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(VC)(n)-ALMOST PERIODIC FUNCTIONS 

Abstract. In this note we give the definition and some properties of (VC)^n^-almost 
periodic functions, i.e. uniformly almost periodic and almost periodic in variation functions 
with first n derivatives. 

Let us denote for an arbitrary t G R by V(t; / ) the Jordan variation of 
a function / on the interval (t — 1, t + 1). Let us put 

X^n) = {/ : R - » R : / e C<n)(R) and V(t\fW) < oo for k = 0 ,1 ,2 , . . . , n 
and for every t 6 R} 

and for / G 

(VD)W(f) = sup£(|/<*>(t) | + V(t;fW)). 
te R jt=o 

We say that / € is a (VC)™-bounded function if ( V D ) < - n \ f ) < oo. 
Let us write /^(x) = f(x + h), where h G R. If for an arbitrary e > 0 
there exists a 6 > 0 such that (VD)(n\f - fh) < e for every h G R with 
\h\< 6, we say that / G x j n ) is a (VC)^ -continuous function. A sequence 
(/m), where / m € X ^ for m = 1,2,. . . , will be called (VD)^-convergent 

to f G Xj n ) if for an arbitrary e > 0 there exists a positive number M such 
that (VD)W(f - fm)<£ for every m> M. 

It is easily seen that if a sequence ( /m) of (FC)(n)-continuous functions 
is (VZ))(n)-convergent to a function / G XQU\ then / is (VC)^-continuous. 

The number r G R is called a ((VD)(n\e)-almost period (((VD)(n\e)-
a.p . ) of a func t ion f G x l n ) if ( V D ) ^ ( f - f T ) < e for e > 0. Let VE^{e-, / } 
denote the set of ((VDpn\e)-almost periods of / . 
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A function / € is called (VC)^-almost periodic ((VC)^-a.p.) if 

for each e > 0 the set VE^{e] / } is relatively dense. By (VC)^ we denote 
the set of (VC)^-a.p. functions. 

The class of V-a.p. functions (see [3]) is identical with the class of 
(yC) ' ° ' -a.p. functions. Moreover, every -a.p. function is 
function (see [1]). 

THEOREM 1. If f is a ( F C ) ( n ) -a.p. function, then f is (VC)^-bounded. 

P r o o f . Let / £ (VC)(n\ For an arbitrary t € R and any e > 0 there exists 
a ((VD)(n\e)-a.p. r 6 (—t, —t + I), where I = 1(e) > 0 is a number which 
characterizes the relative density of the set V E ^ { e ; / } , such that we have 

¿ ( l / ( f c ) ( * ) l + n * ; / ( f e ) ) ) 
fc=0 

< E d f w ( t ) - rtk)(t)\ + n t ; f ( k ) - rtk))) + E ( i 4 f e ) ( i ) i + v ( t - j W ) ) . 
k=0 fc=0 

in) Hence, because / 6 Xq , we obtain the following estimation 

( V D ) W ( f ) < ( V D ) W ( f - f r ) + sup £(\fW(t)\ + V(t-jW))<e + M, 
te(o,i) k=o 

where M > 0 is a constant. • 

THEOREM 2. Assume that f is a (VC)^-a.p. function which satisfies the 

(VC)^-condition: for an arbitrary e > 0 there exists a 6 > 0 such that 

sup £ V ( f J ^ - f { h k ) ) < e 
°< i< ' f c=0 

for every h € K with < 6, where I = 1(e) > 0 is a number which char-

acterizes the relative density of the set VE^{e-,f}. Then f is (VC)^-
continuous. 

P r o o f . For an arbitrary t 6 R and for r 6 VE™ { e ; / } , where r € (—t, —t + 
l), we obtain that for h € R 

£ n * ; / ( f c ) - / f ) 
k=0 

< £ V(f, / « _ , « ) + SUp £ V(t>; /<*> - ,<*>) + £ V ( f , /<*> - f P ) , 
fc=0 0<t'<lk=0 fc=0 
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where f ^ ( x ) = f^k\x + r + h). Hence 

(VD)W(f - fh) < 2 ( V D ) W ( f - fT) + sup ^ |/<*>(i) - flk\t)| 
teR fc=o 

+ sup £ v ( t j W - f P ) . 
°««fc=o 

Since / is -a.p., so / is Therefore for an arbitrary e > 0 
there exists a 8' > 0 such that for |/i| < 6' we have 

s u p £ | / < * > W - / f ( t ) | < e . 
teRk=o 

For \h\ < min(6,6') we obtain (VD)^n\f - fh) < 4e, i.e. / is (VC)W-
continuous. • 

Analogously as in [2] and [3] we prove the following: 

T H E O R E M 3 . A linear combination of two (VC)^-a.p. functions f,g, which 
satisfy the (VC)^-condition, is a (VC)^-a.p. function. 

T H E O R E M 4 . If a sequence ( f m ) of (VC)^-a.p. functions is (VD)^-con-
vergent to a function f € X ^ , then f is a (VC)^-a.p. function. 

P r o o f . For an arbitrary e > 0 there exists mo such that (VD)(n\f — fmo) < 
e/3. Therefore for r € VE^{e/3; fmo} 

we obtain the following estimation 
( V D ) W ( f - f r ) 

< (VD)^(f - fmo) + (VD)W(fmo - fmoT) + (VD)W(fmQT - fT) < e, where fmoT(x) = + r ) , i.e. VE^{e/3;fmo} C VE^{e;f}. This 
proves that / € (VC) ( n ) . • 

In the following we shall investigate the derivative and the indefinite 
integral of a function. 
T H E O R E M 5. If f is a (VC)^-a.p. function and f is -continuous, 
then the derivative f is a (VC)^-a.p. function. 

P r o o f . Let us write 

h(t) - m „us _ i i (9 
h 

for t G IR, h ^ 0 and 

( _ < 3 ± j ( | / ( ü + 1 ) _ m y v ) 
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= sup W^h, t) + sup W2(h,t). 
teM teR 

Because / is (FC)(n+1)-continuous, so for an arbitrary e > 0 there exists 
a 8 > 0 such that 

n+1 
sup £(|(/ f c - /)W(t)I + V(t- ( f h - /)<*>)) < e 
teR fc=o 

for every h e R, |/i| < <5. Hence it follows that 

sup W\(h, t) <e 

and 
hn+1 / gk i »71-ri / d \ 

sup W 2 ( M ) < r J £ W i; 7TT/(u + n ) - /(fc) (") ^ e 

ieK V duk J 
for 0 < |/i| < 6. Therefore we obtain that for every sequence (hm), where 
hm / 0, hm 0, 

hm 
in the sense of (FD)^n^-convergence, and so, by Theorem 4, /' is ( V C ) ^ -
a.p. • 

REMARK 1. Let / be a 5-a.p. function. Then for an arbitrary e > 0 there 
exists e' = e'(e) > 0 such that e' < e/3 and every e'-a.p. of / is an e/3-a.p. 
of the bounded indefinite integral F of the function / (see [2], p.29). It is 
known (see [3]) that E{e'\ /} C Ev{e,F}. 

THEOREM 6. If f is a (VC)^-a.p. function and the indefinite integral F of 
f is bounded, then F is a (VC)^n+1^-a.p. function. 

PROOF. Since / is (VC)^-a.p. and 
x ) = f^k 1HX) f° r every x € R 

and k = 1, 2 , . . . , n + 1, so F € By Remark 1, for r G VE^{e'-, /} 
we have 

- FT) < (VD)W(F - FT) + (VD)W(f - fT) < ^e, 

and so F is (^C)(n + 1 ' -a.p. . 

By Theorem 6 it follows the following: 

COROLLARY. If f is a V-a.p. function and the indefinite integral F of f is 
bounded, then F is a (VC)^-a.p. function. 
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THEOREM 7. Let us assume that f is a bounded function on R. If the deriva-
tive f' is V-a.p., then f is (VC)^-a.p. 

Proof . For every i G R w e have 
X 

g(x) = \ f'(u)du, where g = f + c, c = -/(0) . 
o 

By Remark 1 it follows that for an arbitrary e > 0 there exists e' > 0 such 
that e' < e/3 and E{e'\ /'} C EV{E-, g}. Hence for R € Ev{e'\/'} we obtain 

(VD)W(g - gT) < V(g - gT) + V(f - f'T) < 

and so Ev{e'-,f'} C VE^/?>)£•, g}. Moreover g 6 Therefore g and 
hence / are (FC^^-a.p. • 

Now, we shall give an example of a (FC)^'-a.p. function. 

EXAMPLE 1. Let us put 

f(x) = sinx + sin(-\/2x) for x G R. 

By Property 4 (see [3]) it follows that the derivative /' is V-a.p. Because / 
is the bounded indefinite integral of /', so /, by Theorem 6, is 

REMARK 2. If a function / : R —> R is locally integrable and is periodic with 
the period T > 0, then the integral 

x T 

*"(*) = St fit) ~ M(f)}dt for x G R, where M(f) = - \ f(u)du, 
o o 

is continuous on R and is periodic with the period T. 
We shall give an example of a (VC)(n_1)-a.p. function which is not 

a (yC) (n)-a.p. function, where n G { 2 , 3 , . . . } . 

EXAMPLE 2. L e t 
7T 

, (x — k) cos —7 R-- for x G (k, k + 1), 
f(x) = { 2 (x-k) 

0 for x = k, 

9(x) = 
0 for x = 

where k = 0 , ± 1 , ± 2 , . . . 
Functions / and g are continuous on R and periodic with periods Tf — 1, 

Tg = y/2/2, respectively. Let us denote by V(f; a, b) the Jordan variation of 
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a function / on the interval (a, b). Then for every k = 0, ± 1 , ± 2 , . . . we have 

T/Y / lr [ . 1 1 1 V f V2fc V 2 ( f c + l ) X 

Moreover f,gg G (1)(M). We denote F0 = f,G0 = g and 
X X 

F i ( x ) = j[/(i) - M ( f ) ] d t , Gi(x) = \[g(t) - M { g ) ) d t , 

o o 
X X 

F 2 (x) = ¡[Fi(t) - M { F x ) ] d t , G2(X) = j [Gi(i) - Af(Gi)]dt, 
0 0 

F„(x) = S[^n-i(<) - M(F n _i)]di , G n (x) = ¡[G„_i(i) - Af(G„_i)]dt, 
0 0 

where 
1 TF TG 

M(Fi) = — j f i (t)di , M ( G i ) = — j G i ( t ) d t 

1 f 0 0 
for i = 0,1, 2 , . . . , n—1. Functions Fj and Gi, i = 0,1, 2 , . . . , n, are continuous 
on R. In the following we obtain for n 6 {2, 3 , . . . } 

F'n{x) = F n _ i ( x ) - Af(F n _i) , GJ^x) = G„_i(s) - M(G„_i) , 
F£(x) - F n _ 2 ( x ) - M ( F n _ 2 ) , G'n{x) = G n _ 2 (x ) - M ( G n _ 2 ) , 

^ - ^ ( x ) = F x (x) - M ( F i ) , G { r l \ x ) = Gi(x) - M(Gi ) , 
# ( x ) = / ( x ) - M ( / ) G G(R), Gin )(x) = 5 ( x ) - M(<?) € G(R), 
F i n + 1 ) ( x ) = / ' (x ) # G(R) , G^ n + 1 ) (x) = g'(x) # G(R) . 

Hence F n , G n G R), but F n , G n £ G ^ n + 1 ) ( R ) . By Remark 2 it follows 
that Fn j Gn are periodic, and so Fn, Gn are functions. For every 
i e R and for i = 0 , 1 , 2 , . . . , n — 1 we have 

t+i 
V ( t ; F ^ ) < J | F n _ i _ 1 ( u ) - M ( F n _ i _ 1 ) | d u < o o , F ( i ; G « ) < o o 

t - i 
and 

V ( t ; F ^ ) = V ( t ; f ) = oo, V ( t ; G ™ ) = oo. 

Hence Fn, Gn 

G and F n , G n g X Q ^ for n > 2, i.e. F n , G n are 
(FC) ' n _ 1 ' - a .p . functions. Since derivatives and G„\ i = 0 , 1 , 2 , . . . 
. . . , n—1, are absolutely continuous, so Fn \ are F-continuous and hence 
F n , G n are ^-continuous. Periods T f and T g are incommensurate. 
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Thus H = Fn + Gn is not a periodic function. By Theorem 3 it follows that 
H is the (FC)^-1)-a.p. function and H is not (FC)W-a.p. 
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