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Stanistaw Stoinski

(VC)™-ALMOST PERIODIC FUNCTIONS

Abstract. In this note we give the definition and some properties of (VC){™)-almost
periodic functions, i.e. uniformly almost periodic and almost periodic in variation functions
with first n derivatives.

Let us denote for an arbitrary t € R by V(¢; f) the Jordan variation of
a function f on the interval (¢ — 1,¢t + 1). Let us put

XM={f:R>R:feC™R)and V(t; f®) < co for k=0,1,2,...,n
and for every t € R}

and for f € X, (n)

(VD)™(f) = supz IO+ vt F2)).
teR p—o
We say that f € X{™ is a (VC)™-bounded function if (VD)™ (f) < oo.
Let us write fp(z) = f(z + h), where h € R. If for an arbitrary ¢ > 0
there exists a § > 0 such that (VD)™ (f — fs) < ¢ for every h € R with
|h| < &8, we say that f € Xon) is a (VC)™ -continuous function. A sequence
(fm), where f, € Xén) for m = 1,2,..., will be called (VD)™ -convergent
tof € Xé") if for an arbitrary £ > 0 there exists a positive number M such
that (VD)™ (f — fm) < € for every m > M.
It is easily seen that if a sequence (f;) of (VC)(™-continuous functions
is (V D)(™-convergent to a function f € X, ("), then f is (V'C)™-continuous.
The number 7 € R is called a ((VD)(") €)-almost period (VD)™ ¢)-
a.p.) of a function f € x{™ if (VD)™ (f—f,) < efore > 0. Let VE™ {¢; f}
denote the set of ((V D)™, ¢)-almost periods of f.
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A function f € X (") is called (VC)™-almost periodic (VC)™-a.p.) if

for each € > 0 the set VE(”){a; f} is relatively dense. By (VC){™ we denote
the set of (VC)(™-a.p. functions.

The class of V-a.p. functions (see [3]) is identical with the class of
(VC)9-a.p. functions. Moreover, every (VC)™-a.p. function is C™-a.p.
function (see [1}).

THEOREM 1. If f is a (VC)™-a.p. function, then f is (VC)™ -bounded.

Proof. Let f € (Va("). For an arbitrary ¢ € R and any € > 0 there exists
a (VD)™ e)-a.p. 7 € (=t,—t + 1), where | = I(¢) > 0 is a number which
characterizes the relative density of the set V E(™ {g; f}, such that we have

SO+ Vit £

k=0

< U@ — 9] + Vi £D — 19 + 31D + V(5 1)),
k=0

k=0
Hence, because f € X;" (n) , we obtain the following estimation
n
(VD)™(f) S (VDY)(f = )+ sup Y (IFP@|+V(; V) <e+ M,
t€(0,1) k=0
where M > 0 is a constant. =

THEOREM 2. Assume that f is a (VC)™-a.p. function which satisfies the
(VO)™ _condition: for an arbitrary € > 0 there exists a § > 0 such that

sup ZV(t F& — iy <
0<t<lk =0

for every h € R with |h| < §, where l = l(¢) > 0 is a number which char-
acterizes the relative density of the set VE™{e; f}. Then f is (VC)™-
continuous.

Proof. For an arbitrary t € R and for 7 € VEM™ {¢; f}, where 7 € (—t, —t+
1), we obtain that for h € R

vt £®) - 15

NE

k=0
<M v F® £y 4 sup ZVt Fo) f(k) +ZV(t (k) f(k)),
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where fiﬁ)(m) = f®)(z + 7 + k). Hence

(VDYO(F = f2) < 2VD)O(f — £,) +sup 3" 1FO(1) - £F o)

teR r—o

+ sup ZV (t; f(k) f(k))
0<t<lk =0

Since f is (VC)™-a.p., so f is C™-a.p. Therefore for an arbitrary £ > 0
there exists a §' > 0 such that for |h| < §' we have

n
sup > | M(0) - V@)1 < e.
teR k=0
For |h| < min(é,68") we obtain (VD)™ (f — fp) < 4e, ie. f is (VC)™-
continuous. m
Analogously as in [2] and [3] we prove the following:

THEOREM 3. A linear combination of two (VC)™-a.p. functions f, g, which
satisfy the (VC)™-condition, is a (VC)™-a.p. function.

THEOREM 4. If a sequence (fr) of (VC)™-a.p. functions is (VD)™ -con-
vergent to a function f € Xén), then f is a (VC)™-a.p. function.
Proof. For an arbitrary € > 0 there exists mg such that (VD)™ (f = fp,,) <

€/3. Therefore for 7 € VE™{e/3; fm,} we obtain the following estimation
(VD)Y™(f ~ fr)

< (VD)(n)(f - fmo) + (VD)(n)(fmo - fmof) + (VD)(n)(fmoT - f‘r) <eg,
where fmr(2) = fme(z + 1), Le. VE™{e/3; fmo} C VE™{e; f}. This
proves that f € (VC)™. m

In the following we shall investigate the derivative and the indefinite
integral of a (VC)(™-a.p. function.

THEOREM 5. If f is a (VC)™-a.p. function and f is (VC)"t1)_continuous,
then the derivative f' is a (VC)™-a.p. function.

Proof. Let us write

W)= O 1t ;
P rw =3 i (Grero-ro)e

fort € R, h # 0 and

(VD)(M(% - f’) < suﬂgi d

(7w+0- 1))
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n dk ’
raup S 26 (g)( fw+u) = ) )
= sup Wi(h,t) + sup Wa(h,t).

teR teR

Because f is (VC)("+1)-continuous, so for an arbitrary € > 0 there exists
a 6 > 0 such that
n+1

sup > ([(fn = HNPO|+ V(e (fa— H)F)) <e

teR r—o
for every h € R, |h| < §. Hence it follows that
sup Wi(h,t) <e
teR
and

+1
S (1o o) — 1) o < e

n
teR k=1

for 0 < |h| < 6. Therefore we obtain that for every sequence (h;,), where
hm # Oa hm - Oa

1 h
sup WZ(h'at) < ES
0

(Va(n) 5 fh,;L"' f N f/ c Xén)

m

in the sense of (V. D)™-convergence, and so, by Theorem 4, f’ is (VC)")-
a.p. m

REMARK 1. Let f be a B-a.p. function. Then for an arbitrary € > 0 there
exists ¢/ = €’(¢) > 0 such that ¢/ < £/3 and every &’-a.p. of f is an ¢/3-a.p.
of the bounded indefinite integral F' of the function f (see [2], p.29). It is
known (see [3]) that E{e’; f} C Ev{e, F}.

THEOREM 6. If f is a (VC)™-a.p. function and the indefinite integral F of
f is bounded, then F is a (VC’)("H)—a.p. function.

PROOF. Since f is (VC)™-a.p. and F¥)(z) = f*<=1(g) for every z € R
and k=1,2,...,n+1,s0 F ¢ X(()n+1). By Remark 1, for 7 € VE™{¢'; f}
we have

(VDY™(F ~ By) < (VDYO(F ~ Fy) + (VD) - f,) < e,

and so F is (VC)™t-ap. m
By Theorem 6 it follows the following:

COROLLARY. If f is a V-a.p. function and the indefinite integral F of f is
bounded, then F is a (VC)M-a.p. function.
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THEOREM 7. Let us assume that f is a bounded function on R. If the deriva-
tive f' is V-a.p., then f is (VC)M-a.p.

Proof. For every z € R we have
g(z) = | f(u)du, where g=f+c, c=—f(0).

By Remark 1 it follows that for an arbitrary € > 0 there exists ¢’ > 0 such
that ¢/ < ¢/3 and E{¢’; f'} C Ey{e;g}. Hence for 7 € Ey{¢’; f'} we obtain

(VD)(g—g7) < V(g = 9r) + V(' = 1) < 56,

and so Ev{e’; f'} ¢ VEM{(4/3); g}. Moreover g € X[()l). Therefore g and
hence f are (VC)V-a.p. m

Now, we shall give an example of a (VC)(I)—a.p. function.
ExAMPLE 1. Let us put
f(z) =sinz +sin(v2z)  for z €R.

By Property 4 (see [3]) it follows that the derivative f’ is V-a.p. Because f
is the bounded indefinite integral of f’, so f, by Theorem 6, is (VC)M-a.p.

REMARK 2. If a function f : R — R is locally integrable and is periodic with
the period T > 0, then the integral

T T
F(z) = {[f(t) - M(f)]dt for z € R, where M(f) = % [ f(u)du,
0 0

is continuous on R and is periodic with the period T'.

We shall give an example of a (VC)(™ V.a.p. function which is not
a (VC)™-a.p. function, where n € {2,3,...}.

EXAMPLE 2. Let
T
z — k) cos —— forz € (k, k + 1),
0 forz =k,

T
% — -t @ﬂﬂ))
o@) = (Vaz k)cos2(\/§z_k) forwe( 20, Ty ,
v
2 H

0 forz =

where k = 0,£1,+£2,...
Functions f and g are continuous on R and periodic with periods Ty = 1,
T, = V'2/2, respectively. Let us denote by V(f;a,b) the Jordan variation of
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a function f on the interval (a,b). Then for every k = 0,+1,+2, ... we have
V2k V2(k+ 1)) 3

2’ 2 B
Moreover f,g ¢ CO)(R). We denote Fy = f, Go = g and

V(fik,k+1) = V(g;

= S fldt, Gy(z) = S[g — M(g))dt
0 0

= |[Fu(t) — M(F1))dt, = {[G: M(Gy)]dt,
0 0

s
3]

Fo(z) = |[Fa-1(t) = M(Fa-1)ldt, Gn(z) = {[Gno1(t) ~ M(Gn-1)ldt,

0 0
where
17 1
M(F;) = — \ F;(t)dt M(G)) = = (t)dt
(F) =7, | R, M(G) =7 | Gt
for: =0,1,2,...,n—1. Functions F; and G;,7 = 0,1, 2,...,n, are continuous

on R. In the following we obtain for n € {2,3,...}

Fp(z) = Fpo1(z) — M(Fp-1), Gp(z) = Gp-1(z) — M(Gn-1),
F”(-’E) Fooa(z) — M(Fr-2),  Gp(z) = Gn-2(z) — M(Gn-2),

P Y(z) = Fi(z) - M(F), V(@) = Gi(z) ~ M(Gy),

"(z) = f(z) - M(f) € C(R), G¥(z) = g(z) — M(g) € C(R),
(2) = f'(2) ¢ C(R), G (2) = ¢'(2) € C(R).

Hence F,, G, € C™ (R), but Fp,Gp, & C'(”‘”)(R). By Remark 2 it follows
that F,,, G, are periodic, and so F,, G,, are C(™-a.p. functions. For every
teRand fori=0,1,2,...,n— 1 we have
t+1
V(t F(z) < S | Fn—i—1(u) — M(Fp—s-1)|du < o0, V(t§G1(-Z;)) <00
t—1
and
VG EM) =Vt f) =00, V(GM) =00
Hence F,,G, € X(" D and F,, G, ¢ Xé") for n > 2, ie. F,,G, are
(V)™ 1.a.p. functions. Since derivatives F,(f) and GS), i=2012...
,n—1, are absolutely continuous, so F( 2 Gg ) are V-continuous and hence
Fn,G’ are (VC)(®D_continuous. Periods Ty and T, are incommensurate.



(vC)(™.almost periodic functions 383

Thus H = F, + G, is not a periodic function. By Theorem 3 it follows that
H is the (VC)»~V.a.p. function and H is not (VC)™-a.p.
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