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ALGEBRAIC PROOFS OF KWAPIEN’S AND LAMPERTI’S
REPRESENTATION THEOREMS

Abstract. The main purpose of this paper is to give proofs of modification of Kwa-
piefi’s representation theorem for continuous linear operators on Lg, and modification
of the Lamperti representation theorem for linear operators between L, spaces, where
1<p<oo, p#2

The previous proofs of these theorems were given, using the methods of functional
analysis. In our paper we would like to show that they can be proved also by algebraic
methods, with an aid of the theory of Boolean algebras and measure theory. In the proofs
we use a theorem from [7].

1. Introduction

For definitions and standard results concerning Boolean algebras and
measure theory the reader is referred to books of H. L. Royden [8], R. Sikor-
ski [9] and P. R. Halmos [1]. We recall here the most important definitions
and notation.

A measure space (X, F, p1) is said to be finite, when p(X) < oo.

DEFINITION 1.1. A Boolean o-algebra A together with a measure p such
that

(i)
(i)

is called a measure algebra.

An element A # 0 in a measure algebra A is called an atom if B < A
implies B= A or B =0.

A measure u, as well as its corresponding measure algebra A, is called
non-atomic if whenever FF € A with pu(F) > 0, there exists £ € A with
E < F such that u(F) > u(E) > 0.

If A is a measure algebra and A € A, by A(A) we mean the restriction
of the measure algebra A to A, i.e. A(A)={B € A: B < A}.

( 0iff A=0;

“‘2:
u(V An) =3 w(4n)if AnANApn=0forn#m
n=1 n=1
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DEFINITION 1.2. Let X and Y be two spaces and ¢ : X — Y be a point
mapping. The mapping h from the family of all subsets of Y into the family
of all subsets of X, defined by h(E) = ¢ }(E),VE C Y, is called a set
mapping induced by .

If (X1, Fi,u1) and (X3, F5,us) are measure spaces, the point mapping
@ : X1 — X is called measurable if o~ (E) € F} for each E € F,. And ¢ is
called non-singular, if whenever E € Fy and pa(E) = 0, then p1(o~1(E))
= 0.

DEFINITION 1.3. Let (X1, Fy, 1) and (X2, F2, u2) be measure spaces and
let A; and A, be the corresponding measure algebras. A set mapping h :
A; — A, is called a homomorphism, if

(i) h(X2) = Xu;
(ii) h(—FE) = —h(E), VE € Ay;
(iii) h(EV F) = h(E) V h(F), for any E,F € A,.

If, in addition, h has the property that for any sequence (E,) in Aj,
h(Use; Ern) = Usw; K(Ey), then h is called a o-homomorphism from A,
into A;.

By Lo(p) we mean, as usual, the set of all measurable functions with
respect to the measure p. If f € Lo(u), we put supp f = {z : f(z) # 0} (the
support of f). If E C X is measurable, then Lo(E) = {f : f is measurable
and supp f C E}.

For 0 < p < oo we define L, (1) to be the space of all functions f in Lo(u)
such that {, |f(z)[Pdu(z) < oo (i.e., Ly() C Lo(p)). For p > 1, Ly(u) is a
Banach space.

By Lo and L, we are referring to Lo and L, of the unit interval with
Lebesgue measure.

A sequence (f,) in Lo(u) is said to converge to f in measure if, given
€ > 0, there is an integer N such that for all n > N we have p({z :
|fn(z) — f(z)] 2 €}) <e.

A norm | - || is called an F-norm if it satisfies ||z + y|| < ||z|| + ||y||- If
Il - || is an F—norm, then d(z,y) = ||z — y|| is an nvariant metric on X. (So
that Lo(u) is a topological algebra, and a complete lattice).

A metrizable topological vector space (or metric linear space) is called
an F-space if it is complete for an invariant metric (and hence for every
invariant metric).

Thus, by V. L. Klee [10], a metric linear space which is complete in any
metric will also be complete in any invariant metric. By the inequality

a+p < I}

+ )
14a+8 " a+B8 a+p

Va,B2>0
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the real-valued function

1]
- du, VfelL
Il £llo §1+|f| u, Vf € Lo(p)
becomes an F-norm, from which Lo(u) is an F-space with norm || - ||o, and

lfrn — fllo — O iff fn — f in measure.

DEFINITION 1.4. A function T : X — Y, where X and Y are vector spaces
(over the same field K of scalars) is called a linear operator if T(az +
By) = aT(z) + BT (y), where z,y € X and o, € K. If X and Y are two
topological vector spaces and T is continuous, then T is called a continuous
linear operator. .

The set of all continuous linear operators T : X — Y is denoted by
L(X,Y), and L(X,X) by L(X).

2. Some properties of continuous linear operators

One of the most important properties of the continuous linear operators
on the F-space Lo(u) will be given in Lemma 2.3. And now we will show
that the space Lo(p) is a complete lattice.

Let us mention that the proofs of Lemmas 2.1 and 2.2 have been pub-
lished in {3], but they were also included in the author’s Ms.Sc. thesis (1983)
(not published).

LEMMA 2.1. Let (X, A,u) be a finite measure space. If B = {g, : a € I} C
Lo(p), then there exists an extended real-valued function h such that

(i) ga < h p-almost everywhere (a.e.), Vo € I
(i) if 9o < f p-a.e. for some f in Lo(n), then h < f p-a.e. and there is
a sequence (ga,) in Lo(p) with h =\, 9o, = sup{ga, : n € N}.

Proof. Case 1. Let g, : X — [0,1].
Let 8 = sup{{(ga, V 9o, V ...Vgan)dp, ! ga; € B,1<i<mne€ N} For
every n € N there is hn = (ga; Vgay V...V ga,) with { A, 7 B.

Put h = V Rhn (note that (*) {(ga Vha) < B, Vn). We claim that g, < h

p—a.e., Va € I Indeed, suppose g, > h for some o € I on a set of positive
measure, i.e. g, —h > £ on a set E with u(E) > 0, for some ¢ > 0. Then

S(gthn)=S(gthn)+ S(Qthn)nga'l" S hn

E -E E -E
> Shn+§e+ S hn=Shn+€p,(E)—>,3+e,u(E)>,3
E E -E

which contradicts (*). Thus g, <h p—ae. Vael.
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Case 2. If {go : @ € I} is an arbitrary subset of Lo(u), let us define a
mapping ¢ : (—oo,00] — (0,1] by
1 . ifz=o00
p(z) = { 1 (l_fl?[) + % otherwise.
Let h = sup{p 0 g, : @ € I}, so that, by the Case 1:

(a) if go < f pa.e. for some f, then o=l oh =supg, < f p-a.e.

(b) =1 oh = sup{ga : @ € I} > g, p-a.e., and also there is a sequence
(9a,) such that \/oo | @ 0 ga, = h. Thus Voo | ga, = ¢~ ! o h and hence B
has the required properties (i) and (ii). =

Every o-finite measure algebra is complete (see [9], p.73).

LEMMA 2.2. Suppose (A,u) is a measure algebra of o-finite measure, and
S = {E, : a € I} is a subcollection in it. Then there exists a least upper
bound of S in A.

Proof. Let B ={xg, : @ € I} C Lo(u). By Lemma 2.1. there exists a least
upper bound for B in Lo(p). Let h = \/ B = \/{xE, : @ € I}. Then there
is a sequence (Xg,_ ) in B such that b = \/oo x5, = XU=, Ea, = XE;
where E = ;. E.,, from which xg, < xg for each a € I, and hence
Ey, < E. Also, if E, < F for all a € I, then xg, < xr for all @ € I. Thus
xe < xr which implies E < F. Therefore, E is the least upper bound of
S={FEs:aclI}C A Wedenote Eby \/E,or\/S. =

LEMMA 2.3. Suppose T € L(Lo) and (f,) is a sequence of functions in Lg
such that m(supp fr) — 0. Then m(suppT(f»)) — 0.

Proof. Let A be a measure algebra induced by the measure space
([0,1), F,m). Let E € A, and & € R. Then
1

lexello = §
0

|a|XE dng Ial dm = Ial m(E)—»
T labs ™ = I T 1™ = T+ al

— m(F) when a — *o0,

and therefore sup, ¢ llaxel = m(E).
Now, let f € Lg. Then
1 1 1
|laf| laf]
=\ = = \T7—"7TF Xsu d < su dm =
flefllo §)1+|af[dm §)1+|af|x pp fOT (S)X pp fdm = m(supp f)
and so

(1) sup [lefllo < m(supp f).
a€ER

CLAIM: sup,¢g |lafllo = m(supp f).
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For each n € N, let E, = {z € [0,1] : |f(z)| > 2} so that the sequence
(E,) is increasing and E, " supp f, and we have m(E,) / m(supp f).
But |f| > Lxg,. Thus |lafllo > [|2xE.llo and therefore sup,cp llafllo >
sup || £xE, llo = m(En).

Hence

(2) m(supp f) = lim m(E,) < sggllafllo-

From (1) and (2) we have ||afl|lo = m(supp f), Vf € L.

Now suppose m(supp f,) — 0, but m(suppT(f.)) - 0. By passing
to a subsequence, if necessary, we may assume that m(supp f,) — 0, but
m(supp T'(fn)) > € for some £ > 0, which means that

Veen  sup || T(afn)|o > €.
a€ER

For each n € N, there exists a,, € R such that |T(a, fr)llo = l|@T(fr)llo >
. So, we have |lanfrullo = m(supp fn) — 0, but ||T(anfr)llo - 0 which
contradicts the continuity of 7. m

LEMMA 2.4. Let (f;)!, be a finite sequence in Lo, and let A; = supp f;
(1 €% < n). Then there exists a sequence {c;)., of scalars such that if

f =% cifi then m({J;—; Ai \ supp f;) = 0.

Proof. It suffices to prove the result for the case n = 2, and apply induction.
For any a € R, let

B, = Az \ supp(f1 + af:) = A2 n{z € [0,1] : (f1 + afz)(z) = 0}
={z €[0,1] : fo(z) #0, and afz(z) = —f1(z)}.

If o # B in R, then afs(z) # Bf2(x), or otherwise fa(z) = 0. So that
B, N Bg = 0, since if z € B,, then = ¢ Bg. Hence the collection i = {B, :
a € R} is an uncountable collection of pairwise disjoint subsets of A3, and
since the Lebesgue measure m is o-finite there is a set B,, € U such that
m(Bg,) = 0. Thus if z € ((A1 U Az) \supp(f1 +af2)) then z € B,,, because
Az \ supp(f1 + aof2) = {z € Az : (fi + aof2)(z) = 0} = Bq,. Therefore
m((A1 U A2) \ supp(f1 + aof2)) = 0 =m(Bqg,). =
LEMMA 2.5 ([6]). Suppose T € L(Lg), and let h: A — A be a set function
defined by h(E) = sup{suppT(f) : supp f C E}, for all E in the measure

algebra A induced by the Lebesgue measure space ([0, 1], F,m). Then the set
mapping h satisfies the following conditions:

i) h(AU B) = h(A) U h(B) for A,B in A;
il) if (En) is a sequence in A and m(E,) — 0, then m(h(E,)) — 0;
iii) h(vael Ea) = VaeI h(Ea).
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Proof. i) Suppose f € Lg such that suppf C AU B in A. Then there
are two functions f;, f» € Lo such that f; + fo = f with suppfi C A
and supp fo C B. Therefore h(AU B) C h(A) U h(B). Now if E; C E,,
then h(F;) C h(Es) by definition of h. So that for any sets A and B,
h(A) C h(AU B) and h(B) C h{AU B). Hence h(A) U h(B) C h(A U B).
Thus k(AU B) = h(A) U h(B).

ii) Suppose (E,) is a sequence in A such that m(E,) — 0, but m(h(E,))
- (; by passing, if necessary, to a subsequence, we may assume that there is
a positive real number « such that m(h(E,)) > a for alln € N. So for each
n € N there exist fi1, f2,..., fk, in Lo with supp f; C E, (all 1 <i < k)
and such that m(Uf;l suppT(f;)) > a. By Lemma 2.4. above, there is a

k

function g, = Zﬂ cifi with m(suppT(g.)) > a, and g, € Ly.
i=1
So we have supp g, = supp(Zf;1 cifi) C Uf;l suppf; C E, — 0, i.e.
m(supp g») — 0, but m(suppT(gn)) - 0, which contradicts Lemma 2.3.

iii) Since V,¢; Fa == sup,eg Ea, then E, C V ¢; Eq, for each o € I,
from which h(FE,) C h(V 4er Ea)- Thus V., R(Ea) C h(V,cr Ea)- The
existence of a sequence (E,,) with (J;_; Fa, = V5 Fa is guaranteed by
Lemma 2.2, so showing that h(VaE 1 Ea) = Vaer hM(Es) is equivalent to
showing that h({J;—; Fa.,.) = Uneq MEa.,)-

Since h(Eq,) C hM(Usw; Ea,) implies Upo; h(Ea,) C R(Usey Fa,.), we
need only to show that h(lJr—, Eo,) C Unwy h(Ea,)- To this end, let E =
Ure; Ea.- By (1) we have

h(E) = h (E\UIEQ, uh(L_JlEa,)_h(E\UEa,) (

But then

h(Ea,.)).

1

n

1

n

h(E) \ U h(Ea,) C h(E\ U Eq;)

for all n € N. Since

E\ Eg, D E\ (Ea,UEa,) > ... D> E\ | Ea,
we have m(E \ U;_, Ea;) \ 0. Therefore, by (ii),

m(h(E\ | Ea)) 0,

i=1
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which implies
m(h(E)\ | h(Ea,)) = 0.
i=1
This means that

h(E) C D h(Ea,) a-e.,
i=1

ie. H(Upr; Ea.) C Use h(Eq, ), which was to be proved. =

Now we recall and apply a theorem describing the structure of set map-
pings between measure algebras, proved by the author in a previous pa-
per [7].

THEOREM 2.6 ([7]). Let (X1, F1,p1) and (Xq, F, p2) be two finite non-
atomic measure spaces and let A1 and Ay be the corresponding measure
algebras of u1 and pg respectively. Suppose h : A; — A, is a mapping
satisfying the following conditions:

(i) If (E,) is a decreasing sequence in Ay with ui(E,) — 0, then
p2(h(En)) — 0;

(ll) E,,E;, € Ay implies h(El U Ez) = h(El) U h(Ez)
Then there is a sequence of pairwise disjoint (A,) in Ay such that h(X,) =
Un—; An, and for eachn € N, there is a partition {E1n, ..., Ex,n} of X such
that the mapping h;n(E) = A, Nh(E), VE € A1(E;y) is a o-homomorphism
Of Al(Ez ) into Az(An N h(Em))

THEOREM 2.7. Let A and B be two measurable subsets of [0, 1] of a positive
measure. Suppose T : Lo(A) — Lo(B) is a continuous linear operator, and
T satisfies the following conditions:

(i) T(1) =1, i.e. T(xa) = XB;

(if) #f p(supp f1 Nsupp f2) = 0 then u(supp T(f1) Nsupp T(f2)) = 0.
Then there exists a non-singular measurable function ¢ : B — A such that
T(f) = f o for each f € Lo(A).

THEOREM 2.8 ([6]). Suppose T € L(Lo(A), Lo(B)) where A, B are subsets
of [0,1] of positive measure such that if p(supp f1 Nsupp f2) = 0, f1,f2 €
Lo(A), then p(supp T(f1) NsuppT(f2)) = 0. Then there exists a function
g9 € Lo(B) and a non-singular measurable mapping ¢ : suppg — A such
that T(f) = gf o ¢ for each f € Lo(A).

Proof. Let us consider ¢ = T(xa). We claim that suppT(f) C suppg
for any f € Lo(A). Since g is the image of the whole space Lo(A) un-
der continuous linear operator T, then for each measurable subset E of A,
T(xg) + T(x-£) = g, and p(suppT(xg) NsuppT(x-g)) = 0. Therefore
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suppT(xe) C suppg. And hence suppT(¢) C suppg for any simple func-
tion ¥ in Lo(A). Thus suppT(f) C suppg, Vf € Lo(A). Now define a new
operator " : Lo(A) — Lo(supp g) by T"(f) = ; Xsupp ¢T(f)- Therefore T" is
also a continuous linear operator, and 77(1) = T'(x4) = %XsuppgT(X a)=1
on supp g; also if f1, fo € Lo(A) with u(supp f1 Nsupp f2) = 0, then

supp T (f;) = supp stuppgT(ﬁ)> CsuppT(fi),i=1,2,
so that
u(supp T'(f1) Nsupp T'(f2)) < p(supp T(f1) Nsupp T(f2)) =0,

from which T(f) = f o ¢ (by Theorem 2.7.) for some non-singular measur-
able function ¢ : suppg — A. Thus %T(f) =fopand T(f)=¢gfop. =

3. A modification of Kwapieni’s theorem
In [4], S. Kwapieni has presented his theorem on the form of a linear
operator in the space of all measurable functions as follows:

THEOREM 3.1 ([4]). Let (E, M, A) be a standard measure space and (F, M, p)
a measure space. A linear operator T : S(E,9M, \) — S(F,M, u) is continu-
ous iff T is of the form T(f)(t) = Y 1o, @i(t) f(®i(t)), where

r {(p;) is a sequence of elements of S(F,M,u) such that p({t :
@i(t) # 0 for infinitely many i}) = 0.

IP (®;) is a sequence of mappings from F into E such that for Vi and
VA € M, 871 (A) € M (the completion of M), and ;1 (A) N {t : p;(t) # 0}
is a set of p-measure zero whenever A is a set of A\-measure zero.

oo kn
THEOREM 3.2 ([6]). If T € L(Lo), then T(f) = > > ginf © pin for each
n=1i=1

f € Lg, where
1. (A,) is a collection of pairwise disjoint subsets of [0,1] of positive
measure;
2. {En, ..., Bk n} is a partition of [0, 1] into the sets of positive measure;
3. supp gin C An, i.e. gin € Lo(A,) for all € N,
4. Qin : SUPP gin — Ein.
In particular (*) T(f) =3 o 19nf 0 @n, where

(7) each @n : supp gn — [0,1] is a non-singular measurable mapping;
(i) each gn € Lo;
(#3) for almost all z in [0,1], gn(z) # O for only finitely many n.
Conversely, every map defined in the above way (*) is a continuous
linear operator on Lg. (See also Theorem 8.4. in (3}, p.171.)
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Proof. Let E € A, where A is the measure algebra on [0, 1] with Lebesgue
measure m. Define h : A — A by h(E) = sup{suppT(f) : supp f C E}.
From Lemma 2.5 we know that h satisfies the following:

i) h(El U E2) = h(El) U h(Ez) for E1,E; € A, and

ii) if (E,) is a sequence in A and m(E,) — 0, then m(h(E,)) — 0.
Moreover, it is known that the Lebesgue measure m is finite and non-atomic.
Therefore, by Theorem 2.6, there is a sequence (A,) of pairwise disjoint
elements in A, so that (J;., A, = h([0,1]), and for each n € N there
is a partition {Ein,..., Eg, n} of [0,1] such that for all E € A(E;,), the
mapping hin(E) = An Nh(FE) is a o-homomorphism of A(E;,) into A(A, N
h(E:n)). Also, if A,B € A(E;,) with AU B = E;;, and AN B = {, we have
m(hin(A) N hin(B)) = m(A4, Nh(A) N h(B)) = 0. Now let fi, fo € Lo(Eirn)
with supp fi C A and supp f2 C B; then

m(supp T(f1) Nsupp T(f2)) < m(hin(4) N hin(B)) = 0.

At this point we apply Theorem 2.4. Hence for each n € N and each
1 <4 L k, there exists a function g;, € Lo(Ay) with supp gin C An, so that
X4, T(f) = gin(f 0 pin) for all f € Lo(Ein), where @in : SUpp gin — Ein
is a non-singular measurable function. Hence for all f € Ly, x4, T(f) =

2?21 ginf © Yin. Thus

oo oo kn
A,.T(f) = Z XA,.T(f) = Z Zginf O Yin.
n=1 n=1 i=1

Now we are going to show the particular representation form T'(f) =
S 1 9nf 0 pn where g, and @, as in conditions above.

Since {(gin, pin) : m € N, 1 <14 < k,} is countable, we may write this
sequence as the range of a sequence ((gn, ¢n))-

Now if € A, then g;m(z) # 0 only if m = k, because supp gin C Am,
and (Ap,) is a sequence of pairwise disjoint sets.

Therefore |{x € N : gn(z) # 0}] < k for some k. Thus T(f) =
Yo 1gnf 0 pn for all f € Lo, and for each z € [0,1], g(z) # 0 for only
finitely many 7.

At last, we show the converse. Suppose T(f) = Y o>, gnf 0 9n, Vf € Ly,
and the conditions (i)—(iii) hold. Let B, = {z € [0,1] : gx(z) = 0 for each
k> mn}. Sothat By C B, C ... and m((Now,(—Bn)) =0, i.e. m(—B,) \, 0.

To show that T is continuous suppose fr — 0 in Lg. Let ¢ > 0, by
condition (iii) there exists n such that m(—B,) < ¢/2. Now x5, T(f) =
Yor19i(fk o) = 0 as k — oo, so there exist N such that whenever
k>N, |IxB,T(fr)llo < €/2. Also,

IX(-B.) T (fi)llo < m(supp X(-p,)) = m(—Bn) < &/2.

T(f)=x

s

1
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Therefore, for each k& > N we have

IT(f)llo = IxB. T(fe)llo + Ix(-.) T(fi)llo <e/2+e/2=e¢.
Thus if f, — 0 in Lo, we have T'(f,) — 0, and hence T € L(Lp). =

4. A modification of Lamperti’s theorem
The original Lamperti’s theorem ([5]) reads as follows:

THEOREM 4.1 ([5]). Let U be a linear operator on a space L, for some
positive p # 2, such that

@) NNy = [Ifllp for all f € L.

Then there exists a regular set-isomorphism T and a function h such that
U is given by

(ii) (Uf)(z) = h(z)T(f()).
If a measure p* is defined by u*(A) = p(T~1(4)), then
(i) [|R(z)|P = %= a.e. on T(x).

Conversely, for any regular S-isomorphism T and any h satisfying (ii)
the operator U defined by (ii) satisfies (i).

We will construct a similar form of T'(f) as in the Kwapieri representa-
tion theorem for continuous linear operator. And also, in our modification
of Lamperti’s theorem, we will use the same technique as in the proof of
the modification of Kwapieni’s theorem. In this modification we choose the
algebra A (where supp f € A for each f € L) to be finite non-atomic mea-
sure space ([0, 1], A, u). Recall that L,(u), 1 < p < oo was defined to be the
space of all functions f € Lo(p) such that {|f(z)|Pdu(z) < oo, and that for
p > 1, Ly(un) is a Banach space.

Now we state and prove our modification of Lamperti’s theorem.

THEOREM 4.2 ([6]). Let 1 < p < o0, p # 2, and let ([0,1], A, 1) be a non-
atomic finite measure space. Let T : L, — L, be a linear operator which
preserves norm (i.e. [|T(f)|lp = ||fllp). Then there are measurable mappings
©n @ SUPP gn — A, (where (A,) is a partition of [0,1]) such that

T(f) = gn(fo@n) for all f € Ly(x) on [0,1].

n=1

Proof We know that any function f € L,(u) has a norm

1/p
17y = [ §1717du] " < oo for every 0 < p < oo.
X
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Let A be the non-atomic finite measure algebra on [0, 1] induced by the non-
atomic finite measure u such that supp f C A for each f € L,(x) on [0,1].
Define the set mapping h : A — A by h(E) = sup{suppT(f) : supp f C E}.

Since u is finite non-atomic measure, then by Lemma 2.5, h satisfies

i) for any decreasing sequence (F,) in A if u(E,) — 0, then
p(h(En)) — 0;
il) h(AU B) = h(A) U h(B) for any A,B € A.

But since T is a linear operator of L, into itself, then by Theorem 2.6. there
is a sequence (A,,) of pairwise disjoint sets in A as a partition of [0, 1] such
that A([0,1]) = Use; An. So that the mapping h,(E) = A, N h(E) for all
E € A(Ag) is a o-homomorphism from A(Ag) into A(A, N h(Ax)).

Also, if A,B € A(Ay) with AUB = A and AN B = 0, we have
pi(hn(A) N hn(B)) = p(An N R(A) N h(B)) =0.

Now, let f1, f» € A(Ax) with supp fi C A and supp fo C B, so that
u(supp T(f1) N supp T'(f2)) < u(hn(A) N hn(B) = 0. So, by Theorem 2.8,
for each n € IV there is a function g, € L,(A,) with suppgn C An, and a
non-singular measurable mapping ¢, : supp gn — Ap, such that x4, 7(f) =
gnf o @n, Vf € Lp(Ar). Hence for any f € L,([0,1]) we have

T(f)=xp T =3 xa.T(H) =3 gnfoin. u
n=1 n=1 n=1
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