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ON REFLEXIVITY OF SCALAR-TYPE
SPECTRAL OPERATORS

Introduction

The aim of the present paper is to give a dual version of the reflexivity
result of scalar-type spectral operators in the quasi-complete locally convex
spaces proved in (4].The method in our result is based on the barrelled
locally convex C(K)-modules. Let C(K) be the set of all continuous real
or complex valued functions defined on a compact Hausdorff space K with
the supremum norm.Suppose that X is a locally convex Hausdorff space.
By L*(X) we denote the set of all linear mappings from X into X and by
L(X) the set of all continuous linear mappings from X into X. We denote
by I the identity operator. The topological dual of X will be denoted by X'.
We denote by X" the topological dual of X'[3(X’, X)). We say that X is
a locally convex C(K)-module if the bilinear mapping - : C(K) x X — X,
(a,z) — a.z satisfies the following conditions:

()lLz=zforalz e X, 1€ C(K),
(ii) (a.b).z = a.(b.z), for each a,b € C(K), z € X,
(iii) The bilinear mapping - is separately continuous.
We say that X is a barrelled locally convex C(K)-module if X is a lo-
cally convex C(K)-module and barrelled space. Let X be a barrelled locally
convex C(K)-module. Hence, it is accomplished by the following bilinear
mappings:

(4) XxX' ->CKK), (z,2')> pre(a)=7"(az), ae€C(K),
(B) CK)'xX - X', (a,2')— (a.2')(z)=0a(pss), z€X.
Throughout this paper, X will denote a barrelled locally convex Hausdorff
space. Therefore, X' is o(X’, X) quasi-complete, [8, 6.1]. The bilinear map-
ping - : C(K)x X — X defines a mapping m : C(K) — L(X), m(a)r = a.z,
which is norm to strong operator topology continuous unital algebra homo-
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morphism. Since C'(K) is an AM-space with unit, it is isomorphic to C(S)
with S a hyperstonian {1, Theorem 15.7], [6], [7]. It is well-known that X’ is
a locally convex C(S)-module [5], [6]. From [5],(6],(7], it is known that the
linear mapping m* : C(K)"” — L(X') defined by m*(a)z’ = a.z’, for each
a € C(K)", 2’ € X' satisfies the following properties:

(i) For each a € C(K)", m*(a) is continuous from X'[o(X’, X)] into
X'le(X', X)].
(i) m* is an algebra homomorphism.
(iii) For each a € C(K), m*(a) = (m(a))*, where (m(a))* is the adjoint
of m(a).

Let B be the Boolean algebra of projections in C(S). For each z’ € X',
let Ker(z') = {a € C(S) : a.z’ = 0}. We say that a projection e,» € B is a
carrier projection for 2’ € X' if (1 — e;)C(S) = Ker(z'). For unexplained
notion and terminology we refer to [1], [9], [10].

LEMMA 1 [7, Lemma 1]. For each ' € X' the carrier projection e, ezists
in C(S).

Proof. Since S is hyperstonian, B is complete as an abstract Boolean al-
gebra . Let D be the idempotents in Ker(z') and let e; = VD in B. Since
D is directed upwards, D T e; in the order of C(S). On the other hand
C(K)' consists of order continuous linear functionals on C(S). So D — e;
in o(C(K)",C(K)"). Therefore, e1z'’ = 0. Soe; € D and e,y =1 — e is
the carrier projection of z’. Also e¢;C(S) C Ker(z'). Suppose az’ = 0 and
a(t) # 0 for some ¢t € S. Then there is an open-closed neighbourhood of ¢
on which |a| is bounded away from zero. Let e € B be the characteristic
function of that open-closed set. Then aez’ = 0 and a is invertible on the
support of e. From here we deduce that ez’ = 0. Hence, the support of a is
contained in the support of e; and Ker(z') C €;C(S).

We introduce the following proposition which we shall need later.

PROPOSITION 2 [2, Proposition 2.3]. Let M be a Riesz space which is a
linear subspace of the Hausdorff quasi-complete topological vector space X,
such that the induced topology in M is locally solid. Then the closure M of
M in X is equal to the completion of M.

In L*(X') and L(X') we consider the w* operator topology. Once again,
let B be the Boolean algebra of projections in C(S) and then note that
by the bilinear mapping (B), m*(B) = P is an equicontinuous Boolean
algebra of projections in X’, i.e., P is an equicontinuous collection of mutu-
ally commuting idempotents in L(X'), partially ordered by range inclusion,
which is a Boolean algebra with respect to the lattice operations defined
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by EANF = EF and EVF = E+ F — EF for E,F € P. We denote by
A the linear span of P in L(X'). It should be observed that P is strongly
equicontinuous Boolean algebra in L(X’), i.e., {E,} converges to zero in
L(X'’) for any disjoint sequence {F,} in P, [5]. An element T' € A has a
unique standard representation T = Z?=1 A E; where E; # 0 in P are such
that E5E; = 0 (i # ), >y Bi = I and Aq,..., A, are mutually differ-
ent scalars. It is clear that A has the complex Riesz space structure, where
the absolute value of T = 3. ,E; is given by |T| = Y., |\ E;. Fur-
thermore, with respect to the topology induced by L(X’), A is a complex
locally solid Riesz space [2, Lemma 3.2], [5]. By A we denote the w*-closed
subalgebra of L(X') generated by P. Moreover, A" denotes the w* clo-
sure of A in L*(X') equipped with the w* operator topology. Therefore,
by Proposition 2 the lattice operations extend to A". It is seen that the
w*-closure A* of A in L*(X') is a Dedekind complete f-algebra with a
complete, locally convex solid Lebesgue topology, {2, Proposition 3.6], [5].
With respect to composition as multiplication, A isa complex commuta-
tive f-algebra, [2, Proposition 4.2]. It is clear that A is a subalgebra of A’
We claim that A is an order ideal in A", from which follow the expected
properties of A, i.e., A has the structure of a Dedekind complete, complex
f-algebra such that the relative w* operator topology in A is complete, lo-
cally solid and Lebesgue. For this, suppose that |S| < |T'|in 4" with T € 4.
Then there exists R € A" with |R| < I such that § = RT, [3, Proposi-
tion 2.3]. It follows from [2, Proposition 3.11] that R € A and therefore
SeA

Fix 2’ € X' and put A(z') = {Tz' : T € A}. The mapping 2’ — Tz’
from A onto A(z') induces the structure of a complex Riesz space in A(z’),
and the topology induced by X’ in A(z’) is locally solid, [2, Lemma 3.3],
[5]. By A(z’) we denote the w* closure of A(z’) in X'. Therefore, A(z') has
the structure of a complex Dedekind complete Riesz space with a complete
locally convex solid Lebesgue topology, [2, Proposition 3.9, [5].

Let R be a collection of linear operators on X.We denote by AlglatR
the algebra of all operators on X which leave left invariant all R-invariant
closed subspaces of X.

In this paper,we will be concerned with densely defined linear operators
T : D(T) — X, where the domain D(T) is a linear subspace of X. If T" and S
are such operators, then we write 7' C S if D(T') C D(S) and Tz = Sz for all
z € D(T).We recall again that m*(B) is a strongly equicontinuous Boolean
algebra of projections in X’ and A is the w*-closed subalgebra of L(X')
generated by m*(B) = P. We introduce the following similar definitions
which can be found in [4].
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DEFINITION 3. Let X be a barrelled locally convex C(K)-module. The
densely defined linear operator T is said to have an adjoint spectral element
T' with respect to B if there exists a sequence {e,} C B such that

(i) en T 1in B,
(ii) m*(e.)(X’) C D(T') and T'm*(e,) € A for alln € N,
(iii) T'z" = lim, 00 T"m* (e, )z’ for all 2’ € D(T").

Such a sequence (e, ) will be called determining for 7. Note that each adjoint
spectral element 7" is densely defined. It is easy to check that if (e,) C B
is a determining sequence for 7", and if (f,) C B is a sequence such that
o <epforallm € N and f, T 1 holds in B, then (f,) is a determining
sequence for T'. We see that if S and T are adjoint spectral elements with
respect to B then there exists a sequence (e,,) C B which is determining for
S and T simultaneously.

Adjoint spectral elements T, S are called equivalent (T ~ S) if there ex-
ists a sequence (e,) C B with e, 1 1 such that m*(e,)(X') C D(T)( D(S)
and Tm*(e,) = Sm*(e,) € A for all n € N. It is easy to see that the
given relation is reflexive, symmetric and transitive. So ~ is an equivalence
relation. By [T] we denote the equivalence class of adjoint spectral elements
determined by the adjoint spectral element T'. It is easy to see that adjoint
spectral elements T" and S are equivalent if and only if there exists an adjoint
spectral element R such that RC T and RC S.

PROPOSITION 4 [4, Proposition 2.2]. If T has an adjoint spectral element T'
with respect to B, then there ezists a unique mazimal representative H € [T']
satisfying the following properties:

(i) H is densely defined and w* closed.

(ii) D(H) is P-invariant and H(e.z') = e.Hz' for alle € B and 2’ €
D(H). In addition, if R is any representative of [T'] and if (fn) C B is any
determining sequence for R, then

(iii) m*(fo)(X') € D(H) and Hm*(f,) = Rm*(fy) for alln € N;

(iv) ¢’ € D(H) if and only if lim,_,0o Rm*(fy)x’ ezists, in which case
Hz' =limp_,oo Rm*(fr)z’'.

Proof. Suppose that (e,) C B is a determining sequence for the given
adjoint spectral element T”. Define D(H) = {z' € X' : lim,, T'(e,.z") exists}
and if ' € D(H) define Hz' = lim,,_, o T'(e,.z"). After that, applying the
same technique with [4, Proposition 2.2] we end the proof.

DEFINITION 5. Let T be a densely defined linear operator and suppose
that T has an adjoint spectral element 7" with respect to B. Then T will
be called an adjoint scalar-type spectral operator with respect to B if there
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exists a determining sequence (e,) for T” such that D(T') = {z' € X' :
lim, T"(en.z') exists} and 7'z’ = lim, o T'(en.z') for all ¢’ € D(T").

We introduce the following dual version of [4, Corollary 2.4].

COROLLARY 6. If T has an adjoint scalar-type spectral operator T' with
respect to B, then the following assertions are true.

(i) T' is densely defined and w*-closed.
(ii) D(T") is P-invariant and T'(e.z’) = e.T'z’ for all 2’ € D(T') and
e € B.
(i) If Y € X' is a o(X', X) closed P-invariant subspace of X', then
T'(D'(T')NY) C Y, i.e., T' € Alglatm*(B).

If S and T are linear operators in X’ with domain D(S) and D(T)
respectively, then D(S+T) = D(S)(\D(T) and (S+T)z' = Sz'+Tz' for all
z' € D(S+T), D(ST) = {2’ € D(T) : T<' € D(S)} and (ST)z' = S(Tz’')
for all 2’ € D(ST). The proof of the following result is straightforward,
therefore it is omitted.

COROLLARY 7. If S and T are adjoint scalar-type spectral operators with
respect to B, then S+ T and ST are adjoint spectral elements.

COROLLARY 8. Let X be a barrelled locally convez C(K)-module. Then A"
consists precisely of the everywhere defined adjoint scalar-type spectral op-
erators with respect to B.

Proof. Take any T € A . We claim that there exists a sequence {E,}
in P such that E,, 1 I’ and |TE,| < nI’ for all n. Indeed, let {E,} be the
component of the identity operator I’ in the band generated by the operator
(nI'—|T|)* in A" .Hence, the sequence {E,} has the properties that E,, 1 I,
TE,, € A for all n and lim,, TE,z' = Tz’ for all ' € X'.This implies that T
is an adjoint scalar-type spectral operator with respect to B. Assume now
that T is an everywhere defined scalar-type spectral operator. Then by the
definition of the adjoint scalar-type spectral operator, there exists a sequence
{en} C B such that Tm*(e,) € A for all n and lim,Tm*(e,)z’ = Tz’ for
all ¢’ € X'. Therefore, T € A.

By A we denote the collection of all scalar-type spectral operators with
respect to B.

DEFINITION 9. If § and T are adjoint scalar-type spectral operators with
respect to B, then the adjoint scalar-type spectral operators S+1" and S.T
are defined to be the maximal representatives of the corresponding classes
[SF T, [ST).
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With respect to defined operations A, is a complex vector space and a
commutative algebra with the identity operator I’ as unit, which contains
A as a subalgebra.

We gather some simple properties of the domains of adjoint scalar-type
spectral operators.

LEMMA 10. Let X be a barrelled locally conver C(K)-module and suppose
that T is a densely defined linear operator with an adjoint scalar-type spectral
operator T', D(T") C X'. Then the following are true.

(i) If 2’ € D(T') and if S € A, then Sz’ € D(T') and T'Sz’' = ST'z’.
(ii) If =’ € X', then D(T') (Y A(z') is an order dense ideal in the Riesz
space A(z').
(iii) If 2’ € X', then A(z') is T'-invariant, i.e., if y € D(T') N A(z')
then T'y € A(z').

Proof. Apply directly [4, Lemma 4.2].
We end this paper with the main theorem.

THEOREM 11. Let X be a barrelled locally convex C(K)-module. Let T be a
densely defined, closed linear operator in X with m*(B)-invariant domain
D(T'). Then the following statements are equivalent.

(i) T" € AlglatP,
(i) T' € Ax,ie., T' is an adjoint scalar-type spectral operator with
respect to B.

Proof. Apply [4, Corollary 5.8].
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