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ALGEBRAIC PROOFS OF KWAPIEÑ'S AND LAMPERTI'S 
REPRESENTATION THEOREMS 

Abstract. The main purpose of this paper is to give proofs of modification of Kwa-
pien's representation theorem for continuous linear operators on Lq, and modification 
of the Lamperti representation theorem for linear operators between LP spaces, where 
l < p < o o , p ± 2. 

The previous proofs of these theorems were given, using the methods of functional 
analysis. In our paper we would like to show that they can be proved also by algebraic 
methods, with an aid of the theory of Boolean algebras and measure theory. In the proofs 
we use a theorem from [7]. 

1. Introduction 
For definitions and standard results concerning Boolean algebras and 

measure theory the reader is referred to books of H. L. Royden [8], R. Sikor-
ski [9] and P. R. Halmos [1]. We recall here the most important definitions 
and notation. 

A measure space (X,F,fi) is said to be finite, when /i(X) < oo. 
DEFINITION 1.1. A Boolean cr-algebra A together with a measure /x such 
that 

(i) n(A) = 0 iff A = 0; 
oo oo 

(ii) //( V An) = E Ai(^n) if An A Am = 0 for TI ± 771 
n=1 n=1 

is called a measure algebra. 
An element A ^ 0 in a measure algebra A is called an atom if B < A 

implies B = A or B = 0. 
A measure /¿, as well as its corresponding measure algebra A, is called 

non-atomic if whenever F E A with /¿(F) > 0, there exists E E A with 
E < F such that fj,(F) > p(E) > 0. 

If A is a measure algebra and A E A, by A(A) we mean the restriction 
of the measure algebra A to A, i.e. A{A) = {B E A : B < A}. 
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D e f i n i t i o n 1.2. Let X and Y be two spaces and (p : X —> Y be a point 
mapping. The mapping h from the family of all subsets of Y into the family 
of all subsets of X, defined by h(E) = (p~1(E),VE c Y, is called a set 
mapping induced by ¡p. 

If (Xi , Fi,fi\) and (X2, ^2,^2) are measure spaces, the point mapping 
ip : X1 —> X2 is called measurable if ip~1(E) G F\ for each E G F2. And if is 
called non-singular, if whenever E G F2 and ^{E) = 0, then ¡JLI(ip~1(E)) 
= 0. 

D e f i n i t i o n 1.3. Let (Xi,Fi,/¿i) and -P2,M2) be measure spaces and 
let Ai and A2 be the corresponding measure algebras. A set mapping h : 
A2 —> A\ is called a homomorphism, if 

(i) h(X2) = 

(ii) h{-E) = -h{E), VE e A2; 

(iii) h(E V F) = h(E) V h(F), for any E,F eA2. 

If, in addition, h has the property that for any sequence (En) in A2, 
/i(|J^=1En) = U^Li h{En), then h is called a a-homomorphism from A2 
into A\. 

By LQ{¡JL) we mean, as usual, the set of all measurable functions with 
respect to the measure fx. If / G Lo(fj,), we put supp / = {x : f(x) ^ 0} (the 
support of /). If E C X is measurable, then LQ{E) = { / : / is measurable 
and supp / C E}. 

For 0 < p < 00 we define Lp(ji) to be the space of all functions / in L0(fi) 
such that \f(x)\pdfi(x) < 00 (i.e., Lp{¡x) C Lo(m))- For p > 1, Lp(/x) is a 
Banach space. 

By LQ and Lp we are referring to LQ and Lp of the unit interval with 
Lebesgue measure. 

A sequence (/„) in Lo{fi) is said to converge to f in measure if, given 
e > 0, there is an integer N such that for all n > N we have fi({x : 
\fn(x)-f(x)\>6})<6. 

A norm || • || is called an F-norm if it satisfies ||x + j/|| < ||x|| + ||y||. If 
|| • || is an F—norm, then d(x,y) = ||a; — i/|| is an invariant metric on X. (So 
that Lo(fi) is a topological algebra, and a complete lattice). 

A metrizable topological vector space (or metric linear space) is called 
an F-space if it is complete for an invariant metric (and hence for every 
invariant metric). 

Thus, by V. L. Klee [10], a metric linear space which is complete in any 
metric will also be complete in any invariant metric. By the inequality 

H — , Va,p > 0 
1 + a + P ~ a + /3 a + /3' 
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the real-valued function 

ii/iioHrrt/f^' v/GLo(/i) 

becomes an F-norm, from which Lo(M) is a n -F-space with norm || • ||o, and 
II fn ~ /||o 0 iff /„ / in measure. 
DEFINITION 1 . 4 . A function T : X —> Y, where X and Y are vector spaces 
(over the same field K of scalars) is called a linear operator if T(ax + 
(3y) = aT(x) + (3T(y), where x,y 6 X and a,/3 € K. If X and Y are two 
topological vector spaces and T is continuous, then T is called a continuous 
linear operator. 

The set of all continuous linear operators T : X —» Y is denoted by 
C(X, Y), and C(X,X) by C(X). 

2. Some properties of continuous linear operators 
One of the most important properties of the continuous linear operators 

on the F-space Lo(n) will be given in Lemma 2.3. And now we will show 
that the space Lq(h) is a complete lattice. 

Let us mention that the proofs of Lemmas 2.1 and 2.2 have been pub-
lished in [3], but they were also included in the author's Ms.Sc. thesis (1983) 
(not published). 

LEMMA 2.1. Let (X, A,fj,) be a finite measure space. If B = {ga : a € 1} C 
Lo(fi), then there exists an extended real-valued function h such that 

(i) 9a < h ¡x-almost everywhere ( a . e . ) , Va € I 
(ii) if ga < f fi-a.e. for some f in Lo(n), then h < / fi-a.e. and there is 

a sequence (gan) in Lo(n) with h = V^Li 9an ~ suP{i7an : n & N}. 

Proof. Case 1. Let ga : X [0,1]. 
Let ¡3 = s u p { \ ( g a i V ga2 V . . . V ga„)dn : gai E B, 1 < i < n € N}. For 

every n € N there is hn = (gai V ga2 V . . . V gan) with \hn / (3. 
oo 

Put h= V hn (note that (*) \(gaVhn) < (3, "in). We claim that ga < h 
n—l 

/i—a.e., Va € I. Indeed, suppose ga> h for some a 6 I on a set of positive 
measure, i.e. ga — h > e on a set E with > 0, for some e > 0. Then 

\(9a V hn) = \(ga V hn) + \ (gay hn)>\ga+ \ hn 

E -E E -E 

> \ hn + \ e + J hn = \hn+ en{E) -f p + e/j,(E) > (3 
E E -E 

which contradicts (*). Thus ga < h p — a.e. Va € I. 
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Case 2. If : a G 1} is an arbitrary subset of Lo(m)> l e t u s define a 
mapping ip : (—oo, oo] —> (0,1] by 

( 1 if x = oo 
*{X) = 1 * ( i h ^ ) + 2 o t h e r ^ e -

Let h = sup{y> o ga : a G /}, so that, by the Case 1: 
(a) if ga < f ¿ia.e. for some / , then (p~1 oh = sup <7a < / /x-a.e. 
(b) f"1 o h = sup{<7Q : a G 1} > ga /x-a.e., and also there is a sequence 

(Sc*„) such that V^Li V ° 9an = h. Thus V^Li 9<*n — V - 1 0 h and hence B 
has the required properties (i) and (ii). • 

Every cr-finite measure algebra is complete (see [9], p.73). 
LEMMA 2.2. Suppose ( A,/jl) is a measure algebra of a-finite measure, and 
S = {Ea : a G 1} is a subcollection in it. Then there exists a least upper 
bound of S in A. 
P r o o f . Let B ={xEa : a E 1} C Lq(h). By Lemma 2.1. there exists a least 
upper bound for B in Lo(fi). Let h = \f B = \J{XEA : a G /}. Then there 
is a sequence (XEA„) in B such that h = V^Li XEAN = X(J~=1EAN = XE, 
where E = from which XEA < XE for each A G I, and hence 
Ea < E. Also, if Ea< F for all A G / , then XE0 < XF for all a G I. Thus 
XE < Xf which implies E < F. Therefore, E is the least upper bound of 
S = {Ea:aeI}cA.We denote E by V Ea or V S. m 
LEMMA 2.3. Suppose T G C(Lq) and ( f n ) is a sequence of functions in Lq 
such that m(supp/ n ) —* 0. Then m(suppT(/n)) —> 0. 
P r o o f . Let A be a measure algebra induced by the measure space 
([0,1 ],F,m). Let E G A, and a G R. Then 

iioxeIIo = s l i f e r * » = S T r s * " - i r k r < £ > -
¿ 1 + M x e ¿ i + M l + \a\ 

—> m{E) when a —• ±oo, 
and therefore sup a £ i i ||axf;|| = m(E). 

Now, let f E L0. Then 

S
1 lo/l J \&f\ r 

TTT~T\dm
 = \ i i .iXsuppfdm < \XsuPPfdm - m(supp/) 0 l + | a / | ¿ l + | a / | ^ 

and so 
(1) sup | |a/| |o < m(supp/) . 

aeR 
CLAIM: supQ(EJI | | A / | | 0 = m(supp/) . 



Kwapien's and Lamperti's representation theorems 405 

For each n G N, let En = {x G [0,1] : |/(a:)| > so that the sequence 
(En) is increasing and En / " supp / , and we have m(En) /* m(supp/) . 
But | / | > ±XEn- Thus | |Q/| |O > H^XEJO and therefore supaeR | |a / | |0 > 
supH^XfiJo = m(En). 

Hence 

(2) m(supp / ) = lim m(En) < sup | |a/ | |0 . 
n _ > 0 ° aeR 

From (1) and (2) we have ||a/| |o = "i(supp/) , V/ G L0. 
Now suppose m(supp /„) —> 0, but m(suppT(/n)) -/» 0. By passing 

to a subsequence, if necessary, we may assume that m(supp /„) —> 0, but 
m(suppT(/n)) > e for some e > 0, which means that 

VneAr sup | |T(a/„)| |0 > e. 
ct£R 

For each n G N, there exists an G R such that | |T(a„/n)| |o = | |aT(/n)| |o > 
e. So, we have Ha^/nllo = m(supp/ n ) 0, but | |T(a n / n) | | 0 0 which 
contradicts the continuity of T. • 

LEMMA 2 .4 . Let (/¿)"=1 be a finite sequence in Lq, and let Ai = supp /J 
(1 < i < n). Then there exists a sequence (ci)"=1 of scalars such that if 
f = Y!i=i cifi then m (Ur=i Ai \ SUPP fi) = 
P r o o f. It suffices to prove the result for the case n = 2, and apply induction. 
For any a e R , let 

Ba = A2 \ supp ( f i + a f 2 ) = A2n{xe [0,1] : (A + af2)(x) = 0} 
= {x G [0,1] : f2(x) # 0, and af2(x) = -fi(x)}. 

If a ^ /? in R, then af2(x) / /3f2(x), or otherwise f2(x) = 0. So that 
Ban Bp = 0, since if x G Ba, then x ^ Bp. Hence the collection il = {Ba : 
a G i l} is an uncountable collection of pairwise disjoint subsets of A2, and 
since the Lebesgue measure m is a-finite there is a set Bao G it such that 
m(Bao) = 0. Thus if x G l)A2)\supp(/i + 01/2)) then x G Bao, because 
A2 \ supp(/i + a0f2) = {x G A2 : (/1 + a0f2)(x) = 0} = Bao. Therefore 
m((Ai U A2) \ supp(/i + a0f2)) = 0 = m(Bao). m 

LEMMA 2 .5 ([6]) . Suppose T G £(Lo), and let h : A —> A be a set function 
defined by h(E) = sup{supp T ( f ) : supp / C E}, for all E in the measure 
algebra A induced by the Lebesgue measure space ([0,1], F, m). Then the set 
mapping h satisfies the following conditions: 

i) h(A U B) = h(A) U h(B) for A, B in A; 
ii) if {En) is a sequence in A and rn(En) —> 0, then m(h(En)) —> 0; 

in) h(yaeIEa) = yaeIh(Ea). 
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P r o o f , i) Suppose / 6 LQ such that supp / C A U B in A. Then there 
are two functions / i , /2 € Lq such that fi + f2 = f with supp f\ <Z A 
and supp/ 2 C B. Therefore h(A U B) C h{A) U h(B). Now if C E2, 
then h(Ei) C /i(i?2) by definition of h. So that for any sets A and B, 
h(A) C h(A U B) and h(B) C h{A U B). Hence h{A) U h(B) C h(A U B). 
Thus h(A U B) = h(A) U h(B). 

ii) Suppose (E n ) is a sequence in A such that m(En) —> 0, but m(h(En)) 
0; by passing, if necessary, to a subsequence, we may assume that there is 

a positive real number a such that m(h(En)) > a for all n E N. So for each 
n € N there exist fi, f2,-••, fkn in L0 with supp fi C En (all 1 < i < kn) 
and such that m ( | J ^ 1 suppT(/ j ) ) > a . By Lemma 2.4. above, there is a 

function gn — °ifi with m(suppT(<7n)) > a , and gn € LQ. 
i=1 

So we have suppgn = supp(X)f=i c i / i ) C U f = i s u P P / i c En —> 0, i.e. 
m(suppgn) —> 0, but m(suppT(gn)) 0, which contradicts Lemma 2.3. 

iii) Since \JaeIEa — s u p a e / Ea, then Ea C \JaeIEa, for each a € I, 
from which h(Ea) C h(\JaGlEa). Thus \/aeIh(Ea) C h(\/aeIEa). The 
existence of a sequence ( E a n ) with UnLi Ean = \/a€l Ea is guaranteed by 
Lemma 2.2, so showing that h(\/a€l Ea) = \/aeI h(Ea) is equivalent to 
showing that MIXLi EaJ = U ~ i h(EaJ. 

Since h(Ean) C 1EaJ implies U~=i M^«» ) C h(\J~=1Ean), we 
need only to show that M l C = i C LC=i M ^ J - T o t h i s e n d > l e t E = 
l C = i By (i) we have 

n n ti 71 
h(E) = h(E \ U Eai) U | J Eai) = h(E \ ( J Eai) U ( | J h(Eatj). 

¿=1 i=i i=i ¿=i 

But then 
n n 

h(E)\\Jh(Eai)ch(E\{jEai) 
¿=1 i=l 

for all n e N. Since 
n 

E \ Eai D E \ (Eai U £ « 2 ) D . . . D E \ ( J Eai, 
i = i 

we have m(E \ ( J " = 1 Eai) \ 0. Therefore, by (ii), 

n 

m(h(E\(jEai))\0, 
i=1 
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which implies 
oo 

m(h(E)\\Jh{Eai)) = 0. 
i=1 

This means that oo 
h(E) C [ J a .e . , 

¿=i 
i.e. h(Uñ=i C LC=1 h(Ean), which was to be proved. • 

Now we recall and apply a theorem describing the structure of set map-
pings between measure algebras, proved by the author in a previous pa-
per [7]. 

THEOREM 2 . 6 ([7]) . Let (Xi,Fi,f¿i) and (X2,F2,fi2) be two finite non-
atomic measure spaces and let A\ and A2 be the corresponding measure 
algebras of /¿i and n2 respectively. Suppose h : Ai —> A2 is a mapping 
satisfying the following conditions: 

(i) If (En) is a decreasing sequence in A\ with fii(En) —» 0, then 
M2(h(En)) -> 0; 

(ii) E1,E2 € Ai implies h(Ex U E2) = h{E{) U h(E2). 
Then there is a sequence of pairwise disjoint (An) in Ai such that h(Xi) = 
I X L I and for each n G N, there is a partition {E\n,..., Eknn} ofX such 
that the mapping hin(E) = An fl h(E), VE EA\{Ein) is a a-homomorphism 
of A^Ein) into A2(An fl h(Ein)). 

THEOREM 2 .7 . Let A and B be two measurable subsets of [0 ,1] of a positive 
measure. Suppose T : Lo(A) —> LQ(B) is a continuous linear operator, and 
T satisfies the following conditions: 

(i) T( 1) = 1, i.e. T(XA) = XB; 
(ii) if //.(supp f\ n supp/2) = 0 then /¿(suppT(/i) n suppT(/2)) = 0. 

Then there exists a non-singular measurable function ip : B A such that 
T(f) = fo<p for each f E L0{A). 

THEOREM 2 .8 ([6]). Suppose T e C(L0(A), L0(B)) where A,B are subsets 
of [0,1] of positive measure such that if /¿(supp /i CI supp f2) = 0, f i , f 2 € 
LQ(A), then /¿(supp T(/i) DsuppT(/2)) = 0. Then there exists a function 
g 6 LO{B) and a non-singular measurable mapping ip : suppg —> A such 
that T(f) = gf o tp for each f e L0(A). 

Proof . Let us consider g = T(XA)- We claim that suppT(/) C suppp 
for any / 6 Lo(A). Since g is the image of the whole space Lo(A) un-
der continuous linear operator T, then for each measurable subset E of A, 
T(XE) + T(X-E) = g, and /¿(suppT^) n suppT(x-£;)) = 0. Therefore 
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supp T(xe) C supp g. And hence supp T{ip) c supp g for any simple func-
tion tp in Lq(A). Thus suppT(/) C suppg, V/ € Lq(A). N O W define a new 
operator V : L0(A) L0(suppp) by T'(f) = ±XSUPPST(/). Therefore T' is 
also a continuous linear operator, and T"( 1) = T ' ( x a ) = ^XsuPP g T ( x A ) = 1 
on suppg\ also if /i,/2 S Lq(A) with /x(supp/i nsupp/2) = 0, then 

suppT'(f i ) = supp Qx-upp^ri/i)^ C suppT( f i ) , i = 1,2, 

so that 

/¿(suppT'Cfi) nsuppT'(/2)) < //(suppTi/i) nsuppT(/2)) = 0, 

from which T'(f) = / o ip (by Theorem 2.7.) for some non-singular measur-
able function ip : supp g —> A. Thus ^T(f) = / o ¡p and T(f) = gf o (p. m 

3. A modification of Kwapien's theorem 
In [4], S. Kwapien has presented his theorem on the form of a linear 

operator in the space of all measurable functions as follows: 

THEOREM 3.1 ([4]). Let ( E , 9JT, A) be a standard measure space and (F, ¿1) 
a measure space. A linear operator T : S(E, Tl, A) —> S(F, /i) is continu-
ous i f f T is of the form T(/)(t) = E S i <pi(t)f{<f>i{t)), where 

P {ipi) is a sequence of elements of S(F,(Xl,fi,) such that //({i : 
<Pi(t) 0 for infinitely many i}) = 0. 

IF is a sequence of mappings from F into E such that for VZ and 
VA 6 art, S T 1 ^ ) e 9t (the completion of VI), and n { i : <pi(t) / 0} 
is a set of ¡j,-measure zero whenever A is a set of X-measure zero. 

00 kn 

THEOREM 3.2 ([6]). I f T e £(L0), then T{f) = E E 9inf ° <Pin for each 
n=1t=l 

/ € Lo, where 
1. (An) is a collection of pairwise disjoint subsets of [0,1] of positive 

measure; 
2. {Ein,..., Eknn} is a partition of[ 0,1] into the sets of positive measure-, 
3. suppgin C An, i.e. gin € L0(An) for all e N; 
4. ipin : supp gin Ein. 
In particular (*) T(f) = E^LI 9nf 0 <Pn, where 

(i) each (pn '• supp gn —> [0,1] is a non-singular measurable mapping-, 
(ii) each gn G Lq\ 

(Hi) for almost all x in [0,1], gn{x) i1 0 for only finitely many n. 

Conversely, every map defined in the above way (*) is a continuous 
linear operator on Lq. (See also Theorem 8.4. in [3], p.171.) 
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P r o o f . Let E £ A, where A is the measure algebra 011 [0,1] with Lebesgue 
measure m. Define h : A —> A by h(E) = sup{supp T(f) : supp / C E}. 
From Lemma 2.5 we know that h satisfies the following: 

i) h{Ex U E2) = h(Ei) U h(E2) for Ex, E2 £ A, and 
ii) if {E n ) is a sequence in A and m(En) —> 0, then m(h(En)) —> 0. 

Moreover, it is known that the Lebesgue measure m is finite and non-atomic. 
Therefore, by Theorem 2.6, there is a sequence (An) of pairwise disjoint 
elements in A, so that (J^Li -^n = /i([0,1]), and for each n £ N there 
is a partition {Ein,..., Ek„n} of [0,1] such that for all E £ A(Ein), the 
mapping hin(E) = An fl h(E) is a cr-homomorphism of A(Ein) into A(An fl 
h(Ein)). Also, if A, B £ A(Ein) with A U B = Ein and A n B = 0, we have 
m(h in(A) n h i n(B)) = m(An n h(A) n h(B)) = 0. Now let f u f2 £ L0(Ein) 

with supp/i C A and supp/2 C B; then 

m(suppT(/i) n suppT(/2)) < m{hin(A) n hin(B)) = 0. 
At this point we apply Theorem 2.4. Hence for each n £ N and each 

1 < i < kn there exists a function gin £ Lo(An) with suppg¿n c An, so that 
XAnT{f) = gin(f o ipin) for all / £ L0(Ein), where 'Pin '• S U p p gin > Ein 

is a non-singular measurable function. Hence for all / £ LQ, XANT(f) = 

Etfe=i 9inf
 0

 fin- Thus 
00 00 kn 

T{S) = X 3 A J U ) = E = E E 9inf O 'Pin-
n= i n = l n=1¿=1 

Now we are going to show the particular representation form T ( f ) = 
Xl^Li 9nf

 0
 fn where gn and ¡pn as in conditions above. 

Since {(gin, fin) n E N, 1 < i < kn} is countable, we may write this 
sequence as the range of a sequence ((gn, <pn)) • 

Now if x £ Ak, then gim(x) 0 only if m — k, because suppgi n C Am, 

and (Am) is a sequence of pairwise disjoint sets. 
Therefore \{x e N : gn{x) ± 0}| < k for some k. Thus T(f) = 

Yl™=i9nf 0 <Pn for all / £ LQ, and for each x £ [0,1], g(x) ^ 0 for only 
finitely many n. 

At last, we show the converse. Suppose T(f) = ^^^ gnf o<pn, V/ £ LQ, 
and the conditions (i)-(iii) hold. Let Bn = {x £ [0,1] : <7fc(x) = 0 for each 
k > n}. So that Bx C B2 c . . . and m ( H ~ = 1 ( - 5 n ) ) = 0, i.e. m(-Bn) \ 0. 

To show that T is continuous suppose fk —> 0 in L0. Let e > 0, by 
condition (iii) there exists n such that m(—Bn) < e/2. Now XBnT(f) = 

X)r=i 9i(fk
 0 <Pi) - > 0 as k —> 00, so there exist N such that whenever 

k > N , ||xB„r(/fc)||o < e/2. Also, 

l |X(-B„)r( / f c ) | |o < m(suppx ( _ B n ) ) - m(-Bn) < e/2. 
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Therefore, for each k> N we have 

||T(A)||o = ||XB„T(/fc)||0 + ||X(-bb)T(/*)||O < e/2 + e/2 = e. 

Thus if fn —> 0 in Lo, we have T(fn) —» 0, and hence T G £(Lo)- • 

4. A modification of Lamperti's theorem 
The original Lamperti's theorem ([5]) reads as follows: 

THEOREM 4 . 1 ([5]) . Let U be a linear operator on a space Lp for some 
positive p ^ 2, such that 

(i) \\U(f)\\p = \\f\\pforallfeLp. 
Then there exists a regular set-isomorphism T and a function h such that 
U is given by 

(ii) (Uf)(x) = h(x)T(f(x)). 

If a measure fi* is defined by p*(A) = ¡j/(T~1(A)), then 

(iii) \h{x)\p = a.e. onT(x). 

Conversely, for any regular S-isomorphism T and any h satisfying (ii) 
the operator U defined by (ii) satisfies (i). 

We will construct a similar form of T(f) as in the Kwapien representa-
tion theorem for continuous linear operator. And also, in our modification 
of Lamperti's theorem, we will use the same technique as in the proof of 
the modification of Kwapien's theorem. In this modification we choose the 
algebra A (where supp f E A for each / G LP) to be finite non-atomic mea-
sure space ([0,1], A, FI). Recall that Lp(/J,), 1 < p < oo was defined to be the 
space of all functions / G LQ(H) such that J \f{x)\pdn{x) < oo, and that for 
p > 1, Lp(/i) is a Banach space. 

Now we state and prove our modification of Lamperti's theorem. 

THEOREM 4 . 2 ( [6]) . Let 1 < p < oo, p ^ 2 , and let ( [ 0 , 1 ] , A,¡J) be a non-
atomic finite measure space. Let T : Lp —> Lp be a linear operator which 
preserves norm (i.e. ||T(/)||P = ||/||P)- Then there are measurable mappings 
ipn : supp<7n —> An (where (An) is a partition of [ 0 ,1 ] ) such that 

oo 

T(f) = J29n{fo <pn) for all / G Lp(n) on [0,1]. 
n = l 

P r o o f . We know that any function / G LP(FI) has a norm 

II/IIP = [ J \f\Pdv] / P <oo for every 0 < p < oo. 
x 
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Let A be the non-atomic finite measure algebra on [0,1] induced by the non-
atomic finite measure fi such that supp / C A for each / <5 Lp(ji) on [0,1]. 
Define the set mapping h : A —> A by h(E) = sup{suppT(/) : supp / C E}. 

Since fi is finite non-atomic measure, then by Lemma 2.5, h satisfies 

i) for any decreasing sequence (En) in A if /¿(En) —> 0, then 
n(h(En)) 0; 

ii) h{A U B) = h(A) U h(B) for any A,B e A. 

But since T is a linear operator of Lp into itself, then by Theorem 2.6. there 
is a sequence (An) of pairwise disjoint sets in A as a partition of [0,1] such 
that /i([0,1]) = 0^=1 An- So that the mapping hn(E) = An D h(E) for all 
E G A(Ak) is a u-homomorphism from A(Ak) into A (A n fl h(Ak))-

Also, if A,B G A(Ak) with A U B = Ak and A n B = 0, we have 
n(hn(A) n hn(B)) = fi{An n h{A) n h(B)) = 0. 

Now, let / i , / 2 G A(Ak) with supp/ i C A and supp/2 C B, so that 
/x(suppT(/i) n suppT(/2)) < n(hn(A) fl hn{B) = 0. So, by Theorem 2.8, 
for each n G N there is a function gn G Lp(An) with suppgn c An, and a 
non-singular measurable mapping ipn : suppgn —> An, such that XAnT(f) — 
9nf 0 <Pn, v / G Lp(An). Hence for any / G Lp([0,1]) we have 

00 00 
T ( f ) = X n T ( f ) = J 2 X A T ( f ) = Y,9nf °<pn.' 

n = l 71=1 n=l 
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