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ON COMPACTNESS 
OF C ^ - A L M O S T PERIODIC F U N C T I O N S 

Abstract . In this paper we give a compactness criterion for -almost periodic 
functions. Some properties of these functions are shown. 

1. Preliminaries 
We first recall the basic notations related to Steklov functions and C ^ 

-almost periodic functions. 
For a given positive number h and for a function / : R —> R which is 

locally integrable, put 
- u+h 

Sf(h){u) = — 5 f(s)ds, ue R. 
u—h. 

Then Sf(h) is called the Steklov function for / . 
Let C ( R ) be the set of functions from R into itself with n-th continuous 

derivative. 
It is easily seen that if / € C(")(R), then Sf(h) e C(n+1)(R). 
Let us put for / e C(n)(R) 

£> (n )(/) = sup ( | / ( i ) | + ¿ | / W W l ) -

We say that an / € C(n)(R) is C^-bounded iff D ( n ) ( / ) < oo. Let 
fh{x) = f(x + h). We say that / is a 

-continuous function iff 
l imh_0 £> (n )(/ - fh) = 0. A sequence (/*) in CW(R) will be called D(") 
-convergent to f iff lim*;-^ D^n\f — fk) = 0. 
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A set A C R is called relatively dense iff there exists a positive number 
I such that in every open interval (a, a + I), a G R, there is at least one 
element of the set A. A number r G R is called a almost period 
( (D ( n ) , e)-a.p.) of a function / € C<n '(R) iff £> ( n ) ( / - fT) < e, for e > 0. Let 

/ } denote the set of (£><"), e)-a.periods of / . A function / 6 C(n)(R) 
is called C ( n )-almost periodic (C (n )-a.p.) iff for each e > 0 the set / } 
is relatively dense. By we denote the set of C ^ - a . p . functions. 

Basic properties and examples of C ^ - a . p . functions may be found in [1]. 

2. More properties of C ^ - a . p . functions 
In this section we prove some theorems on -a.periodicity of functions 

and we give an example of a C^-bounded and a c w -continuous function 
which is not C ^ - a . p . 

REMARK 1. A function / is C ^ - a . p . if and only if / , / ' , . . . , are uni-
formly a.p. functions. 

THEOREM 1. The following statements hold: 

(i) If f is a -a.p. function, then Sf(h) is a -a.p. function. 
(ii) If f is a -continuous function, then l i m ^ o D^(f — Sf(h)) = 0. 

P r o o f , (i) Let / € C(n>. Then for any t G R and for r G + / } 
with h > 0 we have 

Thus we obtain 

D^(Sf(h)-SfT(h)) 

< sup\S f(h)(t) - Sfr{h){t) | + £ s u p £ |/<fc>(i) - /<*>(«) | < e. 
teM n teR 

This means that £( n ) {eh/(/ i + 1); / } C E^n+l^{e]Sf(h)}. Since G 
C( n + 1 ) (R) , so Sf{h) G C ^ 1 ) . 

(ii) For each t € R we have 

1 h 

\m-Sf(h)(t)\<- J \f(t)-f(s + t)\ds, 2h -h 

2/i — /l 
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for k = 1,2,... ,n. Since / is C^-continuous, so for an arbitrary e > 0 
there exists a 6 > 0 such that £> (n)(/ - fs) < e for s e R with |s| < <5. Thus 
for all t € R and h > 0 such that Isl < h < 6 we obtain 

/ -, h 
D^n\f — Sf(h)) < s u p ( — J \ f ( t ) - f ( s + t)\ds 

teK J 
-h 

n h 

fc=i -h 
ds I < E. 

This proves (ii). • 

PROPOSITION 1. If f is a C^-continuous function and the indefinite inte-
gral F(u) = Jq f(s)ds foru e R is C^-a.p., then f is a -a.p. function. 

P r o o f . For each t 6 R we denote 

Gm(t) = F ( t + \ m ) F { t ) for hm ? 0, K 
flm 

0 as m —> oo. 

Let us observe that Gm € C(n\ because F e C^ (see [1], Th.3). We have 

D ^ ( G m - f ) = sup(h(t) + I2(t)), 
teM. 

where 

h(t) = 

and 

1 ^ - m -j ^ 77i 

L J ( / ( s + t ) - f(t))ds < — \ \f(s + t)-!(t)\ds= h{t) 

n 1 /im 

fc=1 |nm| 0 
# L f i s + t ) - f W ( t ) ds = J 2 j 2 { k , t ) . 

fc=l 

Moreover, since / is -continuous, hence for an arbitrary e > 0 there 
exist an M > 0 and a 6 = 6(e) > 0 such that |/im| < 8 for every m > M 
and we have 

£ £ 
s u p Ji(t) < a n d supJ2(k,t)< -
tent n + l tgK n + 1 

for every k = 1 , 2 , . . . , n. 
Therefore D ^ { G m - f ) < e for every m > M. Thus 

the sequence (G m ) of functions is -convergent to /. Finally, by Theorem 5 in [1], we get / G C(n\ • 
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PROPOSITION 2. If f is a C^-a.p. function and f is bounded, then f is 
a C(n+1^-a.p. function. 

Proof . Since 
t 

f{t) = / ( 0 ) + J f'{s)ds for t G R 
o 

is bounded, so using Theorem 8 in [1] we obtain / G C(n + 1). • 

Now, we shall be occupied with C^-a.periodicity of a superposition of 
functions. Analogously to theorem in [2], p. 429, there holds: 

PROPOSITION 3. If E is a set of values of a -a.p. function g and f has 
a uniformly continuous and bounded derivative on E, then the composition 
f o g is a C^-a.p. function. 

Proof . We assume that g G Since g is 
-bounded and / ' is bounded 

on the set E, so there exists an M > 0 such that suptgK |/'(fl(i))l> 
suptgK |g'(i)| < M. Since / , / ' are uniformly continuous on E, so for an ar-
bitrary e > 0 there exists a 6 > 0 such that for r G g} we have 

sup |/<%(t) ) - f{k)(9r(t))\ < for k = 0,1. 
teR l + ¿M 

Denote A = min{5,e/(l + 2M)}. Then for r € .E ( 1 ) {A;s } and G = / o g, 
we get 

DW{G _ G r ) < sup | f(g(t)) - f(gT(t))\ + sup |/'(5(i))| sup \g'(t) - g'T(t)\ 
teR teR teR 
+ sup|5;(i)|sup|/'(5(i)) - f'(gr(t))\ < e. 

teR teR 

Consequently, ^ { A J S } C E^{e-G}, i.e. f o g g C ^ f R ) is a C^-a.p. 
function. • 

EXAMPLE. The function arctg on R is C^-bounded and C^-continuous. 
However, this function is not C^-a.p. 

3. Completeness 
We denote 

£ C ( n ) ( R ) = { / 6 C ( n )(R) : D{n\f) < oo}. 

We know that C(") £ B C ^ R ) and the space ( B C ^ ( R ) t p ^ ) is metric 
with respect to the metric p ^ , where 

( / , g) = D™ (f - g) for / , g G BC™ (R) 

(see [1]). 
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Remark 2. Clearly, the metric space (_BC(Tl)(M),p(n)) is complete. Using 
Theorem 5 in [1] we obtain that the metric space is complete. 
Moreover, the space ( S C ^ M ) , / / " > ) , where 

BCg°(R) = {f e BCm{R) : f is C ( n ) -cont inuous} , 

is a complete metric space, as well (see [1], Th. 1). 

4. Conditional C(n)-compactness 
We say that a family A £ is conditionally C^-compact iff 

the set A is conditionally compact with respect to the metric p^ in 
(BC^'(R), /) 'n ' ) , i.e. every sequence in A includes a Cauchy subsequence. 

T h e o r e m 2. A nonempty set A $1 .BC^( IR) is conditionally C^ -compact 
if and only if the following statements hold: 

(i) for every h > 0 the family of Steklov functions Ah = {Sf(h) : / € A} 
is conditionally C^-compact, 

(ii) for an arbitrary e>0 there exists anh>0 such that p^n\f, Sf(h))<e 
for every f e A. 

P r o o f . Necessity. We assume that A is a conditionally C^^-compact set. 
In the same way as in [3], p. 217, by the Hausdorff Theorem, there exists 
a finite (e/(n + 3))-net 

f i , f 2 , . . . , f i e A 
for the set A. Hence for every function / € A there exists a k G {1,2, . . . , /} 
such that 

( 1 ) n + o 
We shall construct a finite (e (n+l ) / (n + 3))-net for the family Ah of Steklov 
functions. Namely, for each but fixed h > 0 we have 

(2) Sfl(h),Sf2(h),...,Sfl(h)eAh 

and for an arbitrary function / e A we obtain 

p^(Sf(h),Sfk(h))<snp\Sf(h)(t)-Sfk(h)(t)\ 
te r 

+ s u p V 
ter i = 1 

^(Sf(h)(t)-Sfk(h)(t)) 
71+1 

< £ ¡7 71 + 3 

for k satisfying (1). Hence the set (2) is a finite (e(n + l ) / (n + 3))-net for 
the family Ah for every fixed h > 0. This means that the family Ah is con-
ditionally -compact. We have to prove still (ii). Let e > 0. Then, by 
Theorem 1, for every function fk, k = 1,2,... ,1, there exists an hk = 
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hk(e) > 0 such that p ( n ) ( / f c , S f k ( h k ) ) < s/(n + 3), because fk is C^ 
-continuous. Denote 0 < ho = min{/ijt : k = 1, 2 , . . . , I}. From here 

(3) pW(fkisfh(ho))<-?— for k = 1,2,...,I. 
71 + 0 

Thus for an arbitrary e > 0 there exists an ho > 0 such that, according 
to (1) and (3), we conclude p(n\f, Sf{h0)) < e for every / 6 A. 

Sufficiency. Assume that conditions (i) and (ii) hold. Let e > 0. Then, 
by the condition (ii), there exists an h = h(e) > 0 such that 

(4) P{n)(f,Sf(h))<£- for every f e A. 

Analogously to the proof in [3], for this h > 0 we construct the set Ah which, 
according to (i), is conditionally C^n^-compact. B y the Hausdorff Theorem, 
there exist functions 

Sfl{h),Sh(h),...,Sfl(h) € Ah, 

where / i , / 2 , € A are such that for every Sf{h) £ Ah there exists 
a k £ { 1 , 2 , . . . , / } satisfying the inequality 

(5) Pin\Sf{h)tSJk{h))<\-

Moreover, the family {/i , /2, • • •, / ; } C A is a finite e-net for A, since for 
each / G A there exists a k E { 1 , 2 , . . . , / } such that, by (4) and (5), we have 
P{n)(fJk) < It follows that A ^ BC{c](R) is conditionally C ( n ) - compact . 
The proof is complete. • 

5. C<"> -normal functions 
In this section we characterize C ^ - a . p . functions in the class BC(n\M.). 
A function / 6 BC^ (R) is called C<"> -normal iff the family of functions 

fx = {fh • h G IR} is conditionally C^n^-compact. 
We prove some properties of C^"^-normal functions. 

THEOREM 3. A function f e is C^-a.p. if and only if f is 
a CM -normal function. 

P r o o f . Necessity. Let / <E C( n ) . We have fT £ B C ( n ) ( K ) and the metric 
space is complete. Thus, according to the Hausdorff Theo-
rem, we only need to construct a finite e-net for the family fa with respect 
to the metric Namely, we know that / is a 

-continuous function 
(see [1], Th . 2). Thus for an arbitrary e > 0 there exists a 8 = 8{e) > 0 such 
that £>(")(/ - fh) < e/2 for every heR with \h\ < 6. Analogously as in [4], 
let I = 1(e) > 6 be a number which characterizes the relative density of the 
set E^{E/(2 + a); / } with a > 0. We denote hk = k6 for k = 1 , 2 , . . . , m, 



C-(n) -almost periodic functions 391 

where m satisfies m6 < I < (m + 1)6. Then the set 

fhx, fh2, • • • > fhm € fx 

is a finite e-net for the family fx c BC^HR) with respect to the metric 
p(«)_ This means that / is a -normal function. 

Sufficiency. The proof is analogous to the proof in [3], p. 220. • 

Finally, we shall give theorems about C^-normality of a linear combi-
nation of C^-normal functions and next about C^-normality of a product 
and a quotient of C^-normal functions. 

Lemma. Let f is a C^-normal function and let infteM|/(i)| = m > 0. 
Then for an arbitrary e > 0 there exists a finite (pn(e))-net for the family 
( l / / ) r = {(1 / f ) h - heR}, where 0 < pn(e) — • 0 as e — > 0 . 

P r o o f . (Induction) Since / 6 BC^{R) is C(1)-normal, it follows by the 
Hausdorff Theorem that for each e > 0 there exists a finite e-net 

fh\ ) fh2 ) • • • t fhm G f x 

for the family fr- Hence for every function fh € fx there exists a k € 
{ 1 , 2 , . . . , m} such that 

P { 1 ) ( f h , f h k ) < e . 

We have to construct a finite (pi(e))-net for the family ( l / / ) r > where 0 < 
Pifc) —* 0 as e —> 0. Let e > 0. Thus for every function {1/f)h G (1 / f)x 
there exists a k € { 1 , 2 , . . . , m} such that 

ID / 1 1 \ 2e(m2 + Ml) . . 
" \ h - h J < m« 

where sup t€R |/^(f)| < Mi, for i — 0,1, and 0 < pi(e) —> 0 as e —• 0. 
Suppose that for an arbitrary e > 0 and for a C^-normal function / there 
exists a finite (ps(e))-net for the family (1 / f ) x , where 0 < ps(e) —• 0 
as e —• 0. We assume that / € BC^3+1\R) is C^+1)-normal. By the 
Hausdorff Theorem, for an arbitrary e > 0, 

fhi > fh,2 > • • • ) fhr e fx 

is a finite e-net for the family fr- Hence for every function fh € fx there 
exists a q € { 1 , 2 , . . . , r } such that 

( 6 ) P { s + 1 ) ( h , f h q ) < e . 

We have (1 / f ) T C BC^S+1\R). Moreover, / is a C^+^-bounded function. 
Then there exists a constant M2 > 0 such that sup teR |/W(i)| < M2, for 
i = 0 , 1 , 2 , . . . , * + 1, and suPteM | ( l / / 2 )« ( i )| , supteM |(l / ( / , 2 / , 2 , ) ) ( i ) ( i ) l < 
M2 for i = 0,1, 2 , . . . , s. We only need to construct a finite (ps+i(e))-net for 
the family (1 / f)x with respect to the metric where 0 < p s + i (e) —• 0 
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as e —• 0. Namely, we know that / is a -normal function, too. Then 
for every (1 / f ) h e (1 / f)T we get 

>+1) 
PK~ ' I — > T~ I < P'(£) + SUP teR 7/i 7/i, 

with 0 < pa(e) —> 0 as e —> 0, and 

( / / / ^ A , (t) 
(H-l) 

where 

(7) 

and 

(8) 

J(t) = m - f ' h g ( t ) \ i s ) 

f i s t ) 
< e2sM2 

K(t) = 
f'h(t)(f2

h(t) - f2
hq(t))\ 

m a s * ) J 
< £22S+1M?. 

According to (7) and (8) we obtain 

(9) sup 
t€R 

< £2 sM2(1 + 2 s + 1 M | ) . 
^ fh fhq J 

Therefore, by (9), for q € { 1 , 2 , . . . ,7-} satisfying (6), we have 

P{3+1) (j-h>J^)< P*(£) + erM2(! + 2S+lM22) = P.+lfc). 

where 0 < p s+i(£) —> 0 as £ — • 0. This proves the lemma. • 

THEOREM 4. The following statements hold: 

(i) A linear combination of C^-normal functions is a -normal 
function. 

(ii) A product of C^ -normal functions is a 
-normal function. 

(iii) / / inf t e m |<7(<)| = m > 0, then a quotient f / g of C^-normal func-
tions f,g is a -normal function. 
P r o o f. (i) Let f,g e 5 C ( n ) (R) be C (n)-normal and let c ^ 0 be an arbitrary 
constant. It is clear that the family ( c f ) x = {cfh : h € R} is conditionally 

-compact, i.e. cf is a C^-normal function. Moreover, analogously as 
in [3], for every sequence (h m ) , hm € M for m = 1 , 2 , . . . , the sequence 
(fhm) includes a Cauchy subsequence (/h ). However, the sequence (ghm k) 
includes a Cauchy subsequence (ghm )• We conclude that for an arbitrary kp 

sequence (h m ) the sequence ( ( / + g)hm) includes the Cauchy subsequence 
((/ + 9)hm. )• Therefore we obtain that f + g is a -normal function. 
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(ii) Let f,g e 5 C ( n ) ( K ) be C(n)-normal. Since fg = l / 4 ( ( / + g)2 -
(/ — g)2) and there holds the statement (i), we only need to show that / 2 is 

-normal whenever / is. Clearly, f 2 £ Moreover, by the Haus-
dorff Theorem, for an arbitrary e > 0 there exists a finite ( e / ( 2 M ( 2 n + 1 — 1))) 
-net 

fh\ j f}12 > • • • ) fhm ^ f T 

for the family fa, where sup t e R |/W(i)| < M for i = 0 , 1 , 2 , . . . , n. Hence for 
every function fh € fa there exists a k € { 1 , 2 , . . . , m } such that 

( 1 0 ) p ( n ) ( / h > / h J < _ l _ . 

We need to construct a finite e-net for the family ( / 2 ) t = {fh '• h ^ 
Let e > 0. Then for every t € M and for every function f2 6 ( / 2 )T we have 

I ( f 2 h ( t ) - fl(t)){l)I < f o r * = 0 , 1 , 2 , . . . , n , 

for k satisfying (10). Thus for every £ > 0 and every G (/2)T there 
exists a k 6 { 1 , 2 , . . . , m } such that ) < £• Consequently, f2 is 
C (n )-normal. 

(iii) L e t f , g e BC^(R) be C ^ - n o r m a l a n d let mitm\g(t)\ = m > 
0. Since f / g = f(l/g), hence -normality follows from (ii) and the 
Lemma. • 

Let us remark that, by Theorems 3 and 4, we immediately obtain that 
a linear combination of 

-a.p. functions and a product of C ^ - a . p . func-
tions are 

Moreover, if infteR |g(t)| = m > 0, then a quotient / / g 
of C(n)-a.p. functions / , g is a function. 
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