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ON COMPACTNESS
OF C("-ALMOST PERIODIC FUNCTIONS

Abstract. In this paper we give a compactness criterion for C{™ _almost periodic
functions. Some properties of these functions are shown.

1. Preliminaries
We first recall the basic notations related to Steklov functions and C(™
-almost periodic functions.
For a given positive number h and for a function f : R —» R which is
locally integrable, put
uth
| f(s)ds, uweR
u—h
Then S¢(h) is called the Steklov function for f.
Let C(™(R) be the set of functions from R into itself with n-th continuous
derivative.
It is easily seen that if f € C(™)(R), then S¢(h) € C"TI(R).
Let us put for f € C(™(R)

D™(f) = sup (1) + Y IF D)),
teR Pt
We say that an f € C((R) is C™-bounded iff D™ (f) < oo. Let
fu(@) = f(z + h). We say that f is a C™-continuous function iff
limp_o D™ (f — fn) = 0. A sequence (fi) in C{™(R) will be called D(™
-convergent to f iff img_o D™ (f — fi) = 0.

1

Sp(h(w) = 5
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A set A C R is called relatively dense iff there exists a positive number
[ such that in every open interval (a,a + 1), @ € R, there is at least one
element of the set A. A number 7 € R is called a (D™, ¢)-almost period
((D™), g)-a.p.) of a function f € C(M(R) iff D™ (f — f,) <, fore > 0. Let
E™){e; f} denote the set of (D™, ¢)-a.periods of . A function f € C(™(R)
is called C(™-almost periodic (C™-a.p.) iff for each £ > 0 the set E(™ {¢; f}
is relatively dense. By C(") we denote the set of C(™-a.p. functions.

Basic properties and examples of C(™-a.p. functions may be found in [1].

2. More properties of C(®)-a.p. functions

In this section we prove some theorems on C(™)-a.periodicity of functions
and we give an example of a CV-bounded and a C(!)-continuous function
which is not C(D-a.p.

REMARK 1. A function f is C(™-a.p. if and only if £, f/,..., ™ are uni-
formly a.p. functions.

THEOREM 1. The following statements hold:

(i) If f is a C™-a.p. function, then S¢(h) is a C("+1)_q.p. function.
(ii) If f is a C™ -continuous function, then limp_.o D™ (f —Sf(h)) = 0.

Proof. (i) Let f € C(™). Then for any t € R and for 7 € E™ {eh/(h+1); f}
with h > 0 we have

h
h+1

1S5 (R)(t) — 1. (R)(B) <€
Thus we obtain

DD (S, (k) = Sy, ()

1 n
< sup |S¢(h)(t) - St, (R)(t)] + 5 sup DUPE@ - Pl <e
teR teR ;g
This means that EM™ {eh/(h + 1); f} C E"+Y{e; S;(h)}. Since Sy(h) €
CtI(R), so Sp(h) € C(n+1),

(ii) For each t € R we have

h
(0~ S5 W1 < o= | 17) = £(s +1)lds,

-h
h

1) - Sy Bl < o |

ak
FO) = 55 f(s +1)\ds
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for k = 1,2,...,n. Since f is C(™-continuous, so for an arbitrary £ > 0
there exists a § > 0 such that D(")(f — f,) < ¢ for s € R with |s| < 6. Thus
for all t € R and h > 0 such that |s| < h < § we obtain

DS = $4(1) < sup (5 § 170 - s +Dlds
—h
ii ’§ 00 -2 fete) ds)
2h — atk -

This proves (ii). =

PROPOSITION 1. If f is a C™-continuous function and the indefinite inte-
gral F(u) = S: f(s)ds foru € R is C(™-a.p., then f is a C{™-a.p. function.

Proof. For each t € R we denote

Gty = P+ h’:nrz — F(t)

Let us observe that G, € C(™, because F € C(® (see [1], Th.3). We have
DU G - f) = suﬂg(Il(t) + Ix(t)),
te

for hy, #0, hyy — 0 as m — oo.

where

Lo =i Tt +0 - s < o T 1566001 s01as = 100
™ o m| 0

and

1 ook
—— == f(s+1)— fP(t) )d
3 (S) (atk 5 ) §

m

n
L) =)

k=1

n 1 hm
2 T )
Moreover, since f is C(™)-continuous, hence for an arbitrary € > 0 there

exist an M > 0 and a § = §(¢) > O such that |h,,| < 6 for every m > M
and we have

IA

ds = ZJz(k t).

k=1

tkf(s +1) = O )

sup Jy (¢ <— and
teult) 1(t) n+1 teR +1

for every k = 1,2, ..., n. Therefore D(™)(G,,—f) < € for every m > M. Thus
the sequence (G,,) of C(™-a.p. functions is D(™-convergent to f. Finally,
by Theorem 5 in {1], we get f € C("). u
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PROPOSITION 2. If f' is a C™-a.p. function and f is bounded, then f is
a C(" D) _g.p. function.

Proof. Since
t

f&)=f0)+{f(s)ds forteR
0

is bounded, so using Theorem 8 in [1] we obtain f € CintD), o

Now, we shall be occupied with C(V-a.periodicity of a superposition of
functions. Analogously to theorem in [2], p. 429, there holds:

PROPOSITION 3. If E is a set of values of a CV-a.p. function g and f has
a uniformly continuous and bounded derivative on E, then the composition
fogisaCW-a.p. function.

Proof. We assume that g € C(1). Since g is C(V-bounded and f’ is bounded
on the set E, so there exists an M > 0 such that sup,cg|f'(g9(2))l,
sup;cg |9'(t)| < M. Since f, f’ are uniformly continuous on E, so for an ar-
bitrary € > 0 there exists a § > 0 such that for 7 € E(){6; g} we have

(k) ) <« € —0.1
f‘e‘]E'f (g(1) - f (gf(t))|_1+2M for k=0,1

Denote A = min{§,¢/(1 4+ 2M)}. Then for r € E®{A;g} and G = fog,
we get

DW(G - G,) < sup|f(9(t)) = f(g-(1))| + sup | f'(9(2)) I sup g’ (t) — g7(t)]
teR teR teR

+sup g, (t)|sup |f'(g(t)) — f'(g- ()| < e.
teR teR

Consequently, EV{A; g} ¢ EW{e;G}, ie. fog € CH(R) is a CM-a.p.
function. m

EXAMPLE. The function arctg on R is C()-bounded and C(V)-continuous.
However, this function is not C{V-a.p.

3. Completeness
We denote

BC™(R) = {f € C™(R) : D™ (f) < o0}.

We know that C() ¢ BC™)(R) and the space (BC™(R), p(™) is metric
with respect to the metric p(™, where

o™ (f,9) =D™(f—g) for f,g € BC™(R)
(see [1]).
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REMARK 2. Clearly, the metric space (BC(™)(R), p(™) is complete. Using
Theorem 5 in [1] we obtam that the metric space (C(™), p(™) is complete.
Moreover, the space (BC (R) p™), where

(")(R) {f € BC™(R) : f is C(™-continuous},

is a complete metric space, as well (see [1], Th. 1).

4. Conditional C(™-compactness

We say that a family A ¢ BC™)(R) is conditionally C™ -compact iff
the set A is conditionally compact with respect to the metric p(™) in
(BC™(R), p™), i.e. every sequence in A includes a Cauchy subsequence.

THEOREM 2. A nonempty set A & BC(")(R) is conditionally C(™ -compact
if and only if the following statements hold:

(i) for every h > O the family of Steklov functions Ap = {Ss(h): f € A}
is conditionally C™ -compact,

(ii) for an arbitrary e >0 there exists an h>0 such that p(™(f, Sy (h)) <e
for every f € A.

Proof. Necessity. We assume that A is a conditionally C(™)-compact set.
In the same way as in [3], p. 217, by the Hausdorff Theorem, there exists
a finite (¢/(n + 3))-net

flaf2a"'1fl €A

for the set A. Hence for every function f € A there exists a k € {1,2,...,1}
such that

1 oM (F,

(1 (£, 50) < =

We shall construct a finite (¢(n+1)/(n+3))-net for the family Ay of Steklov
functions. Namely, for each but fixed A > 0 we have

(2) St:(R), S5, (R), ..., S (h) € An

and for an arbitrary function f € A we obtain

P (Sy(h), S7u(h) < supISy(R)E) = S (h)(E)

+supz

for k satisfying (1). Hence the set (2) is a finite (e(n + 1)/(n + 3))-net for
the family Ay for every fixed h > 0. This means that the family A is con-
ditionally C(™-compact. We have to prove still (ii). Let ¢ > 0. Then, by
Theorem 1, for every function fx, £k = 1,2,...,[, there exists an hy =

n+1
n+3

L (55m)® - S, ()| < ¢
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hi(€) > 0 such that p™(f, Sy, (ki) < €/(n + 3), because f; is C™
-continuous. Denote 0 < hg = min{ht : k =1,2,...,!}. From here

(n) <& —
3) P (fi, S5 (ho)) < s fork=12,...,L

Thus for an arbitrary € > 0 there exists an hg > 0 such that, according
to (1) and (3), we conclude p(™(f, S¢(ho)) < € for every f € A.

Sufficiency. Assume that conditions (i) and (ii) hold. Let € > 0. Then,
by the condition (ii), there exists an h = h(e) > 0 such that

4) p™(f,8¢(h)) < % for every f € A.

Analogously to the proof in (3], for this h > 0 we construct the set Ay which,
according to (i), is conditionally C(™)-compact. By the Hausdorff Theorem,
there exist functions

Sfl(h’)’sfz(h)a . ,Sfl(h) € Ah’

where fi, f2,..., fi € A are such that for every Sf(h) € Aj there exists
ake{l,2,...,1} satisfying the inequality

(5) P (S (h), S5 (W) < <.

Moreover, the family {fi, f2,..., fi} C A is a finite e-net for A, since for
each f € A there exists a k € {1,2,...,(} such that, by (4) and (5), we have
p™(f, fr) < e. It follows that A & BC’é”)(R) is conditionally C(™-compact.
The proof is complete. m

5. C(")-normal functions
In this section we characterize C(™-a.p. functions in the class BC(™(R).
A function f € BC™)(R) is called C(™ -normaliff the family of functions
fr = {fn: h € R} is conditionally C(™)-compact.
We prove some properties of C{™-normal functions.

THEOREM 3. A function f € BC™(R) is C™-a.p. if and only if f is
a C™ -normal function.

Proof. Necessity. Let f € C(®). We have fr ¢ BC(™(R) and the metric
space (BC(™(R), p{™) is complete. Thus, according to the Hausdorff Theo-
rem, we only need to construct a finite e-net for the family fr with respect
to the metric p(*). Namely, we know that f is a C(™-continuous function
(see [1], Th. 2). Thus for an arbitrary € > 0 there exists a § = §(¢) > 0 such
that D™ (f — f) < /2 for every h € R with |h| < 6. Analogously as in [4],
let { = I(¢) > 6 be a number which characterizes the relative density of the
set E(M{c/(2 + a); f} with a > 0. We denote hy = ké for k = 1,2,...,m,
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where m satisfies m§ <l < (m + 1)8. Then the set

fhufhzy--'afhm € fT
is a finite e-net for the family fr ¢ BC{™)(R) with respect to the metric
p(™. This means that f is a C{™-normal function.
Sufficiency. The proof is analogous to the proof in [3], p. 220. =

Finally, we shall give theorems about C(™-normality of a linear combi-
nation of C(™-normal functions and next about C(™)-normality of a product
and a quotient of C(™)-normal functions.

LEMMA. Let f is a C™-normal function and let inficg |f(t)] = m > 0.
Then for an arbitrary € > 0 there ezists a finite (pn(€))-net for the family
(1/f)r={Q/f)n: h e R}, where 0 < py(c) — 0 ase — 0.

Proof. (Induction) Since f € BC)(R) is C(Y-normal, it follows by the
Hausdorff Theorem that for each € > 0 there exists a finite e-net

fhufhza'--afhm € fT

for the family fr. Hence for every function f, € fr there exists a k €
{1,2,...,m} such that

P (fn, ) <€
We have to construct a finite (p;(¢))-net for the family (1/f)r, where 0 <
p1(e) — 0as e — 0. Let € > 0. Thus for every function (1/f)r € (1/f)r
there exists a k € {1,2,...,m} such that

fh i m#
where sup,cg | (t)] < My, for i = 0,1, and 0 < pi(€) — 0 as € — 0.
Suppose that for an arbitrary € > 0 and for a C()-normal function f there
exists a finite (ps(e))-net for the family (1/f)r, where 0 < ps(e) — 0
as ¢ — 0. We assume that f € BCT)(R) is C+1-normal. By the
Hausdorff Theorem, for an arbitrary ¢ > 0,

fhlafhga"'afhr € fT
is a finite e-net for the family fr. Hence for every function fi € fr there
exists a ¢ € {1,2,...,7} such that
(6) Pt (fu, fr,) <e.

We have (1/f)r C BCG+1)(R). Moreover, f is a C(**D-bounded function.
Then there exists a constant Mz > 0 such that sup,eg |f(t)] < Mz, for
i = 0,1,2,...,5 +1, and supeg |(1/ ) @), supyer 1/ (212 )ND@)] <
M, fori =0,1,2,...,s. We only need to construct a finite (p3+1( ))-net for
the family (1/ f )T w1th respect to the metric p(*t1) where 0 < py41(e) —

= p1(e),
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as € — 0. Namely, we know that f is a C(®)-normal function, too. Then
for every (1/f)n € (1/f)r we get

11
p““’(— ——) < ps(€) + sup

1 1 (s+1)
Ir’ I, teR (E(t) B E(t)>

with 0 < p;(¢) — 0 as e — 0, and

(F0- —1—<t))(3+1) < I +K(),

h fr,
where
(1) J(t) = ‘(%tz)() < €2° M,
and
(8) K(t) = l(fﬁ(t)ﬁgft(;;ﬁz(ffq (t))>(’) < €213,

According to (7) and (8) we obtain

(o= 70)

9) sup < e2°M,(1+ 251 M3).
Therefore, by (9), for g € {1,2,...,r} satisfying (6), we have

1 1
ol (—’ ——) < ps(e) +€2°My(1+ 277 M) = poya(e),
fn' I,

where 0 < py1(€) — 0 as € — 0. This proves the lemma. =
THEOREM 4. The following statements hold:

(i) A linear combination of C™-normal functions is a C™-normal
function.
(i) A product of C™ -normal functions is a C™ -normal function.
(iii) If inf,eg |g(t)] = m > 0, then a quotient f/g of C(™ -normal func-
tions f,g is a C™ -normal function.

Proof. (i) Let f,g € BC(™(R) be C{")-normal and let ¢ # 0 be an arbitrary
constant. It is clear that the family (cf)r = {cfn : h € R} is conditionally
C(™-compact, i.e. ¢f is a C™-normal function. Moreover, analogously as
in [3], for every sequence (h,,), hm € R for m = 1,2,..., the sequence
(fh.) includes a Cauchy subsequence (f»,, ). However, the sequence (g, )
includes a Cauchy subsequence (gh"‘kp }. We conclude that for an arbitrary

sequence (hm) the sequence ((f + g)r,.) includes the Cauchy subsequence
((f + 9)h,n, ). Therefore we obtain that f + g is a C(™)-normal function.
P
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(ii) Let f,g € BC™(R) be C(™-normal. Since fg = 1/4((f + g)* —
(f — 9)?) and there holds the statement (i), we only need to show that f2 is
C(™-normal whenever f is. Clearly, f2 € BC(")(R). Moreover, by the Haus-
dorff Theorem, for an arbitrary € > 0 there exists a finite (¢/(2M (2"*1-1)))
-net

fh17fh2"">fhm € fT
for the family fr, where sup,cg |f@®(t)] < M fori=0,1,2,...,n. Hence for
every function f, € fr there exists a k € {1,2,...,m} such that

n €
(10) p( )(fh)fhk) < m

We need to construct a finite e-net for the family (f2)r = {f? : h € R}.
Let € > 0. Then for every t € R and for every function f? € (f?)r we have

g2t
[FHOESAGIRIES prEsw—y fori=0,1,2,...,n,

for k satisfying (10). Thus for every ¢ > 0 and every f? € (f%)r there
exists a k € {1,2,...,m} such that p(")(fz,f,fk) < e. Consequently, f2 is
C(™-normal.

(iii) Let f,g € BC™(R) be C(™-normal and let inficg |g(t)] = m >
0. Since f/g = f(1/g), hence C(™-normality follows from (ii) and the
Lemma. m

Let us remark that, by Theorems 3 and 4, we immediately obtain that
a linear combination of C(™-a.p. functions and a product of C(™-a.p. func-
tions are C(™)-a.p. Moreover, if inf;cg |g(t)] = m > 0, then a quotient f/g
of C™-a.p. functions f, g is a C(™-a.p. function.
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