
DEMONSTRATIO MATHEMATICA 
Vol. XXXII No 2 1999 

Duran Tiirkoglu, Orhan Özer, Brian Fisher 

SOME FIXED P O I N T THEOREMS FOR SET-VALUED 
M A P P I N G S IN U N I F O R M SPACES 

1. Introduction 
Let X be a complete Hausdorff space whose uniformity is generated by a 

family of pseudometrics {di : i G /}, and let 2X be its hyperspace equipped 
with the Hausdorff uniformity induced by {di : i G /}. A general fixed point 
theorem for F : X —> 2X is proved. Then examples show that this theorem 
includes known fixed point theorems and also yields a new theorem. 

A fixed point theorem for multi-valued contraction mappings was proved 
for the first time by S.B. Nadler [2]. Since then, many authors have given 
generalizations of this theorem in various forms, such as the one given by 
R. W^grzyk. R. W^grzyk has applied fixed point theorems to the proof of 
multi-valued functions and functional equations [5]. 

Let (X, U) be a uniform space. A family {di : i € 1} of pseudometrics 
on X with indexing set I, is called an associated family for the uniformity 
U if the family 

0 = { V ( i , r ) : i E l , r > 0 } 

where 
V(i,r) = {(x,y) : x,y G X, d{(x,y) < r} 

is a subbase for the uniformity U. We may assume that ¡3 itself is a base by 
adjoining finite intersection of members of,8, if necessary. The corresponding 
family of pseudometrics is called an augmented associated family for U. An 
associated family for U will be denoted by p*. For details the reader is 
referred to Taraftar [3] and Thron [4]. 

Let A be a nonempty subset of a uniform space X. Define 

A*(A) =snp{di{x,y) : x,y G A, i G I } , 

where {di(x,y) : i G 1} = p*. Then A*(A) is called an augmented diameter 
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of A. Further, A is said to be p*-bounded if A*(A) < oo. Let 

2X = {A : A is a nonempty, closed and p* —bounded subset of X}. 

For any nonempty subsets A and B of X, define 

d{(x, A) = inf{cii(x, a) : a E A, i E I}, 
Hi(A,B) = max{sup di(a, B), supdi (A, b)} 

aeA b€B 
= sup{|di(x,^4) - di(x,B)\}. 

xex 

It is well-known that on Hi is a pseudometric, called the Hausdorff 
pseudometric induced by di, i € I. 

Let (X,U) be a uniform space and let U € U be an arbitrary entourage. 
For each subset A of X, define 

U[A] = {y G X; (x ,y ) G U for some x G A}. 

The Hausdorff uniformity 2U on 2X is defined by the base = {U : U G U}, 
where 

U = {{A,B) :A, Be 2X and ACU[B], B C U[A]}. 

The augmented associated family p* also induces a uniformity U* on 
defined by the base ¡3* = {V*(z,r) : i G r > 0}, where 

V*(i,r) = { (A,B ) : A,B G 2*, Hi(A,B) < r}. 

The uniformities 2U and U* on 2X are uniformly isomorphic. The space 
(2 x ,U*) is thus a uniform space called the hyperspace of (X,U). 

The following theorem was proved in [5]. 

THEOREM 1 [5]. If (Y,d) is complete metric space and F :Y —> CL(Y) is a 
multi-valued function which fulfils the inequality D(Fx, Fy) < tp(d(x, y)) for 
all x,y in X and some strictly increasing function ip such that lim^oo ipk(t) 
= 0 for every t, then 

(a) for every yo EY and for every fixed point y £Y of F there exists a 
sequence of iterates of F at yo which converges to y, 

(b) if X^fcLi ̂ ( i ) < °°> for t > 0, then the set of fixed points of F is 
nonempty. 

In this theorem ip : [0, oo) —> [0, oo), D is the Hausdorff metric and 

CL{Y) = {A:Ais closed in Y}. 



Some fixed point theorems 397 

2. Main results 

THEOREM 2. Let (X, U) be a complete Hausdorff uniform space defined by 
{di : i E 1} = p* and (2x,U*) a hyperspace, let F : X —• 2X be a continuous 
mapping and Fx compact for each x in X. Assume that 

for all i € I and x,y € X, where K : [0, oo) —> [0, oo) , K(0) = 0 and K is 
non- decreasing. Then there exists z in X with z € Fz if and only if there 
exists XQ in X with JZ^Li Kn(di(xo,Fxo)) < oo . 

Note that in this theorem K is not assumed to be continuous and 
Kn{t) = K(Kn~l{t)). 

P r o o f . If z € Fz then di(z,Fz) = 0, 0 = = K2{0) = . . . = Kn(0)... 
for each i E I and Kn{di{z, Fz)) = 0. Let XQ E X and x\ £ Fxo be 
arbitrary. Suppose that there exists xo such that Kn(di(xo, FXQ)) < 

oo for each i € I. Let U 6 U be an arbitrary entourage. Since /3 is a base 
for Li, there exists V(i,r) 6 /? such that V(i, r) C U. Now y —» d{(xo,y) is 
continuous on the compact set Fxo and this implies that there exists X\ € 
Fxo such that di(xo,xi) = di(xo, FXQ). Similarly, Fxi is compact so there 
exists X2 6 Fxi such that di(xn, x„+i) = di(xi,Fxi). Continuing, we obtain 
a sequence { x n } such that xn+i G Fxn and di(xn,xn+1) = d{(xn, Fxn). 
Noting that K is non-decreasing and using inequality (1), we have 

(1) Hi{Fx,Fy) <K(di(x,y)) 

di{xn, xn+1 ) = di(xn,Fxn) < Hi(Fxn-i, Fxn) 

< K(di(xn_i,xn)) = K(di{xn--i,Fxn-\)) 

<K{Hi{Fxn-2,Fxn-l)) 

< K2(di(xn-2,Xn-l) 

< ... 
< Kn{di(xo,xi)) = Kn(di{x0,Fx0)). 

Hence we obtain 

= J 2 ^(diixcFxo)). 
k=n 
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Since T,n=iKn(di(xo,Fx0) < oo, it follows that there exists p such that 
di(xn,xm) < r and hence (xn,xm) E U for all n,m > p. Therefore the 
sequence {xn} is Cauchy sequence in the (¿¿-topology on X. 

Let Sp = {xn : n > p} for all positive integers p and let B be the filter 
basis {Sp : p = 1,2,. . .}. Then since {xn} is a (¿¿-Cauchy sequence for each 
i 6 I, it is easy to see that the filter basis B is Cauchy filter in the uniform 
space (X,U ) . To see this we first note that family r) : i E 7} is a base 
for U as p* = {di : i € /}. Now, since {xn} is a (¿¿-Cauchy sequence in X, 
there exists a positive integer p such that (¿¿(xn,xm) < r for m > p, n > p. 
This implies that Sp x Sp C V(i,r). Thus given any U £ W, we can find a 
Sp E B such that Sp x Sp C U. Hence B is a Cauchy filter in (X,U). Since 
(X,U) is complete Hausdorff space, the Cauchy filter B = {Sp} converges 
to a unique point z E X. Since F : X —> 2X is continuous, F(B) —> Fz. On 
the other hand, since 

SP+1 C F(SP) = [J{Fxn : n > p) for p = 1 ,2 , . . . , 

then F(SP) in the filter induced from the filter base B. In other words, the 
filter induced from F(B) is coarser than that of B. Therefore F(B) converges 
to z. It follows that z E Fz. Hence z is a fixed point of F. This completes 
the proof. 

REMARK 1. K needs only be defined on the range of di for all i € I. If you 
replace the pseudometric with an equivalent pseudometric with di(x,y) < 1, 
then clearly Theorem 2 holds for K : [0,1) —> [0, oo). To apply Theorem 2, 
one needs a non-decreasing function K and x in X with 

oo 
^Kn(di{x,Fx) < oo. 
n = l 

The following examples satisfy these conditions and therefore illustrate 
the generality of Theorem 2; let X denote complete Hausdorff uniform space 
defined by {d{ : i E 1} = p*. 

EXAMPLE 1. Suppose 0 < Ai < 1. Let K(t) = \{t for t > 0. Then 
Hi(Fx,Fy) < K(di(x,y)) = A¿(¿¿(x,y) and Kn(di(x,Fx)) = A f d i ( x , F x ) 
for any x in X. It is known that there exists z with z E Fz without assum-
ing that Fx is compact. 

EXAMPLE 2. Suppose that F satisfies Hi(Fx,Fy) < 4>(di(x,y))di(x,y) for 
all x,y in X, where <j> : [0, oo) —» [0,1) and <j) is non-decreasing. Then 
K(t) = t<p(t), K is non-decreasing, and K : [0, oo) —> [0, oo). It follows by 
induction that Kn{t) < t[<p(t)}n, since <p(t) < 1 and Kn(t) < oo. 
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E X A M P L E 3 . Consider K(t) = t<p(t), where </>: [0,oo) [0, OO), <j>(t) < t for 
t < 1. If t < 1, it follows that Kn(t) < # (* ) ] " , If K is non-decreasing, then 
Theorem 2 can be applied. 

E X A M P L E 4 . K(t) = t<f>(t), where <j> : [0, oo) -> [0,oo), <j){oiit) < aa<j>(t) for 
an G (0,1). If (¡>{t) < 1, then Kn(t) < K{t)(if>(t))n for all n > 2. 

EXAMPLE 5 . Assume that K is non-decreasing, K is convex on [ 0 , 1 ) and 
K(t) < t for all 0 < t < 1. If t < 1, K(t) < t, then K(t) = out for 
some 0 < ai < 1. It can be shown that Kn(t) < a™t for all n and thus 

T H E O R E M 3. Let (X,U) be a complete Hausdorff uniform space defined by 
{di : i G 1} = p*, let F : X —• 2X be a multi-valued mapping and Fx compact 
for each x in X. Assume that Hi(Fx,Fy) < [di(x,y))q, where q > 1, then 
F has a fixed point in X. 

P r o o f . Let K(t) = t9 for t > 0. Then K(0) = 0 and K is increasing, K{t) < 
t if t < 1 and K is convex. If t = «¿¿(x, Fx) < 1, then Kn{t) < oo from 
the previous example. Also F is continuous, so Theorem 2 applies. 

R E M A R K 2 . If we replace the uniform space (X,U) in Theorems 2 and 3 
and Examples 1-5 by a metric space (i.e. a metrizable uniform space), then 
the results of Hicks [1] will follow as special cases of our results. 
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