

Ömer Gök

ON REFLEXIVITY OF SCALAR-TYPE
SPECTRAL OPERATORS

Introduction

The aim of the present paper is to give a dual version of the reflexivity result of scalar-type spectral operators in the quasi-complete locally convex spaces proved in [4]. The method in our result is based on the barrelled locally convex $C(K)$ -modules. Let $C(K)$ be the set of all continuous real or complex valued functions defined on a compact Hausdorff space K with the supremum norm. Suppose that X is a locally convex Hausdorff space. By $L^*(X)$ we denote the set of all linear mappings from X into X and by $L(X)$ the set of all continuous linear mappings from X into X . We denote by I the identity operator. The topological dual of X will be denoted by X' . We denote by X'' the topological dual of $X'[\beta(X', X)]$. We say that X is a locally convex $C(K)$ -module if the bilinear mapping $\cdot : C(K) \times X \rightarrow X$, $(a, x) \rightarrow a.x$ satisfies the following conditions:

- (i) $1.x = x$ for all $x \in X$, $1 \in C(K)$,
- (ii) $(a.b).x = a.(b.x)$, for each $a, b \in C(K)$, $x \in X$,
- (iii) The bilinear mapping \cdot is separately continuous.

We say that X is a barrelled locally convex $C(K)$ -module if X is a locally convex $C(K)$ -module and barrelled space. Let X be a barrelled locally convex $C(K)$ -module. Hence, it is accomplished by the following bilinear mappings:

- (A) $X \times X' \rightarrow C(K)', \quad (x, x') \rightarrow \mu_{x, x'}(a) = x'(a.x), \quad a \in C(K)$,
- (B) $C(K)'' \times X' \rightarrow X', \quad (a, x') \rightarrow (a.x')(x) = a(\mu_{x, x'}), \quad x \in X$.

Throughout this paper, X will denote a barrelled locally convex Hausdorff space. Therefore, X' is $\sigma(X', X)$ quasi-complete, [8, 6.1]. The bilinear mapping $\cdot : C(K) \times X \rightarrow X$ defines a mapping $m : C(K) \rightarrow L(X)$, $m(a)x = a.x$, which is norm to strong operator topology continuous unital algebra homo-

morphism. Since $C(K)$ is an AM-space with unit, it is isomorphic to $C(S)$ with S a hyperstonian [1, Theorem 15.7], [6], [7]. It is well-known that X' is a locally convex $C(S)$ -module [5], [6]. From [5], [6], [7], it is known that the linear mapping $m^* : C(K)'' \rightarrow L(X')$ defined by $m^*(a)x' = a \cdot x'$, for each $a \in C(K)''$, $x' \in X'$ satisfies the following properties:

- (i) For each $a \in C(K)''$, $m^*(a)$ is continuous from $X'[\sigma(X', X)]$ into $X'[\sigma(X', X)]$.
- (ii) m^* is an algebra homomorphism.
- (iii) For each $a \in C(K)$, $m^*(a) = (m(a))^*$, where $(m(a))^*$ is the adjoint of $m(a)$.

Let B be the Boolean algebra of projections in $C(S)$. For each $x' \in X'$, let $\text{Ker}(x') = \{a \in C(S) : a \cdot x' = 0\}$. We say that a projection $e_{x'} \in B$ is a carrier projection for $x' \in X'$ if $(1 - e_{x'})C(S) = \text{Ker}(x')$. For unexplained notion and terminology we refer to [1], [9], [10].

LEMMA 1 [7, Lemma 1]. *For each $x' \in X'$ the carrier projection $e_{x'}$ exists in $C(S)$.*

P r o o f. Since S is hyperstonian, B is complete as an abstract Boolean algebra. Let D be the idempotents in $\text{Ker}(x')$ and let $e_1 = \vee D$ in B . Since D is directed upwards, $D \uparrow e_1$ in the order of $C(S)$. On the other hand $C(K)'$ consists of order continuous linear functionals on $C(S)$. So $D \rightarrow e_1$ in $\sigma(C(K)'', C(K)')$. Therefore, $e_1 x' = 0$. So $e_1 \in D$ and $e_{x'} = 1 - e_1$ is the carrier projection of x' . Also $e_1 C(S) \subset \text{Ker}(x')$. Suppose $a x' = 0$ and $a(t) \neq 0$ for some $t \in S$. Then there is an open-closed neighbourhood of t on which $|a|$ is bounded away from zero. Let $e \in B$ be the characteristic function of that open-closed set. Then $a e x' = 0$ and a is invertible on the support of e . From here we deduce that $e x' = 0$. Hence, the support of a is contained in the support of e_1 and $\text{Ker}(x') \subset e_1 C(S)$.

We introduce the following proposition which we shall need later.

PROPOSITION 2 [2, Proposition 2.3]. *Let M be a Riesz space which is a linear subspace of the Hausdorff quasi-complete topological vector space X , such that the induced topology in M is locally solid. Then the closure \overline{M} of M in X is equal to the completion of M .*

In $L^*(X')$ and $L(X')$ we consider the w^* operator topology. Once again, let B be the Boolean algebra of projections in $C(S)$ and then note that by the bilinear mapping (B), $m^*(B) = P$ is an equicontinuous Boolean algebra of projections in X' , i.e., P is an equicontinuous collection of mutually commuting idempotents in $L(X')$, partially ordered by range inclusion, which is a Boolean algebra with respect to the lattice operations defined

by $E \wedge F = EF$ and $E \vee F = E + F - EF$ for $E, F \in P$. We denote by A the linear span of P in $L(X')$. It should be observed that P is strongly equicontinuous Boolean algebra in $L(X')$, i.e., $\{E_n\}$ converges to zero in $L(X')$ for any disjoint sequence $\{E_n\}$ in P , [5]. An element $T \in A$ has a unique standard representation $T = \sum_{i=1}^n \lambda_i E_i$ where $E_i \neq 0$ in P are such that $E_i E_j = 0$ ($i \neq j$), $\sum_{i=1}^n E_i = I$ and $\lambda_1, \dots, \lambda_n$ are mutually different scalars. It is clear that A has the complex Riesz space structure, where the absolute value of $T = \sum_{i=1}^n \lambda_i E_i$ is given by $|T| = \sum_{i=1}^n |\lambda| E_i$. Furthermore, with respect to the topology induced by $L(X')$, A is a complex locally solid Riesz space [2, Lemma 3.2], [5]. By \overline{A} we denote the w^* -closed subalgebra of $L(X')$ generated by P . Moreover, \overline{A}^* denotes the w^* closure of A in $L^*(X')$ equipped with the w^* operator topology. Therefore, by Proposition 2 the lattice operations extend to \overline{A}^* . It is seen that the w^* -closure \overline{A}^* of A in $L^*(X')$ is a Dedekind complete f -algebra with a complete, locally convex solid Lebesgue topology, [2, Proposition 3.6], [5]. With respect to composition as multiplication, \overline{A}^* is a complex commutative f -algebra, [2, Proposition 4.2]. It is clear that \overline{A} is a subalgebra of \overline{A}^* . We claim that \overline{A} is an order ideal in \overline{A}^* , from which follow the expected properties of \overline{A} , i.e., \overline{A} has the structure of a Dedekind complete, complex f -algebra such that the relative w^* operator topology in \overline{A} is complete, locally solid and Lebesgue. For this, suppose that $|S| \leq |T|$ in \overline{A}^* with $T \in \overline{A}$. Then there exists $R \in \overline{A}^*$ with $|R| \leq I$ such that $S = RT$, [3, Proposition 2.3]. It follows from [2, Proposition 3.11] that $R \in \overline{A}$ and therefore $S \in \overline{A}$.

Fix $x' \in X'$ and put $A(x') = \{Tx' : T \in A\}$. The mapping $x' \rightarrow Tx'$ from A onto $A(x')$ induces the structure of a complex Riesz space in $A(x')$, and the topology induced by X' in $A(x')$ is locally solid, [2, Lemma 3.3], [5]. By $\overline{A(x')}$ we denote the w^* closure of $A(x')$ in X' . Therefore, $\overline{A(x')}$ has the structure of a complex Dedekind complete Riesz space with a complete locally convex solid Lebesgue topology, [2, Proposition 3.9], [5].

Let R be a collection of linear operators on X . We denote by $AlglatR$ the algebra of all operators on X which leave left invariant all R -invariant closed subspaces of X .

In this paper, we will be concerned with densely defined linear operators $T : D(T) \rightarrow X$, where the domain $D(T)$ is a linear subspace of X . If T and S are such operators, then we write $T \subseteq S$ if $D(T) \subseteq D(S)$ and $Tx = Sx$ for all $x \in D(T)$. We recall again that $m^*(B)$ is a strongly equicontinuous Boolean algebra of projections in X' and \overline{A} is the w^* -closed subalgebra of $L(X')$ generated by $m^*(B) = P$. We introduce the following similar definitions which can be found in [4].

DEFINITION 3. Let X be a barrelled locally convex $C(K)$ -module. The densely defined linear operator T is said to have an adjoint spectral element T' with respect to B if there exists a sequence $\{e_n\} \subseteq B$ such that

- (i) $e_n \uparrow 1$ in B ,
- (ii) $m^*(e_n)(X') \subseteq D(T')$ and $T'm^*(e_n) \in \overline{A}$ for all $n \in N$,
- (iii) $T'x' = \lim_{n \rightarrow \infty} T'm^*(e_n)x'$ for all $x' \in D(T')$.

Such a sequence (e_n) will be called determining for T' . Note that each adjoint spectral element T' is densely defined. It is easy to check that if $(e_n) \subseteq B$ is a determining sequence for T' , and if $(f_n) \subseteq B$ is a sequence such that $f_n \leq e_n$ for all $n \in N$ and $f_n \uparrow 1$ holds in B , then (f_n) is a determining sequence for T' . We see that if S and T are adjoint spectral elements with respect to B then there exists a sequence $(e_n) \subseteq B$ which is determining for S and T simultaneously.

Adjoint spectral elements T, S are called equivalent ($T \sim S$) if there exists a sequence $(e_n) \subseteq B$ with $e_n \uparrow 1$ such that $m^*(e_n)(X') \subseteq D(T) \cap D(S)$ and $Tm^*(e_n) = Sm^*(e_n) \in \overline{A}$ for all $n \in N$. It is easy to see that the given relation is reflexive, symmetric and transitive. So \sim is an equivalence relation. By $[T]$ we denote the equivalence class of adjoint spectral elements determined by the adjoint spectral element T . It is easy to see that adjoint spectral elements T and S are equivalent if and only if there exists an adjoint spectral element R such that $R \subseteq T$ and $R \subseteq S$.

PROPOSITION 4 [4, Proposition 2.2]. *If T has an adjoint spectral element T' with respect to B , then there exists a unique maximal representative $H \in [T']$ satisfying the following properties:*

- (i) H is densely defined and w^* closed.
- (ii) $D(H)$ is P -invariant and $H(e.x') = e.Hx'$ for all $e \in B$ and $x' \in D(H)$. In addition, if R is any representative of $[T']$ and if $(f_n) \subseteq B$ is any determining sequence for R , then
- (iii) $m^*(f_n)(X') \subseteq D(H)$ and $Hm^*(f_n) = Rm^*(f_n)$ for all $n \in N$;
- (iv) $x' \in D(H)$ if and only if $\lim_{n \rightarrow \infty} Rm^*(f_n)x'$ exists, in which case $Hx' = \lim_{n \rightarrow \infty} Rm^*(f_n)x'$.

Proof. Suppose that $(e_n) \subset B$ is a determining sequence for the given adjoint spectral element T' . Define $D(H) = \{x' \in X' : \lim_n T'(e_n.x')\}$ exists and if $x' \in D(H)$ define $Hx' = \lim_{n \rightarrow \infty} T'(e_n.x')$. After that, applying the same technique with [4, Proposition 2.2] we end the proof.

DEFINITION 5. Let T be a densely defined linear operator and suppose that T has an adjoint spectral element T' with respect to B . Then T' will be called an adjoint scalar-type spectral operator with respect to B if there

exists a determining sequence (e_n) for T' such that $D(T') = \{x' \in X' : \lim_n T'(e_n \cdot x') \text{ exists}\}$ and $T'x' = \lim_{n \rightarrow \infty} T'(e_n \cdot x')$ for all $x' \in D(T')$.

We introduce the following dual version of [4, Corollary 2.4].

COROLLARY 6. *If T has an adjoint scalar-type spectral operator T' with respect to B , then the following assertions are true.*

- (i) T' is densely defined and w^* -closed.
- (ii) $D(T')$ is P -invariant and $T'(e \cdot x') = e \cdot T'x'$ for all $x' \in D(T')$ and $e \in B$.
- (iii) If $Y \subseteq X'$ is a $\sigma(X', X)$ closed P -invariant subspace of X' , then $T'(D'(T') \cap Y) \subseteq Y$, i.e., $T' \in \text{Alglatm}^*(B)$.

If S and T are linear operators in X' with domain $D(S)$ and $D(T)$ respectively, then $D(S+T) = D(S) \cap D(T)$ and $(S+T)x' = Sx' + Tx'$ for all $x' \in D(S+T)$, $D(ST) = \{x' \in D(T) : Tx' \in D(S)\}$ and $(ST)x' = S(Tx')$ for all $x' \in D(ST)$. The proof of the following result is straightforward, therefore it is omitted.

COROLLARY 7. *If S and T are adjoint scalar-type spectral operators with respect to B , then $S+T$ and ST are adjoint spectral elements.*

COROLLARY 8. *Let X be a barrelled locally convex $C(K)$ -module. Then \overline{A}^* consists precisely of the everywhere defined adjoint scalar-type spectral operators with respect to B .*

P r o o f. Take any $T \in \overline{A}^*$. We claim that there exists a sequence $\{E_n\}$ in P such that $E_n \uparrow I'$ and $|TE_n| \leq nI'$ for all n . Indeed, let $\{E_n\}$ be the component of the identity operator I' in the band generated by the operator $(nI' - |T|)^+$ in \overline{A}^* . Hence, the sequence $\{E_n\}$ has the properties that $E_n \uparrow I'$, $TE_n \in \overline{A}$ for all n and $\lim_n TE_n x' = Tx'$ for all $x' \in X'$. This implies that T is an adjoint scalar-type spectral operator with respect to B . Assume now that T is an everywhere defined scalar-type spectral operator. Then by the definition of the adjoint scalar-type spectral operator, there exists a sequence $\{e_n\} \subseteq B$ such that $Tm^*(e_n) \in \overline{A}$ for all n and $\lim_n Tm^*(e_n)x' = Tx'$ for all $x' \in X'$. Therefore, $T \in \overline{A}$.

By A_∞ we denote the collection of all scalar-type spectral operators with respect to B .

DEFINITION 9. If S and T are adjoint scalar-type spectral operators with respect to B , then the adjoint scalar-type spectral operators $S\overline{T}$ and $S.T$ are defined to be the maximal representatives of the corresponding classes $[S\overline{T}]$, $[ST]$.

With respect to defined operations A_∞ is a complex vector space and a commutative algebra with the identity operator I' as unit, which contains \overline{A} as a subalgebra.

We gather some simple properties of the domains of adjoint scalar-type spectral operators.

LEMMA 10. *Let X be a barrelled locally convex $C(K)$ -module and suppose that T is a densely defined linear operator with an adjoint scalar-type spectral operator T' , $D(T') \subseteq X'$. Then the following are true.*

- (i) *If $x' \in D(T')$ and if $S \in \overline{A}$, then $Sx' \in D(T')$ and $T'Sx' = ST'x'$.*
- (ii) *If $x' \in X'$, then $D(T') \cap \overline{A(x')}$ is an order dense ideal in the Riesz space $A(x')$.*
- (iii) *If $x' \in X'$, then $\overline{A(x')}$ is T' -invariant, i.e., if $y \in D(T') \cap \overline{A(x')}$ then $T'y \in \overline{A(x')}$.*

Proof. Apply directly [4, Lemma 4.2].

We end this paper with the main theorem.

THEOREM 11. *Let X be a barrelled locally convex $C(K)$ -module. Let T be a densely defined, closed linear operator in X with $m^*(B)$ -invariant domain $D(T')$. Then the following statements are equivalent.*

- (i) $T' \in \text{AlglatP}$,
- (ii) $T' \in A_\infty$, i.e., T' is an adjoint scalar-type spectral operator with respect to B .

Proof. Apply [4, Corollary 5.8].

References

- [1] C. D. Aliprantis, O. Burkinshaw, *Positive Operators*, Orlando, Academic Press, 1985.
- [2] P. G. Dodds, B. de Pagter, *Orthomorphism and Boolean algebras of projections*, Math. Z. 187 (1984), 143–168.
- [3] P. G. Dodds, B. de Pagter and W. Ricker, *Reflexivity and order properties of scalar-type spectral operators in locally convex spaces*, Trans. Amer. Math. Soc. 293 (1986), 355–380.
- [4] P. G. Dodds, B. de Pagter, *Algebras of unbounded scalar-type spectral operators*, Pacific J. Math. 130 (1987), 41–74.
- [5] Ö. Gök, *On a Bade type reflexive algebra*, Ph. D. Thesis, Middle East Technical University, Turkey, 1990.
- [6] Ö. Gök, *Characterization of the dual center of barrelled spaces*, Demonstratio Math. 2 (31) (1998), 285–288.

- [7] D. Hadwin, M. Orhon, *Reflexivity and approximate reflexivity for bounded Boolean algebras of projections*, J. Funct. Analysis 87 (1989), 348–358.
- [8] H. H. Schaefer, *Topological Vector Spaces*, Springer-Verlag, New York 1971.
- [9] W. A. J. Luxemburg, A. C. Zaanen, *Riesz Spaces I*, Amsterdam, London, North Holland, 1971.
- [10] A. C. Zaanen, *Riesz Spaces II*, North Holland, Amsterdam, New York, Oxford, 1983.

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ARTS AND SCIENCES
DEPARTMENT OF MATHEMATICS
80270, ŞİŞLİ, İSTANBUL, TURKEY

Received March 27, 1998.

