
DEMONSTRATIO MATHEMATICA 
Vol. XXXII No 2 1999 

Omer Gök 

ON R E F L E X I V I T Y OF SCALAR-TYPE 
SPECTRAL OPERATORS 

Introduction 
The aim of the present paper is to give a dual version of the reflexivity 

result of scalar-type spectral operators in the quasi-complete locally convex 
spaces proved in [4].The method in our result is based on the barrelled 
locally convex C(.K*)-modules. Let C(K) be the set of all continuous real 
or complex valued functions defined on a compact Hausdorff space K with 
the supremum norm.Suppose that X is a locally convex Hausdorff space. 
By L*(X) we denote the set of all linear mappings from X into X and by 
L(X) the set of all continuous linear mappings from X into X. We denote 
by I the identity operator. The topological dual of X will be denoted by X'. 
We denote by X" the topological dual of X'[(3{X',X)}. We say that X is 
a locally convex C(i;i)-module if the bilinear mapping • : C(K) x l - > l , 
(a, x) —» a.x satisfies the following conditions: 

(i) 1.x = x for all x € X, 1 e C(K), 
(ii) (a.b).x = a.(b.x), for each a, b € C(K), x € X, 

(iii) The bilinear mapping • is separately continuous. 
We say that A" is a barrelled locally convex C(ii)-module if X is a lo-
cally convex C(/i)-module and barrelled space. Let X be a barrelled locally 
convex C(ii)-module. Hence, it is accomplished by the following bilinear 
mappings: 

{A) X x X' -» C(K)', (x,x')-+ fiXlX'(a) = x,(a.x), a E C(K), 
(B) C(K)"xX'^X', (a,x')^{a.x')(x) = a(nx,x>), x E X. 

Throughout this paper, X will denote a barrelled locally convex Hausdorff 
space. Therefore, X' is a(X',X) quasi-complete, [8, 6.1]. The bilinear map-
ping • : C(K) x X —> X defines a mapping m : C(K) —> L(X), m(a)x = a.x, 
which is norm to strong operator topology continuous unital algebra homo-
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morphism. Since C(K) is an AM-space with unit, it is isomorphic to C(S) 
with S a hyperstonian [1, Theorem 15.7], [6], [7]. It is well-known that X' is 
a locally convex C(5)-module [5], [6]. From [5],[6],[7], it is known that the 
linear mapping m* : C(K)" —> L(X') defined by m*{a)x' = a.x', for each 
a € C(K)", x' 6 X' satisfies the following properties: 

(i) For each a 6 C(K)", m*(a) is continuous from X'[a{X' ,X)} into 
X'[a(X',X)}. 

(ii) m* is an algebra homomorphism. 
(iii) For each a e C(K), m*(a) — (m(a))*, where (771(a))* is the adjoint 

of m(a). 

Let B be the Boolean algebra of projections in C(S). For each x' € X', 
let Ker(x') = { a £ C(S) : a.x' = 0}. We say that a projection exi e B is a 
carrier projection for x' £ X' if (1 — ex>)C(S) = Ker(x'). For unexplained 
notion and terminology we refer to [1], [9], [10]. 

LEMMA 1 [7, Lemma 1]. For each x' € X' the carrier projection ex> exists 
in C(S). 

P r o o f . Since S is hyperstonian, B is complete as an abstract Boolean al-
gebra . Let D be the idempotents in Ker(x') and let e\ = VD in B. Since 
D is directed upwards, D | e\ in the order of C(S). On the other hand 
C(K)' consists of order continuous linear functionals on C(S). So D —• e\ 
in a(C{K)",C{K)'). Therefore, exx' = 0. So ex G D and ex, = 1 - ei is 
the carrier projection of x'. Also e\C(S) C Ker(x'). Suppose ax' = 0 and 
a(t) / 0 for some t € S. Then there is an open-closed neighbourhood of t 
on which |a| is bounded away from zero. Let e € B be the characteristic 
function of that open-closed set. Then aex' = 0 and a is invertible on the 
support of e. From here we deduce that ex' = 0. Hence, the support of a is 
contained in the support of e\ and Ker(x') C eiC(S). 

We introduce the following proposition which we shall need later. 

PROPOSITION 2 [2, Proposition 2.3]. Let M be a Riesz space which is a 
linear subspace of the Hausdorff quasi-complete topological vector space X, 
such that the induced topology in M is locally solid. Then the closure M of 
M in X is equal to the completion of M. 

In L*(X') and L(X') we consider the w* operator topology. Once again, 
let B be the Boolean algebra of projections in C(S) and then note that 
by the bilinear mapping (B), m*(B) = P is an equicontinuous Boolean 
algebra of projections in X', i.e., P is an equicontinuous collection of mutu-
ally commuting idempotents in L(X'), partially ordered by range inclusion, 
which is a Boolean algebra with respect to the lattice operations defined 
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by E A F = EF and E V F = E + F - EF for E, F e P. We denote by 
A the linear span of P in L(X'). It should be observed that P is strongly 
equicontinuous Boolean algebra in L(X'), i.e., {En} converges to zero in 
L(X') for any disjoint sequence {En} in P, [5]. An element T € A has a 
unique standard representation T = where Ei / 0 in P are such 
that EiEj = 0 (i / j) , — I a n d Ai , . . . ,A n are mutually differ-
ent scalars. It is clear that A has the complex Riesz space structure, where 
the absolute value of T = A ^ is given by |T| = |A|£j. Fur-
thermore, with respect to the topology induced by L(X'), A is a complex 
locally solid Riesz space [2, Lemma 3.2], [5]. By A we denote the u>*-closed 
subalgebra of L(X') generated by P. Moreover, A denotes the w* clo-
sure of A in L*(X') equipped with the w* operator topology. Therefore, 
by Proposition 2 the lattice operations extend to A . It is seen that the 
io*-closure A of A in L*(X') is a Dedekind complete /-algebra with a 
complete, locally convex solid Lebesgue topology, [2, Proposition 3.6], [5]. 
With respect to composition as multiplication, A is a complex commuta-
tive f-algebra, [2, Proposition 4.2]. It is clear that A is a subalgebra of A . 
We claim that A is an order ideal in A , from which follow the expected 
properties of A, i.e., A has the structure of a Dedekind complete, complex 
/-algebra such that the relative w* operator topology in A is complete, lo-
cally solid and Lebesgue. For this, suppose that |5| < |T| in A with T € A. 
Then there exists R e A* with \R\ < I such that S = RT, [3, Proposi-
tion 2.3]. It follows from [2, Proposition 3.11] that R e A and therefore 
SeA. 

Fix x' <E X' and put A(x') = {Tx' : T e A}. The mapping x' Tx' 
from A onto A{x') induces the structure of a complex Riesz space in A(x'), 
and the topology induced by X' in A{x') is locally solid, [2, Lemma 3.3], 
[5]. By A(x') we denote the w* closure of A(x') in X'. Therefore, A{x') has 
the structure of a complex Dedekind complete Riesz space with a complete 
locally convex solid Lebesgue topology, [2, Proposition 3.9], [5]. 

Let R be a collection of linear operators on X .We denote by AlglatR 
the algebra of all operators on X which leave left invariant all i?-invariant 
closed subspaces of X. 

In this paper,we will be concerned with densely defined linear operators 
T : D(T) —> X, where the domain D{T) is a linear subspace of X. If T and S 
are such operators, then we write T Q S if D(T) C D(S) and Tx — Sx for all 
x £ D(T).We recall again that m*(B) is a strongly equicontinuous Boolean 
algebra of projections in X' and A is the u;*-closed subalgebra of L(X') 
generated by m*(B) = P. We introduce the following similar definitions 
which can be found in [4]. 
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DEFINITION 3 . Let X be a barrelled locally convex C(K)-module. The 
densely defined linear operator T is said to have an adjoint spectral element 
T' with respect to B if there exists a sequence {e„} C B such that 

(i) en T 1 in B, _ 
(ii) m*(en)(X') C D(T') and T'm*(en) € A for all n€N, 

(iii) T'x' = lim»-,«, T'm*{en)x' for all x' G D(T'). 

Such a sequence (e„) will be called determining for T". Note that each adjoint 
spectral element T' is densely defined. It is easy to check that if (en) C B 
is a determining sequence for T', and if ( /„) C B is a sequence such that 
fn < en for all n € N and fn | 1 holds in B, then ( /„) is a determining 
sequence for T'. We see that if S and T are adjoint spectral elements with 
respect to B then there exists a sequence (en) C B which is determining for 
S and T simultaneously. 

Adjoint spectral elements T, S are called equivalent (T ~ S) if there ex-
ists a sequence (en) C B with e_n f 1 such that m*(en)(X') C D(T) f ) D(S) 
and Tm*(en) — Sm*(en) € A for all n e N. It is easy to see that the 
given relation is reflexive, symmetric and transitive. So ~ is an equivalence 
relation. By [T] we denote the equivalence class of adjoint spectral elements 
determined by the adjoint spectral element T. It is easy to see that adjoint 
spectral elements T and S are equivalent if and only if there exists an adjoint 
spectral element R such tha t RCT and R C S. 

PROPOSITION 4 [4, Proposition 2.2]. I f T has an adjoint spectral element T' 
with respect to B, then there exists a unique maximal representative H G [T'] 
satisfying the following properties: 

(i) H is densely defined and w* closed. 
(ii) D(H) is P-invariant and H(e.x') = e.Hx' for all e G B and x' € 

D(H). In addition, if R is any representative of[T'] and if ( f n ) C B is any 
determining sequence for R, then 

(iii) m*(fn)(X') C D(H) and Hm*(fn) = Rm*{fn) for all n e N; 
(iv) x' G D(H) if and only if l imn^oo Rm*(fn)x' exists, in which case 

Hx' = limn^oo Rm*(fn)x'. 

P r o o f . Suppose that (en) C B is a determining sequence for the given 
adjoint spectral element T". Define D(H) = {x' 6 X' : lim„ T'(en.x') exists} 
and if x' 6 D(H) define Hx' — limn-.oo T'(en.x'). After that , applying the 
same technique with [4, Proposition 2.2] we end the proof. 

DEFINITION 5. Let T be a densely defined linear operator and suppose 
that T has an adjoint spectral element T' with respect to B. Then T' will 
be called an adjoint scalar-type spectral operator with respect to B if there 
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exists a determining sequence (en) for T' such that D(T') = {x' € X' : 
l im n T'(e n . x ' ) exists} and T'x' = l im„_ooT'(en .x ') for all x' e D(T'). 

We introduce the following dual version of [4, Corollary 2.4], 

COROLLARY 6. If T has an adjoint scalar-type spectral operator T' with 
respect to B, then the following assertions are true. 

(i) T' is densely defined and w*-closed. 
(ii) D{T') is P-invariant and T'(e.x') = e.T'x' for all x' € D{T') and 

e € B. 
(iii) If Y C X' is a a(X',X) closed P-invariant subspace of X', then 

T'(D'(T')f]Y) C Y, i.e., V e Alglatm'(B). 

If S and T are linear operators in X' with domain D(S) and D(T) 
respectively, then D(S+T) = D(S) f ) D(T) and (S+T)x' = Sx'+Tx' for all 
x' € D{S + T), D(ST) = {x' € D(T) : Tx' € Z?(S)} and {ST)x' = S(Tx') 
for all x' € D(ST). The proof of the following result is straightforward, 
therefore it is omitted. 

COROLLARY 7. If S and T are adjoint scalar-type spectral operators with 
respect to B, then S + T and ST are adjoint spectral elements. 

COROLLARY 8. Let X be a barrelled locally convex C(K)-module. Then A* 
consists precisely of the everywhere defined adjoint scalar-type spectral op-
erators with respect to B. 

P r o o f . Take any T E A*. We claim that there exists a sequence {En} 
in P such that En | V and \TEn\ < nl' for all n. Indeed, let {En} be the 
component of the identity operator I ' in the band generated by the operator 
(nl' — \T\)+ in A .Hence, the sequence has the properties that En f I', 
TEn € A for all n and limn TEnx' = Tx' for all x' e X'.This implies that T 
is an adjoint scalar-type spectral operator with respect to B. Assume now 
that T is an everywhere defined scalar-type spectral operator. Then by the 
definition of the adjoint scalar-type spectral operator, there exists a sequence 
{en} Q B such that Tm*(en) € A for all n and limnTm* (en)x' = Tx' for 
all x' <E X'. Therefore, T 6 A. 

By Aoo we denote the collection of all scalar-type spectral operators with 
respect to B. 

DEFINITION 9 . If 5 and T are adjoint scalar-type spectral operators with 
respect to B, then the adjoint scalar-type spectral operators S+T and S.T 
are defined to be the maximal representatives of the corresponding classes 
[S + T], [ST]. 
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With respect to defined operations A^ is a complex vector space and a 
commutative algebra with the identity operator I ' as unit, which contains 
A as a subalgebra. 

We gather some simple properties of the domains of adjoint scalar-type 
spectral operators. 

LEMMA 10. Let X be a barrelled locally convex C(K)-module and suppose 
that T is a densely defined linear operator with an adjoint scalar-type spectral 
operator T', D(T') C X'. Then the following are true. 

(i) Ifx' € D(T') and if S € A, then Sx' € D{T') and T'Sx' = ST'x'. 
(ii) If x' £ X', then D(T') f ) j4 ( i ' ) is an order dense ideal in the Riesz 

space A(x'). 
(iii) Ifx' e X', then A(x') is T'-invariant, i.e., if y € D(T')f]A{x') 

then T'y € A{x'). 

Proof . Apply directly [4, Lemma 4.2]. 

We end this paper with the main theorem. 

THEOREM 11. Let X be a barrelled locally convex C{K)-module. Let T be a 
densely defined, closed linear operator in X with m*(B)-invariant domain 
D(T'). Then the following statements are equivalent. 

(i) T G AlglatP, 
(ii) T" 6 Aooji.e., T' is an adjoint scalar-type spectral operator with 

respect to B. 

Proof . Apply [4, Corollary 5.8]. 
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