

Stanisław Stoiński

$(VC)^{(n)}$ -ALMOST PERIODIC FUNCTIONS

Abstract. In this note we give the definition and some properties of $(VC)^{(n)}$ -almost periodic functions, i.e. uniformly almost periodic and almost periodic in variation functions with first n derivatives.

Let us denote for an arbitrary $t \in \mathbb{R}$ by $V(t; f)$ the Jordan variation of a function f on the interval $(t-1, t+1)$. Let us put

$$X_0^{(n)} = \{f : \mathbb{R} \rightarrow \mathbb{R} : f \in C^{(n)}(\mathbb{R}) \text{ and } V(t; f^{(k)}) < \infty \text{ for } k = 0, 1, 2, \dots, n \text{ and for every } t \in \mathbb{R}\}$$

and for $f \in X_0^{(n)}$

$$(VD)^{(n)}(f) = \sup_{t \in \mathbb{R}} \sum_{k=0}^n (|f^{(k)}(t)| + V(t; f^{(k)})).$$

We say that $f \in X_0^{(n)}$ is a $(VC)^{(n)}$ -bounded function if $(VD)^{(n)}(f) < \infty$. Let us write $f_h(x) \equiv f(x+h)$, where $h \in \mathbb{R}$. If for an arbitrary $\varepsilon > 0$ there exists a $\delta > 0$ such that $(VD)^{(n)}(f - f_h) \leq \varepsilon$ for every $h \in \mathbb{R}$ with $|h| < \delta$, we say that $f \in X_0^{(n)}$ is a $(VC)^{(n)}$ -continuous function. A sequence (f_m) , where $f_m \in X_0^{(n)}$ for $m = 1, 2, \dots$, will be called $(VD)^{(n)}$ -convergent to $f \in X_0^{(n)}$ if for an arbitrary $\varepsilon > 0$ there exists a positive number M such that $(VD)^{(n)}(f - f_m) \leq \varepsilon$ for every $m > M$.

It is easily seen that if a sequence (f_m) of $(VC)^{(n)}$ -continuous functions is $(VD)^{(n)}$ -convergent to a function $f \in X_0^{(n)}$, then f is $(VC)^{(n)}$ -continuous.

The number $\tau \in \mathbb{R}$ is called a $((VD)^{(n)}, \varepsilon)$ -almost period $((VD)^{(n)}, \varepsilon)$ -a.p.) of a function $f \in X_0^{(n)}$ if $(VD)^{(n)}(f - f_\tau) \leq \varepsilon$ for $\varepsilon > 0$. Let $VE^{(n)}\{\varepsilon; f\}$ denote the set of $((VD)^{(n)}, \varepsilon)$ -almost periods of f .

1991 Mathematics Subject Classification: 42A75.

Key words and phrases: almost periodic function, derivative of order n , variation.

A function $f \in X_0^{(n)}$ is called $(VC)^{(n)}$ -almost periodic ($\underline{(VC)}^{(n)}$ -a.p.) if for each $\varepsilon > 0$ the set $VE^{(n)}\{\varepsilon; f\}$ is relatively dense. By $(VC)^{(n)}$ we denote the set of $(VC)^{(n)}$ -a.p. functions.

The class of V -a.p. functions (see [3]) is identical with the class of $(VC)^{(0)}$ -a.p. functions. Moreover, every $(VC)^{(n)}$ -a.p. function is $C^{(n)}$ -a.p. function (see [1]).

THEOREM 1. *If f is a $(VC)^{(n)}$ -a.p. function, then f is $(VC)^{(n)}$ -bounded.*

Proof. Let $f \in \widetilde{(VC)}^{(n)}$. For an arbitrary $t \in \mathbb{R}$ and any $\varepsilon > 0$ there exists a $((VD)^{(n)}, \varepsilon)$ -a.p. $\tau \in (-t, -t + l)$, where $l = l(\varepsilon) > 0$ is a number which characterizes the relative density of the set $VE^{(n)}\{\varepsilon; f\}$, such that we have

$$\begin{aligned} & \sum_{k=0}^n (|f^{(k)}(t)| + V(t; f^{(k)})) \\ & \leq \sum_{k=0}^n (|f^{(k)}(t) - f_\tau^{(k)}(t)| + V(t; f^{(k)} - f_\tau^{(k)})) + \sum_{k=0}^n (|f_\tau^{(k)}(t)| + V(t; f_\tau^{(k)})). \end{aligned}$$

Hence, because $f \in X_0^{(n)}$, we obtain the following estimation

$$(VD)^{(n)}(f) \leq (VD)^{(n)}(f - f_\tau) + \sup_{t \in \langle 0, l \rangle} \sum_{k=0}^n (|f^{(k)}(t)| + V(t; f^{(k)})) \leq \varepsilon + M,$$

where $M > 0$ is a constant. ■

THEOREM 2. *Assume that f is a $(VC)^{(n)}$ -a.p. function which satisfies the $(VC)^{(n)}$ -condition: for an arbitrary $\varepsilon > 0$ there exists a $\delta > 0$ such that*

$$\sup_{0 < t < l} \sum_{k=0}^n V(t; f^{(k)} - f_h^{(k)}) \leq \varepsilon$$

for every $h \in \mathbb{R}$ with $|h| < \delta$, where $l = l(\varepsilon) > 0$ is a number which characterizes the relative density of the set $VE^{(n)}\{\varepsilon; f\}$. Then f is $(VC)^{(n)}$ -continuous.

Proof. For an arbitrary $t \in \mathbb{R}$ and for $\tau \in VE^{(n)}\{\varepsilon; f\}$, where $\tau \in (-t, -t + l)$, we obtain that for $h \in \mathbb{R}$

$$\begin{aligned} & \sum_{k=0}^n V(t; f^{(k)} - f_h^{(k)}) \\ & \leq \sum_{k=0}^n V(t; f^{(k)} - f_\tau^{(k)}) + \sup_{0 < t' < l} \sum_{k=0}^n V(t'; f^{(k)} - f_h^{(k)}) + \sum_{k=0}^n V(t; f_{\tau h}^{(k)} - f_h^{(k)}), \end{aligned}$$

where $f_{\tau h}^{(k)}(x) \equiv f^{(k)}(x + \tau + h)$. Hence

$$\begin{aligned} (VD)^{(n)}(f - f_h) &\leq 2(VD)^{(n)}(f - f_\tau) + \sup_{t \in \mathbb{R}} \sum_{k=0}^n |f^{(k)}(t) - f_h^{(k)}(t)| \\ &\quad + \sup_{0 < t < l} \sum_{k=0}^n V(t; f^{(k)} - f_h^{(k)}). \end{aligned}$$

Since f is $(VC)^{(n)}$ -a.p., so f is $C^{(n)}$ -a.p. Therefore for an arbitrary $\varepsilon > 0$ there exists a $\delta' > 0$ such that for $|h| < \delta'$ we have

$$\sup_{t \in \mathbb{R}} \sum_{k=0}^n |f^{(k)}(t) - f_h^{(k)}(t)| \leq \varepsilon.$$

For $|h| < \min(\delta, \delta')$ we obtain $(VD)^{(n)}(f - f_h) \leq 4\varepsilon$, i.e. f is $(VC)^{(n)}$ -continuous. ■

Analogously as in [2] and [3] we prove the following:

THEOREM 3. *A linear combination of two $(VC)^{(n)}$ -a.p. functions f, g , which satisfy the $(VC)^{(n)}$ -condition, is a $(VC)^{(n)}$ -a.p. function.*

THEOREM 4. *If a sequence (f_m) of $(VC)^{(n)}$ -a.p. functions is $(VD)^{(n)}$ -convergent to a function $f \in X_0^{(n)}$, then f is a $(VC)^{(n)}$ -a.p. function.*

P r o o f. For an arbitrary $\varepsilon > 0$ there exists m_0 such that $(VD)^{(n)}(f - f_{m_0}) \leq \varepsilon/3$. Therefore for $\tau \in VE^{(n)}\{\varepsilon/3; f_{m_0}\}$ we obtain the following estimation

$$(VD)^{(n)}(f - f_\tau)$$

$\leq (VD)^{(n)}(f - f_{m_0}) + (VD)^{(n)}(f_{m_0} - f_{m_0\tau}) + (VD)^{(n)}(f_{m_0\tau} - f_\tau) \leq \varepsilon$,
where $f_{m_0\tau}(x) \equiv \underline{f_{m_0}}(x + \tau)$, i.e. $VE^{(n)}\{\varepsilon/3; f_{m_0}\} \subset VE^{(n)}\{\varepsilon; f\}$. This proves that $f \in (VC)^{(n)}$. ■

In the following we shall investigate the derivative and the indefinite integral of a $(VC)^{(n)}$ -a.p. function.

THEOREM 5. *If f is a $(VC)^{(n)}$ -a.p. function and f is $(VC)^{(n+1)}$ -continuous, then the derivative f' is a $(VC)^{(n)}$ -a.p. function.*

P r o o f. Let us write

$$\frac{f_h(t) - f(t)}{h} - f'(t) = \frac{1}{h} \int_0^h \left(\frac{\partial}{\partial t} f(v + t) - f'(t) \right) dv$$

for $t \in \mathbb{R}$, $h \neq 0$ and

$$(VD)^{(n)} \left(\frac{f_h - f}{h} - f' \right) \leq \sup_{t \in \mathbb{R}} \sum_{k=0}^n \left| \frac{d^k}{dt^k} \left(\frac{1}{h} \int_0^h \left(\frac{\partial}{\partial t} f(v + t) - f'(t) \right) dv \right) \right|$$

$$\begin{aligned}
& + \sup_{t \in \mathbb{R}} \sum_{k=0}^n V(t; \frac{d^k}{du^k} \left(\frac{1}{h} \int_0^h \left(\frac{\partial}{\partial u} f(v+u) - f'(u) \right) dv \right)) \\
& = \sup_{t \in \mathbb{R}} W_1(h, t) + \sup_{t \in \mathbb{R}} W_2(h, t).
\end{aligned}$$

Because f is $(VC)^{(n+1)}$ -continuous, so for an arbitrary $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\sup_{t \in \mathbb{R}} \sum_{k=0}^{n+1} (|(f_h - f)^{(k)}(t)| + V(t; (f_h - f)^{(k)})) \leq \varepsilon$$

for every $h \in \mathbb{R}$, $|h| < \delta$. Hence it follows that

$$\sup_{t \in \mathbb{R}} W_1(h, t) \leq \varepsilon$$

and

$$\sup_{t \in \mathbb{R}} W_2(h, t) \leq \frac{1}{h} \int_0^h \sum_{k=1}^{n+1} V \left(t; \frac{\partial^k}{\partial u^k} f(v+u) - f^{(k)}(u) \right) dv \leq \varepsilon$$

for $0 < |h| < \delta$. Therefore we obtain that for every sequence (h_m) , where $h_m \neq 0$, $h_m \rightarrow 0$,

$$(\widetilde{VC})^{(n)} \ni \frac{f_{h_m} - f}{h_m} \longrightarrow f' \in X_0^{(n)}$$

in the sense of $(VD)^{(n)}$ -convergence, and so, by Theorem 4, f' is $(VC)^{(n)}$ -a.p. ■

REMARK 1. Let f be a B -a.p. function. Then for an arbitrary $\varepsilon > 0$ there exists $\varepsilon' = \varepsilon'(\varepsilon) > 0$ such that $\varepsilon' < \varepsilon/3$ and every ε' -a.p. of f is an $\varepsilon/3$ -a.p. of the bounded indefinite integral F of the function f (see [2], p.29). It is known (see [3]) that $E\{\varepsilon'; f\} \subset E_V\{\varepsilon, F\}$.

THEOREM 6. *If f is a $(VC)^{(n)}$ -a.p. function and the indefinite integral F of f is bounded, then F is a $(VC)^{(n+1)}$ -a.p. function.*

PROOF. Since f is $(VC)^{(n)}$ -a.p. and $F^{(k)}(x) = f^{(k-1)}(x)$ for every $x \in \mathbb{R}$ and $k = 1, 2, \dots, n+1$, so $F \in X_0^{(n+1)}$. By Remark 1, for $\tau \in VE^{(n)}\{\varepsilon'; f\}$ we have

$$(VD)^{(n+1)}(F - F_\tau) \leq (VD)^{(0)}(F - F_\tau) + (VD)^{(n)}(f - f_\tau) < \frac{4}{3}\varepsilon,$$

and so F is $(VC)^{(n+1)}$ -a.p. ■

By Theorem 6 it follows the following:

COROLLARY. *If f is a V -a.p. function and the indefinite integral F of f is bounded, then F is a $(VC)^{(1)}$ -a.p. function.*

THEOREM 7. *Let us assume that f is a bounded function on \mathbb{R} . If the derivative f' is V -a.p., then f is $(VC)^{(1)}$ -a.p.*

Proof. For every $x \in \mathbb{R}$ we have

$$g(x) = \int_0^x f'(u)du, \quad \text{where } g = f + c, c = -f(0).$$

By Remark 1 it follows that for an arbitrary $\varepsilon > 0$ there exists $\varepsilon' > 0$ such that $\varepsilon' < \varepsilon/3$ and $E\{\varepsilon'; f'\} \subset E_V\{\varepsilon; g\}$. Hence for $\tau \in E_V\{\varepsilon'; f'\}$ we obtain

$$(VD)^{(1)}(g - g_\tau) \leq V(g - g_\tau) + V(f' - f'_\tau) < \frac{4}{3}\varepsilon,$$

and so $E_V\{\varepsilon'; f'\} \subset VE^{(1)}\{(4/3)\varepsilon; g\}$. Moreover $g \in X_0^{(1)}$. Therefore g and hence f are $(VC)^{(1)}$ -a.p. ■

Now, we shall give an example of a $(VC)^{(1)}$ -a.p. function.

EXAMPLE 1. Let us put

$$f(x) = \sin x + \sin(\sqrt{2}x) \quad \text{for } x \in \mathbb{R}.$$

By Property 4 (see [3]) it follows that the derivative f' is V -a.p. Because f is the bounded indefinite integral of f' , so f , by Theorem 6, is $(VC)^{(1)}$ -a.p.

REMARK 2. If a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is locally integrable and is periodic with the period $T > 0$, then the integral

$$F(x) = \int_0^x [f(t) - M(f)]dt \quad \text{for } x \in \mathbb{R}, \text{ where } M(f) = \frac{1}{T} \int_0^T f(u)du,$$

is continuous on \mathbb{R} and is periodic with the period T .

We shall give an example of a $(VC)^{(n-1)}$ -a.p. function which is not a $(VC)^{(n)}$ -a.p. function, where $n \in \{2, 3, \dots\}$.

EXAMPLE 2. Let

$$f(x) = \begin{cases} (x - k) \cos \frac{\pi}{2(x - k)} & \text{for } x \in (k, k + 1), \\ 0 & \text{for } x = k, \end{cases}$$

$$g(x) = \begin{cases} (\sqrt{2}x - k) \cos \frac{\pi}{2(\sqrt{2}x - k)} & \text{for } x \in \left(\frac{\sqrt{2}k}{2}, \frac{\sqrt{2}(k+1)}{2}\right), \\ 0 & \text{for } x = \frac{\sqrt{2}k}{2}, \end{cases}$$

where $k = 0, \pm 1, \pm 2, \dots$

Functions f and g are continuous on \mathbb{R} and periodic with periods $T_f = 1$, $T_g = \sqrt{2}/2$, respectively. Let us denote by $V(f; a, b)$ the Jordan variation of

a function f on the interval $\langle a, b \rangle$. Then for every $k = 0, \pm 1, \pm 2, \dots$ we have

$$V(f; k, k+1) = V\left(g; \frac{\sqrt{2}k}{2}, \frac{\sqrt{2}(k+1)}{2}\right) = \infty.$$

Moreover $f, g \notin C^{(1)}(\mathbb{R})$. We denote $F_0 = f$, $G_0 = g$ and

$$\begin{aligned} F_1(x) &= \int_0^x [f(t) - M(f)]dt, & G_1(x) &= \int_0^x [g(t) - M(g)]dt, \\ F_2(x) &= \int_0^x [F_1(t) - M(F_1)]dt, & G_2(x) &= \int_0^x [G_1(t) - M(G_1)]dt, \\ &\vdots & &\vdots \\ F_n(x) &= \int_0^x [F_{n-1}(t) - M(F_{n-1})]dt, & G_n(x) &= \int_0^x [G_{n-1}(t) - M(G_{n-1})]dt, \end{aligned}$$

where

$$M(F_i) = \frac{1}{T_f} \int_0^{T_f} F_i(t)dt, \quad M(G_i) = \frac{1}{T_g} \int_0^{T_g} G_i(t)dt$$

for $i = 0, 1, 2, \dots, n-1$. Functions F_i and G_i , $i = 0, 1, 2, \dots, n$, are continuous on \mathbb{R} . In the following we obtain for $n \in \{2, 3, \dots\}$

$$\begin{aligned} F'_n(x) &= F_{n-1}(x) - M(F_{n-1}), & G'_n(x) &= G_{n-1}(x) - M(G_{n-1}), \\ F''_n(x) &= F_{n-2}(x) - M(F_{n-2}), & G''_n(x) &= G_{n-2}(x) - M(G_{n-2}), \\ &\vdots & &\vdots \\ F_n^{(n-1)}(x) &= F_1(x) - M(F_1), & G_n^{(n-1)}(x) &= G_1(x) - M(G_1), \\ F_n^{(n)}(x) &= f(x) - M(f) \in C(\mathbb{R}), & G_n^{(n)}(x) &= g(x) - M(g) \in C(\mathbb{R}), \\ F_n^{(n+1)}(x) &= f'(x) \notin C(\mathbb{R}), & G_n^{(n+1)}(x) &= g'(x) \notin C(\mathbb{R}). \end{aligned}$$

Hence $F_n, G_n \in C^{(n)}(\mathbb{R})$, but $F_n, G_n \notin C^{(n+1)}(\mathbb{R})$. By Remark 2 it follows that F_n, G_n are periodic, and so F_n, G_n are $C^{(n)}$ -a.p. functions. For every $t \in \mathbb{R}$ and for $i = 0, 1, 2, \dots, n-1$ we have

$$V(t; F_n^{(i)}) \leq \int_{t-1}^{t+1} |F_{n-i-1}(u) - M(F_{n-i-1})|du < \infty, \quad V(t; G_n^{(i)}) < \infty$$

and

$$V(t; F_n^{(n)}) = V(t; f) = \infty, \quad V(t; G_n^{(n)}) = \infty.$$

Hence $F_n, G_n \in X_0^{(n-1)}$ and $F_n, G_n \notin X_0^{(n)}$ for $n \geq 2$, i.e. F_n, G_n are $(VC)^{(n-1)}$ -a.p. functions. Since derivatives $F_n^{(i)}$ and $G_n^{(i)}$, $i = 0, 1, 2, \dots, n-1$, are absolutely continuous, so $F_n^{(i)}, G_n^{(i)}$ are V -continuous and hence F_n, G_n are $(VC)^{(n-1)}$ -continuous. Periods T_f and T_g are incommensurate.

Thus $H = F_n + G_n$ is not a periodic function. By Theorem 3 it follows that H is the $(VC)^{(n-1)}$ -a.p. function and H is not $(VC)^{(n)}$ -a.p.

References

- [1] M. Adamczak, $C^{(n)}$ -almost periodic functions, *Comment. Math.* 37 (1997), 1–12.
- [2] B. M. Levitan, *Almost periodic functions*, Moscow 1953 (in Russian).
- [3] S. Stoiński, *Real-valued functions almost periodic in variation*, *Func. Approx.* 22 (1993), 141–148.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
ADAM MICKIEWICZ UNIVERSITY
ul. Jana Matejki 48/49
60-769 POZNAŃ, POLAND

Received August 24, 1998; revised version November 30, 1998.

