:NP; > Q3 and P3, P, (i = 1,2) are on a common
generator.

P>Q={
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THEOREM 1. The structure M? = (IIz, ¥, >, =) is a nearaffine plane if
and only if the following conditions hold (cf. [5, p. 121-122)).

(A) Let P,,Q1, P2,Q2 € IIz and suppose that P, and Q1, Py and @9,
Py and P, are not on a common generator. If there exists a circle
A touching (P{,P;,Q)) in P[ and touching (Py, Py, Q) in Pyt
then there ezists a circle u touching (Pit, P, Q1) in Pjt and touching
(P, Py ,Q2) in Py (see Figure 3).

(B) Let P1,Q1, P, Q2 be points as in (A). If P, € (P}, Py ,Q2) and P, €
(P, P, Q1) then circles A and p, as described in (A), erist.

COROLLARY 5. If M is a Minkowski plane over a field then every point
Z induces a nearaffine plane MZ and for every point W, planes M? and
MW are isomorphic.

Proof. By Corollary 2, it is enough to consider the conditions (A) and (B)
with respect to M(®®) (ie. Z = (00, 00)). Let us denote P;" = (o0, ),
P = (p;,), Qi = (gi,i), i = 1, 2. Therefore a circle (P, P, Q;) is given
by (z —p; )(y — p{) = (g — p;)(rs — p;). A circle A touching (P, P, Q1)
in P| and touching (Py, Py, Q) in P;" must be given by

(z —p1 )y —p3) = (@1 —p7)(r1 — ) = (@2 — p7 ) (r2 — D7)
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The latter equality implies that a circle p given by
(—p7)(y—p}) = (@1 —p7)(r1 — pf) = (92 — P2 )(r2 — p3)
is touching (P, Py, Q1) in P’ and touching (P;, Py ,Q2) in Py . Thus
(A) holds. If now Py € (P, Py ,Q2) and P, € (P, P[,Q;), where P, =
(p; ,p;) then using the equation of (P, P, Q;), i = 1,2, we have
(py —p2)(@f —p3) = (a2 —p3)(r2 — P3)
and
(7 —p1)(3 ~p]) = (@1 — P1)(r1 — PT).
Left sides are equal and so must be right.

COROLLARY 6. For any Minkowsk:i plane over a field F and a point Z =
(00, 00) we have:
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a) every line P b Q = o*, where 0 € ;1 U X_ is a straight line (see
Corollary 3);

b) all lines of type {P} U (P*,P~,Q)* constitute a set

{{(z,y)EFxF; y= ‘c‘:j_'g ; a,b,e,d€F, ad —bc# 0, c;éO} =

{@veFxF y=2t}; abdeF, ad-b#0} =

{{(z,y) e F x F; (x+d)(y —a) =b—ad}; a,b,d € F, ad — b # 0}.

2. General results

DEFINITION 6. Let M = (II,X,,%X_,A) be a Minkowski plane such that
there exists a point Z inducing a nearaffine planeM?Z and let \,u € A, Z ¢
AUp. ) is congruent to p (X 2 ) if and only if in MZ lines obtained from \*
and u* have the same set of points (more precisely: if A = (P*, P~, Q) and
p= (R*,R™,S) for some P*,R* € [Z],, P~,R™ € [Z]-, and Q,S € Iz
then {P} U X* = {R} U u*).

COROLLARY 7. The relation =2 is an equivalence relation.

COROLLARY 8. A line determined by a circle A\ (A = (P*,P~,Q) for some
P,Q € I1z) is proper iff [\]~ = {A} (see Corollary 3).

2.1. A Minkowski plane of order 3

In virtue of Remark 1, one can investigate a plane over the field Z3 =
{0,1,2}. Let

I= {P]_,Pz,.. .P]_s}, E+ = {01, ce ,0’4}, Y_= {7‘1,.. . ,’7'4}
where
Pl = (0,0)9 P2 = (011): P3 = (0:2)) P4 = (1,0): P5 = (1,1)’ Pﬁ = (1’2)’
P7 = (2’0)’ P8 = (271)a P9 = (272)’ P10 - (OO,O)> Pll = (00,1),
Py = (0012) P13 = (0,00), Py = (1700)1 P15 - (2,00)7 P16 = (00700)’
o1 ={P, P;, P3, P13}, 02 = {Py, Ps, Ps, P4}, 03 = {Pr, Pg, Py, P15},
oy = {Pr, P11, P12, Prs}, 11 = {P1, Py, P, Po}, 72 = {Ps, Ps, F3, Pn1},
73 = {Ps, Ps, Py, P12}, 74 = { P13, P14, P15, Pis}.

Because of Definition 5, only circles not passing through Pj¢ are used to
construct the nearaffine plane M6, So Table 1 presents all such circles and
the way to obtain the lines determined by them in M¥16. One can easily
verify that every class of congruent circles consists of three elements, e.g.

[M]e = {A1, A11, A15}. Therefore the lines are straight, by Corollary 8. Let
us identify every class with the set of points belonging to the line determined
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Table 1
Circle | Equation of | Points on {Qy= | {R}= | {S}= Points on
Ag ¥ ¥ Pynog | ANt | [Q-N[R]+ | {STUX
1
A1 y=7 P5, Py, P1g, P13 | Pio Py3 P, P,P5, Py
2
A2 y= P, Pg, P10, P13 | P1o Py3 P, Py, Ps, Ps
1
A3 V=20 P>, Pg, P1g, P15 | P1o Pys Py Py, Pg, Py
2
Aq e | Py, Ps, P1o, P15 | P1o Pi5 P P3, P5, Py
1
As V=213 P3, Py, P1g, P14 | P1g Py Py P3, Py, Py
2
X6 V=173 P, Py, P19, P14 | Pro Py Py Py, Py, Py
z+1
A7 y=— Ps,P7, P11, P13 | Pn1 Py3 ) Py, Pg, Py
T+ 2
Ag y=— Py, Py, P11,P13 | Py Pi3 Py Py, Py, Py
xr
Ag V=771 P, P, P11, P15 | Py P Pg P, Ps, Py
T+ 2
A0 V=01 Py, Py, P11,Pi5 | Py Py5 Py P;, Py, Pg
xT
A1 V=73 Py,Py,P11,P14 | P11 Py P Py, Ps, P
rz+1
A12 V=717 P3, Pp,P11,P14 | P11 Py Ps P3, P, Py
2z +1
A3 v=— Py, Pg, P12,P13 | P12 Pi3 Py P3, Py, Py
2z + 2
A14 v=— P5, P, P13,P13 | P12 P13 Py Ps, Ps, Py
2z
A1s5 V=777 Py, Ps5,P12,P15 | Pi2 P Py P, P5,P
2z +1
A16 V=T Py, Py, P13, P15 | P12 P Py Py, Py, Py
2z
A17 V=273 Py, Py, P12,P14 | P12 Py P Py, Ps, Py
2z + 2
A1g V=712 Py, P7, P13, P14 | P12 Py P P, Pg, Py

by it, and denote them by

ai = {P1, Ps, Py}, aa = {P, Ps, Pg}, a3 = {Ps, Py, Py}, oy = { P, Ps, Pr},
as = {Ps, Py, Pg}, as = {Ps, Ps, Pr}.

Further, in virtue of Definition 5, Corollary 5, and Corollary 6, a) we have
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straight lines

O'I = {P]_,PQ,P:;}, 0’; = {P4,P5,P6}, Jg = {P7,P8,P9},

Tf = {Pl,P4,P7}, Tg = {Pz,Ps,Pg}, Tg = {P3,P6,P9}.
NowweputIl' =Ilp, = {Py,..., P}, &, = {0},05,03}, 2. = {7{, 75,73},
A = {a1,09,...,06}. One can easily verify that M’ = (II', &/, ,X__,A") is a
Minkowski plane of order 2 (see Figure 4).

P Y S PPN @ iieerreeeieaes PY
B B, Bs K
[ [} [ ®
A K R B,
[ ] [} [ ] ®
B 7§ B B,
[ ] [ ] [ J L]
R F, R By
Fig. 4

From Corollary 4 and Corollary 5 we obtain
COROLLARY 9. If M is a Minkowski plane of order 8 then for every point
Z all lines of MZ are straight and so MZ is an affine plane.

2.2. A Minkowski plane of order 4
In the same way as before, we investigate a plane over the field K =
{0,1,a,b} with1+1=a+a=b+b=0,14a=b1+b=a,a+b=1,
a-b=1,a-a=0>b,b-b=a (cf [2]), where we put:
P = (O’O)a Py = (011)7 Py = (O,G), Py = (O’b): Ps = (170)7 P = (1’1)7
P; =(1,a), Ps=(1,b), Py =(a,0), Py = (a,1), P11 = (a,a),
P12 = (a, b) P13 = (b,O), P14 = (b, 1), P15 = (b, a), Plﬁ = (b, b),
Py7 = (00,0) Pig = (00,1), Pig = (00,a), Pag = (00,b), Ps; = (0, 00),
P22 = (1,00), P23 = (a,oo), P24 == (b, OO), P25 = (O0,00),
o1 = {Py, Py, P3, Py, Py}, 0o = {Ps, P, P1, Ps, Ppy},
o3 = {Py, Pyo, P11, P12, Pr3}, 04 = {P13, P14, P15, P16, Paa},
o5 = { P17, P1g, P19, Pao, Pas}, 71 = {P1, Ps, Py, P13, P17},
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Table 2
Circle | Equation of | Points on {Q}={{R}=|{S}= Points on
i Ai A AiNos | AN |[Q- N[R[+ | {STUA]
A1 y= % Ps, P12, P15, P17, P21 | P17 P31 P, Py, Pg, P13, P15
A2 y= % Pq, Prg, Pag, P17, P21 | P17 Pan (A Py, Py, Prg, Prs
A3 |y = g Py, P11, Pug, Prv7, Pa1| P17 Py P Py, Py, P11, Py
A |y = p i T P2, P11, Prg, P17, Pa2 | P17 Py |Ps P, P5, P11, P1s
As |y = p _l:_ T | P P12, P14, Pr7, P22 | P17 P |Ps P3, P5, P12, P14
Y y=7 _I:_ T Py, Pro, P15, P17, P2 | P17 Pa [P Py, Ps, P1o, P15
A7 |y = p i - P4, Py, P14, P17, Pag { P17 P3| Py Py, P7, Py, P14
Ag y=< j_ > Py, Py, P15, Pr7, Paz | P17 Py | Py Py, Pg, Py, P15
Ao |y= o f_ - P3, P, P1g, P17, P23 | P17 Py | Py Py, Pg, Py, P1s
Ao |y= = _li_ 5 P3, Py, Pio, P17, P24 | P17 Py P13 Ps, Pg, P1o, P13
A ly= p i 5 P4, Ps, P11, P17, Pag | P17 Py | Pi3 Py, Pg, Py1, Pi3
A2 |y= p _I:_ 5 P2, P7, P12, P17, Py | P17 Py | P13 Py, P7, P12, P13
My jy=2 : L Ps, P11, P16, P1s, P21 | P1s Py Py Py, Ps, P11, P16
Ma fy=72 : % | Ps, Py, Pis, Pis, P |Pis Pa P P2, Pg, Py, P15
M5 |y=Z : b Pq, P12, P13, P13, P21| Pig Py Py P, Py, P12, P13
A6 |y = p _T_ T Py, P12, P15, P13, P22 | Pis Py | Ps Py, Pg, Pa2, P15
M7 |y = 2 i ‘11 P3, Py, Prg, P18, P22 | P18 Pag Ps P3, Pg, Py, P16
Mg |y= z: ll) Py, P11, Pr3, P18, P22 | Pis Py | P Py, Pg, P11, P13
Mg |y= o _T_ " Py, P7, Prg, P1s, P23 | P1s Pz | Pro Py, Py, Pyg, Prs
A2 |y= ; I (11 Py, Ps, P15, P1g, P23 P18 P | Puo Py, Ps, Pro, P15
A1 |y = i ::__Z P3, Pg, P13, P1g, Pa3 | P18 Pz P Ps, Py, P10, P13
Az ly= o i 5 Py, Pg, P11, P1g, P24 | P13 Py |P1g Py, Pg, P11, P1g
Az |y= z j: Il) P3, P5, P12, P1g, P24 | P18 Py [Prg P3, Ps, P12, P14
Mg |y=2 ta P4, P7, Py, P1g, P24 | P1s Py | Pra Py, P7, Py, P14
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Circle | Equation of | Points on {Q}=|{R}=1{S}= Points on

Ad Ai i AiNog| ANt |[Ql- N[R]4 [{STUAN]

A5 |y = az: L P, Pyo, P13, Prg, Pa1 | Pio P2 P3 Ps3, Pg, P19, P13
A |y = az: 2 | Ps, Prz, Pra, Pro, Po1 | Prg P2 Ps P3, P5, P12, P14
A2z jy= am: b Fg, Py, P16, Prg, P21 P19 Py | P P3, P, Py, P1s
A2g |y = z‘fl Py, Pro, P1s, P19, P22 | P19 P | Py Py, Py, Pro, P16
Ag |y = a::ll Py, Py, Pr3, Prg, Pa2 | P1g P | Py Py, Py, P12, P13
Azo |y = (;z_:_lb Py, Py, Prg, Prg, P22 | P19 P | P Py, Py, Py, P14
A3l |y = :c(fa Py, Pg, P14, P19, P23 P19 Pa3 Py Py, P3, P11, P14
A2 |y = (?::al Py, Ps, P13, P19, P23 | P1g P | Pn Py, Pg, P11, P13
A3z |y = 25%5 P, Ps, P16, P19, P23 | P19 P3| Pu P2, Ps, Pr1, P1g
Azqa |y = z(fb Py, Ps, P12, P19, P2y | P19 Py P15 Py, Pg, P12, Prs
Azs  ly= a;_:: Py, Ps, Prg, P19, P24 | P19 Py | P15 Py, P5, Pag, P15
Az {y= ?:bb Py, Pg, Py, Prg, P2y | P19 Py | P15 Py, Py, Py, P15
Azr |y = bz: L P7, Py, P14, Py, P21 | Ppo Py | Py Py, P7, Py, P14
Azg |y = bz: 2 | Ps, P11, P13, Pao, Pa1 | Pao Pn  |Py Py, Pg, P11, P13
Azg |y = bz: b Ps, P1o, P15, Pao, P21 | P2o Pr Py Py, Ps, P10, P15
Ao |y= zlfl Py, P11, Py, Pao, P22| Pao Pag Py Py, Pg, P11, Pig
A1 |y = l:_:_ll Py, Py, P15, Pyo, P22 | Pao Pp |Pg P, Pg, Py, P15
A2 |y= l:f:f P3, Prg, P13, Pao, P22 | Pao Py |Pg Ps, Pg, Pig, P13
Az |y= zlfa Py, Pg, P15, Pao, P23 | Pao Pz | P12 P, P, P12, P1s
Mg |y= ?:: P, Py, P13, Pyo, P23 | Pao Pz | P2 Pa, P, P13, P13
A5 |y = I::_:-: P3, P5, P14, Py, P23 | Pao P3| P12 P3, Ps, P12, P14
Mg |y= zbj 5 Py, P7, Pro, Pao, P24 | Pao Py |Pig Py, Pp, Prp, Prs
A7 |y = I::bl P3, Pg, Py, Pag, P2y | Pao Py P16 P, P, Py, P16
Mg |y= be +Y P2, Ps, P11, P20, P24 | Pao Py | P16 P, P5, P11, Pag




452 J. Jakébowski

7o = {Py, Ps, P10, P14, P1g}, 73 = {Ps, P, P11, Pi5, Pig},
74 = {Py, P3, P12, Pig, Pao}, 75 = {Pa1, P2, P23, Pa4, Pas},
II= {P]_,Pz,...,P25}, E+ = {0'1,. ..,05} .= {Tl,...,’7'5}.
The set of all circles not passing through Po5 = (00, 00) and the construction
of the line determined by a circle, are presented in Table 2. Now every class
of congruent circles consists of four elements, e.g. [M]~ = {A1, A16, A34, A4z}

Hence the lines obtained from circles are straight, by Corollary 8. Identifying
each class with the set of points belonging to each of its elements, we obtain

ay = {P1, Ps, P12, Pis}, as = {Py, Py, Py, P}, a3 = {P1, Ps, P11, Pa},
ag = {Py, Ps, P11, P16}, as = {Ps3, Ps, Pia, Ps}, as = { P4, Ps, Pio, P15},
ar = {Py, P, Py, Py}, ag = {Ps, Ps, Py, P15}, ag = {P3, P, Py, Pis},
aio = {Ps, Py, Pio, P13}, a11 = {Py, Ps, P11, P13}, aus = {Ps, Py, P1a, P13}
Further we have straight lines
o1 = {P1, P2, P3, P4}, o5 = {Ps, Ps, Py, s},
o3 = { Py, Pro, P11, P12},0; = { P13, P14, P15, P16},
1 = {Py, P5, Py, P13}, 73 = { P2, P, Pro, P14},
73 = {Ps, P;, P11, Pis}, 74 = { P4, Pg, P12, Pis}-

Thus for ' = Ilp, = {P,...,P}, &} = {o},03,03,0;}, T_ =
{rf,75,73,74} and A’ = {o1,09,...,012} we have obtained a Minkowski
plane M’ = (II', 2,2’ ,A’) of order 3. Really, axioms (M1)-(M3), (M5)
are obvious. In order to prove (M4) note that every three points of Ilp,,
no two of which on common generator, uniquely determine the 4-th point
and these four points constitute a circle a; for some i = 1,2,...,12 (see
Figure 5).
Analogously as Corollary 9 we obtain

COROLLARY 10. If M is a Minkowski plane of order 4 then for every point
Z all lines of MZ are straight and so M?Z is an affine plane.

2.3. A Minkowski plane of order different from 3 and 4

LEMMA 1. If M = (II,X4,X_,A) is a Minkowski plane of order at least 5
then for every A\,u € A there is A\ =2 p & A= pu.

Proof. Of course, if A = p then A = u. Fix a point Z and suppose that
A 22 u for some circles A, p, where Z ¢ AU p. Let us denote

[Z)+ nA={P*},[Z]l-nA={P"},[Z]; nu={Q"}
[Z]-0p={Q L [PF]l-n[P7]; ={P}QT]-N[Q7]+ = {Q}
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Then {PYUX* = {Q}Upu* as X\ & p. Let PT # Q*, P~ # @, whence
P € p*, @ € X*. But, by the assumption of order at least 5, there are
at least three (+)generators different from [P]4,[Q]+,[Z]+ (see Figure 6)
and points of A lying on them must be the same as points of u (otherwise
{P}UX* # {Q} U p*). In virtue of (M4) we have A = p. If, for example
Pt = Q7" then there are at least four (+)generators on which points of A
and p must be the same.

LEMMA 2. No point Z in a Minkowski plane M of order n, where n # 3
and n # 4, can induce a nearaffine plane M? which is also a Minkowski
plane.

Proof. It is trivial for n = 2 so let M = (II,X;,X_, A) be a Minkowski
plane of order at least 5. We shall show that then M?Z cannot satisfy (M4).
Let A€ A, Z ¢ X and fix a point @ € AN IIz. We have two possibili-
ties:

a) There exist distinct points Q2, Q3 € IIz such that A\N(QT,Q7,Q2) =
{Q2,Q3}. Because of Lemma 1, circles X and u = (Qf, Q7 , Q2) are in
distinct classes with respect to 2. Thus in M? there would exist two
distinct circles {P} U A* (where [Pl NA =[Z]-NXand [P]-NA=
[Z]+ n )‘) and {Ql} U (Qi'_a Q;> QZ)* containing Q1> Q21 Q3-

b) Points Q2,Q3 € Iz such that AN (QF,Q7,Q2) = {Q2,Q3} do not
exist. It means that for every Q € A\, Q@ # Q1, a circle (Q7,Q7,Q)
is tangent to A at @ (see Figure 7). But in the projective derrived
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plane M Qr such a circle becomes a tangent of an oval obtained from

A (see Proposition 1), and Q7 is on this tangent. It is well known
that the number of tangents of an oval passing through a point R
not belonging to the oval, is 0 or 2, unless all tangents contain R ([4,
p.10]). By the assumption n > 5, we have that all tangents of an oval
obtained from A should contain Q7. Let [Q7]-NA = [Z]-nX = {S}.
In particular p = ([S]+ N HQ{) U {001} is a tangent (see the proof

of Proposition 1) but [Z]+ = [Q]+ # [S])+ so QF ¢ p, a contradic-
tion.

From Lemma 2, Corollary 5, and our consideration in 2.1 and 2.2 the
following characterization is immediate.

THEOREM 2. A Minkowski plane M is of order 8 or of order 4 if and only
if every point Z induces a nearaffine plane MZ, which is also a Minkowski
plane.
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REMARK 2. The “true” reason of our result obtained in Theorem 2 is quite
trivial. Simply, it is caused by very small order.

One can trivialy show that if M is a Minkowski plane of order 2 then
for every point Z, MZ is an affine plane. Thus, using Lemma 1, Corollary
8 and Corollary 4, we obtain the following characterization of Minkowski
planes of order 2, 3, and 4.

COROLLARY 11. For any Minkowski plane M and a point Z a residual plane
MPZ is an affine plane if and only if M is of order 2, 3 or 4.
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