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1. Introduction

Let X be a complete Hausdorff space whose uniformity is generated by a
family of pseudometrics {d; : i € I}, and let 2% be its hyperspace equipped
with the HausdorfI uniformity induced by {d; : ¢ € I'}. A general fixed point
theorem for F': X — 2% is proved. Then examples show that this theorem
includes known fixed point theorems and also yields a new theorem.

A fixed point theorem for multi-valued contraction mappings was proved
for the first time by S.B. Nadler [2]. Since then, many authors have given
generalizations of this theorem in various forms, such as the one given by
R. Wegrzyk. R. Wegrzyk has applied fixed point theorems to the proof of
multi-valued functions and functional equations [5].

Let (X,U) be a uniform space. A family {d; : ¢ € I} of pseudometrics
on X with indexing set I, is called an associated family for the uniformity
U if the family

B=A{V(,r):ie€l,r>0}
where
V(i,r) ={(z,9) 12,y € X, di(z,y) <7}
is a subbase for the uniformity &/. We may assume that 3 itself is a base by
adjoining finite intersection of members of 3, if necessary. The corresponding
family of pseudometrics is called an augmented associated family for U. An
associated family for ¢/ will be denoted by p*. For details the reader is

referred to Taraftar [3] and Thron [4].
Let A be a nonempty subset of a uniform space X. Define

A*(A) = Sup{di(z’y) 'L,y € A) 1€ I}7
where {d;(z,y) : i € I} = p*. Then A*(A) is called an augmented diameter
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of A. Further, A is said to be p*-bounded if A*(A) < oo. Let
2% = {A: A is a nonempty, closed and p*—bounded subset of X}.

For any nonempty subsets A and B of X, define

di(z,A) = inf{d;(z,a) :a € A, i € I},
H,;(A, B) = max{sup d;(a, B), supd;(4,b)}
a€A beB

= sup{ldi(z, 4) - di(z, B)|}.
zeX

It is well-known that on 2%, H; is a pseudometric, called the Hausdorff
pseudometric induced by d;, 1 € I.

Let (X,U) be a uniform space and let U € U be an arbitrary entourage.
For each subset A of X, define

UlA] ={y € X;(z,y) € U for some z € A}.

The Hausdorff uniformity 24 on 2% is defined by the base 28 = {17 U e U},
where ‘

U={(A,B): A,Be2* and ACU[B], BCU[A]}.

The augmented associated family p* also induces a uniformity &/* on 2%
defined by the base 8* = {V*(i,r): ¢ € I, r > 0}, where

V*(i,r)={(A,B): A,B c 2%, H(A,B)<r}.

The uniformities 2¢ and U* on 2% are uniformly isomorphic. The space
(2%,U*) is thus a uniform space called the hyperspace of (X,U).
The following theorem was proved in [5].

THEOREM 1 [5]. If (Y,d) is complete metric space and F: Y — CL(Y) is a
multi-valued function which fulfils the inequality D(Fz, Fy) < ¢(d(z,y)) for
all z,y in X and some strictly increasing function ¥ such that limg_, oo ¥*(t)
= 0 for every t, then

(a) for every yo € Y and for every fized point y € Y of F there exists a
sequence of iterates of F at yo which converges to y,

(b) if S ope; V*(t) < oo, for t > 0, then the set of fized points of F is
nonempty.

In this theorem % : [0, 00) — [0, 00), D is the Hausdorff metric and

CL(Y)={A:Aisclosed in Y}.
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2. Main results

THEOREM 2. Let (X,U) be a complete Hausdorff uniform space defined by
{d; :i € I} = p* and (2%,U*) a hyperspace, let F : X — 2% be a continuous
mapping and Fz compact for each z in X. Assume that

(1) Hi(Fm’Fy) < K(di(z>y))

forallie I and z,y € X, where K : [0,00) — [0,00), K(0) = 0 and K is
non-decreasing. Then there exists z in X with z € Fz if and only if there
ezists T in X with ) oo, K™(di(z0, Fzo)) < 00.

Note that in this theorem K is not assumed to be continuous and
K"™(t) = K(K"‘l(t)).

Proof. If z € Fz then d;(2,Fz) = 0,0 = K(0) = K*(0) = ... = K™(0)...
for each i € I and ) .. | K™(di(z, Fz)) = 0. Let zp € X and z; € Fzg be
arbitrary. Suppose that there exists zo such that > oo | K™(d;(z0, Fzo)) <
oo for each 2 € I. Let U € U be an arbitrary entourage. Since 3 is a base
for U, there exists V(¢,7) € 8 such that V(i,7) C U. Now y — d;(z0,y) is
continuous on the compact set F'zg and this implies that there exists x; €
Fzq such that d;(zo,z1) = di(z0, Fzo). Similarly, Fz, is compact so there
exists 2 € Fz; such that d;(2,, Zn4+1) = di(z1, Fz,1). Continuing, we obtain
a sequence {z,} such that z,+1 € Fz, and d;(ZTn,Zn+1) = di(Tn, Fz,).
Noting that K is non-decreasing and using inequality (1), we have

di(zn, Tnt1) = di(Tn, Fzn) < H(Fzyn_1, Fz,)
< K(di(zn-1,%s)) = K(di(zn-1, Fzpn_1))
< K(Hi(Fzn_o,Fz,_1))
< K*(di(Tn-2, Tn-1)

IA A

K" (di(zo,z1)) = K™(di(z0, Fz0)).
Hence we obtain

di(wna mn+m) < di(zn’ zn+1) + di(zn+1; zn+2) + ...+ di(xn+m—1a $n+m)
< Kn(di(fl)o, F:l?o)) + Kn+1(di(:l:0, Fl’o)) + ...+
+ Kn+m_1(di(l‘0, F:EQ))

n+m—1

= Y K*(di(zo, Fz0)).

k=n
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Since >0 K™(di(zo, Fzo) < o0, it follows that there exists p such that
di(Zn,Tm) < r and hence (z,,zn,) € U for all n,m > p. Therefore the
sequence {z,} is Cauchy sequence in the d;-topology on X.

Let S, = {z, : n > p} for all positive integers p and let B be the filter
basis {Sp : p = 1,2,...}. Then since {z,} is a d;-Cauchy sequence for each
1 € 1, it is easy to see that the filter basis B is Cauchy filter in the uniform
space (X,U). To see this we first note that family {V(¢,r) : ¢ € I'} is a base
for U as p* = {d; : i € I'}. Now, since {z,} is a d;-Cauchy sequence in X,
there exists a positive integer p such that d;(z,,zm) < 7 for m > p, n > p.
This implies that S, x S, C V(¢,7). Thus given any U € U, we can find a
Sp € B such that S, x S, C U. Hence B is a Cauchy filter in (X,¥). Since
(X,U) is complete Hausdorff space, the Cauchy filter B = {S,} converges
to a unique point z € X. Since F' : X — 2% is continuous, F(B) — Fz. On
the other hand, since

Sp+1 QF(SP)=U{F:E” :n>p}t forp=1,2,...,

then F'(Sp) in the filter induced from the filter base B. In other words, the
filter induced from F'(B) is coarser than that of B. Therefore F'(B) converges
to z. It follows that z € Fz. Hence z is a fixed point of F'. This completes
the proof.

REMARK 1. K needs only be defined on the range of d; for all 7+ € I. If you
replace the pseudometric with an equivalent pseudometric with d;(z,y) < 1,
then clearly Theorem 2 holds for K : [0,1) — [0, 00). To apply Theorem 2,
one needs a non-decreasing function K and z in X with

Z K"(di(z, Fz) < oo.
n=1

The following examples satisfy these conditions and therefore illustrate
the generality of Theorem 2; let X denote complete Hausdorff uniform space
defined by {d; : i € I'} = p*.

EXAMPLE 1. Suppose 0 < A; < 1. Let K(t) = At for t > 0. Then
Hz(Fvay) < K(d,(:c,y)) = /\idi(m)y) and Kn(dl(zan)) = A?dl(w!F"B)
for any « in X. It is known that there exists z with z € F'z without assum-
ing that F'z is compact.

EXAMPLE 2. Suppose that F satisfies H;(Fz, Fy) < ¢(d;(z,y))di(z,y) for
all z,y in X, where ¢ : [0,00) — [0,1) and ¢ is non-decreasing. Then
K(t) = t¢(t), K is non-decreasing, and K : [0,00) — [0, 00). It follows by
induction that K™(t) < t[¢(t)]™, since ¢(t) < 1 and Y oo ; K™(t) < oo.
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ExAMPLE 3. Consider K (t) = t¢(t), where ¢ : [0,00) — {0,00), ¢(t) < ¢t for
t <1.Ift < 1, it follows that K™(t) < t[¢(¢)]™, If K is non-decreasing, then
Theorem 2 can be applied.

EXAMPLE 4. K(t) = t¢(t), where ¢ : [0,00) — [0,00), ¢(a;t) < a;¢(t) for
€ (0,1). If ¢(¢) < 1, then K™(t) < K(t)(¢(t))™ for all n > 2.

EXAMPLE 5. Assume that K is non-decreasing, K is convex on [0,1) and
Kit) <tforall 0 <t < 1L Ift <1, K(t) <t then K(t) = a;t for
some 0 < a; < 1. It can be shown that K"(t) < af't for all n and thus
Y1 K () < o0

THEOREM 3. Let (X,U) be a complete Hausdorff uniform space defined by
{d;:i€I}=p* let F: X — 2% be a multi-valued mapping and Fx compact
for each z in X. Assume that H;(Fz, Fy) < [d;(z,y)|?, where ¢ > 1, then
F has a fized point in X .

Proof. Let K(t) =t? fort > 0. Then K(0) = 0 and K is increasing, K (t) <
tift <1and K is convex. If t = d;(z, Fz) < 1, then ) ., K™(t) < oo from
the previous example. Also F is continuous, so Theorem 2 applies.

REMARK 2. If we replace the uniform space (X,U) in Theorems 2 and 3
and Examples 1-5 by a metric space (i.e. a metrizable uniform space), then
the results of Hicks [1] will follow as special cases of our results.
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