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NOTE ON JENSEN AND PEXIDER
FUNCTIONAL EQUATIONS

Abstract. We determine the general solutions of the Jensen functional equation

u(’;y>=f@y+ﬂw, z,y €M

and the Pexider functional equation

flz+y)=g(z) +h(y), =zyeM

for f,g,h : M — S, where M is an Abelian semigroup with the division by 2 and § is
an abstract convex cone satisfying the cancellation law. Some applications to set-valued
versions of these equations are given.

1. Introduction

Let (X, |-|) be a real normed space. Throughout this note ccl(X) stands
for the set of all non-empty, bounded, closed and convex subsets of X.

Introduce a binary operation ¥ in ccl (X) by the formula

A+ B=cl(A+B),
where A 4+ B denotes the usual algebraic sum of A and B while clA denotes

the closedness of the set A.
It is easy to see that

(1) A+ B=cl(clA+clB) forall A,BcCX.
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Moreover
(2) MA+B)=)M+AB, (A+pA=IA1pA

for all A,B € ccl(X) and A, € Ry := [0, 00).
The proof of the following generalization of the Radstrém lemma (cf. [6])
can be found in [9].

LEMMA 1. If a set B C X is a non-empty and bounded and C C X 1is closed
and convez, then for every A C X

A+BCcC+B= ACC.
For two non-empty subsets A and B of X and a point z of X we define
p(z,B) =inf{||lz —y|| : y € B}, (4, B) =sup{p(z,B):z € A}.
The Hausdorff distance of A and B is defined by
§(A, B) = max{e(A, B),e(B, A)}.
Write S := {z € X : ||z|| < 1}. It is not difficult to prove that
6(A,B)=inf{t >0: ACB+1tS, BC A+tS}

for non-empty and bounded sets A, B C X. é is a metric on ccl(X) which
is henceforth endowed with the corresponding metric space structure. Com-
pletness of (ccl(X),6) is contained in the following (cf., e.g., [1]).

LEMMA 2. If X is a Banach space, then (ccl(X),8) is a complete metric
space.

The proof of the second equality of the lemma below can be found in [2].
The proof of the first one is easy to verify.

LEMMA 3. If A, B,C € ccl(X) then
§(A+ B,C + B)=6(A+B,C +B)=5(4,C).
The equality
3) 6(AA,AB) = |A|6(A, B)

for A € R and bounded A and B, easy follows from the definition of 4.

A set-valued function F' defined on an Abelian semigroup M such that
the division by 2 is performable with values in a normed space is said to be
*Jensen if

+ 1, .
F(24Y) = 3iF@) 3 Fo,
for all z,y € M.
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Let (X,|- ), (Y,]-]) and (Z,| - |) be normed spaces and let U C X be a
convex set containing zero. Suppose that C is a convex cone in Y such that
0 € C. Define

lip(U,C) = {qﬁ :U—C: sup M < oo}
z#£%,z,2€U lz — Z|
On this set we introduce the metric

(b1, 62) = 161(0) — do(0)] + sup |21 = ¢2(@) = 61(2) + 62(E)]

z#%,x,F€U I:B - Cl-?|

Next, we put

Lip(U,Z):={p:U - ccl(Z): sup 6(p(z), (%))

—— < oo},
r#z,z,x€U |$ - IL‘l

where 6 denotes the Hausdorff distance in ccl(Z). On this set a metric can
be defined by

p(p1,2) == 6(p1(0),02(0)) + sup 6(p1(z) + <P2(-’E),Sf1(§r) + ¢2(2))
T#£E,x,2€U |z — Z|

Similarly we introduce the set Lip(C, Z) with the metric p; defined analo-
gously.

Every set-valued function b : U x C — ccl(Z) generates the Nemytskii
operator N defined by the formula

(4) N(¢)(z) == h(z,¢(z)), z €U, ¢¢€lip(UC).
The operator N takes its values in the space of all set-valued functions
¢:U —cc(Z).

J. Matkowski proved that every Lipschitzian Nemytskii operator map-
ping lip(U,Y) into lip(U, Z) is generated by a function h : U X Y — Z of
the form h(z,y) = A(z)y + b(z), z € U,y € Y, where b € lip(U,Z) and
A(z), z € U, is linear and continuous map from Y to Z (cf. [4], Theorem 1).
We are going to prove similar theorem for Nemytskii operator generated by
a set-valued function k. The idea of the proof of the following proposition
is due to J. Matkowski (cf. [4], the proof of Theorem 1).

PROPOSITION. Let (X,|-|), Y.| |, (Z,]|-]|) be normed spaces and let C be a
convez cone with zero in Y. Assume that U C X is a convex set, 0 € U and
h:UxC — ccl(Z). If the Nemytskii operator N defined by (4) satisfies the
following conditions:

1. N(lip(U, C)) C Lip(U, Z);

2. there exists ¢ > 0 such that

p(N¢1,N¢2) S Cd(¢1’¢2)) ¢1> ¢2 € lip(U, C),
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then

(a) h(-,y) € Lip(U, Z) for ally € C;

(b) for every z € U the set-valued function h(x,-) is a Lipschitz function
with the Lipschitz constant c;

(c) the function x — h(zx,-) defined on U 1is Lipschitz;

(d) h(z,-) is a *Jensen function.
Proof. Fix y € C. The constant function ¢(z) = y, z € U belongs to
lip(U, C). Consequently h(-,y) € Lip(U, Z) for all y € C. In particular h is
continuous with respect to the first variable for every y € C. On account of
2. we have

5 SRE60) 4G, ¢2(|?)_,’tj|(ﬂ 910)) + bt 2(0) < g4, 40)

fort,f €U, t #1, 1,02 € lip(U,C). Let us fix z,Z € U, z # 0, |Z| < |z|,
Y1, 91,2, 92 € C. Write

Ui» [t < |2|
(6) $i(t) == § Ti= |z|(|t| 1Z) + 5, 12| < [ < |zl
Yis It = |z|

for t € U and ¢ = 1,2. It can be easy verified that ¢; € lip(U, C) and
o —Y2— Y1+ ¥
(M) (1, ¢2) = |91 — | + lyi —y2 ~— 1 y2|'

|z| — |Z|
Putting in (5) ¢; and ¢- given by (6) and t = z, = T we have

6(h(:l},y1) + h((l-!,y_z), h(f, y_l) + h(:l), y2))
|z — Z|

iy =1+
SC(|91—92|+ |:l?|'—|.’i‘|
Hence we get

(8)  6(h(z,y1) + h(Z,92), h(Z,11) + h(z,y2))
< C(|y1 P2llz = Z| + ly1 — y2 — 01 + 2 | 7 — TI|>

Obviously |z — Z|/(|z| — |Z|) > 1. Moreover, for Z = Az, where 0 < X < 1,
we have
lr -z |z — Az
lz| — 12| |z| - Alz|
Thus liminfz_,; |z — Z|/(|z] — |Z]) = 1. Taking the liminf as £ — z in (8)
we obtain

(9) 8(h(z,y1) + bz, 32), Az, 1) + h(z,¥42)) L cly1 —y2 — 1 + 12|

=1.
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forall z # 0, z € U and y1,y2,91, Y2 € C. Inequality (9) holds also for z = 0
in virtue of the continuity of h(-,y). Putting y; = 72 = ’;“’, Y2 =Y, 1 = W,

y,w € C, in (9) we obtain
y+w

5(28 (=55 o) i) =0

and hence

h(a 152 = 3lh@w) + hio,)

for all z € U, y,w € C. This means that for every z € U the set-valued
function y — h(z,y) is *Jensen.
Putting g2 = y1 and 7 = y2 in (9) we have
6(h(m,y1), h(:l:,yz)) < C|y1 - y2|;

for y1,y2 € C and z € U. Thus h(z,-) is a Lipschitz function for all z € U.
To prove (C) take in (8) n-=y, ?/_2 = ?ja ?J_l =Y Y2 = g) where y?g eC.
Then we obtain

(10) 6(h(z,y) + h(Z,9), b(z,9) + h(Z,y)) < cly — gllz - Z|.
Conditions (10) and (a) imply
pl(h(:l:, ')7 h(j> )) < 01].’13 - jl’

where ¢ is a constant. m

2. Jensen equation on a semigroup

Let (S,+) be an Abelian semigroup with zero satisfying the cancelation
law, i.e.,t+s=1t+ s implies t = t'.

An Abelian semigroup S with zero is said to be an abstract convex cone
if a map (A, s) — As defined on Ry x S into S is given such that

l-s=s, Aus)=(Ap)s, As+t)=As+M, (A+p)s=As+pus

for all s,t € S and A, u € Ry . We will assume that an abstract convex cone
is endowed with a complete metric p such that

(11) p(s+t,s+1t)=p(tt) forall st,t' €S
and
(12) p(As, At) = Ap(s,t) forall AeRy, s,teS.

The following lemma follows easily from (11) and (12).
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LEMMA 4. The functions
Ry xS>(A\s)—AseS and SxS>(s,t)—s+teS
are continuous.

Let (M, +) be an Abelian semigroup. We say that a functiona: M — S
is additive if it satisfies the Cauchy functional equation

(13) a(z+y) =a(z)+al(y) foral =z,ye M.

Let us add that the division by 2 is performable in M. We say that a function
f: M — Sis Jensen if

(14) 2f<z+y) = f(z)+ f(y) forall =z,ye M.

2
We are concerned with the general solution of the Jensen equation (14).

THEOREM 1. Let (M, +) be an Abelian semigroup such that the division by
2 is performable and let (S,+,-) be an abstract convez cone satisfying the
cancellation law. Assume that a complete metric p is given in S such that
(11) and (12) hold. Then, f : M — S is a Jensen function if and only if
there exists an additive function a : M — S such that

(15) flz+y)=a(z)+ f(y) forall z,yeM.
Proof. Take arbitrary z,y € M. By (14)

fa+) = f(EEEY) — Lipe + )+ £0)
and
oty = () = Stao +) + 1)

The above two equalities yield

o) =33 (649 + 5@) + 0]

2

1
= 5 f@z+y)+ —5— fW).
An easy induction shows that
1 2" —1
(16) f(z+y) = 5o f(2 "z +y) + ——f(y) forall zyeM, neN

Let us fix y € M and define the functions fy, : M — S as follows

n

fyn(z) = 2inf(2n$+y), reM, neN
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Let z € M. We will verify that { f,»(z)} is a Cauchy sequence. Take m,n € N
such that n > m. We have by (11), (12) and (16)

p(fyn(2), fym(z))
p(fmte) + T2 ) fim) + Z2 1))

p(setume+ (Gt + T - B2 ) 1)
pgf(ziy),f(lm; ) 3 (2% - %)f(@ﬂ)

=p|0, om " om f(y)

(- 2)o(os).

Consequently, there exists a limit of the sequence { fyn(z)}. Define the func-
tion ay : M — S by

ay(z) = nlingo fyn(z), TEM.
We have by (16) and Lemma 4 for arbitrary z,y € M

(17) f(z+y) = ay(z) + f(v).

We shall show that a, satisfies equation (13) for every y € M. Take arbitrary
z,y,2 € M. By (14)

ay(z +2z) = nli_{& fyn(z + 2)
1
= lim 2 f(2"(z+2)+y)

n+1 n+1
= lim L "M+ y+2" T2+ y
n—oo 27 2

1 1
. n+41 n+1
= lim [2n lf(z m+y>+2n 1’(2 z+y>]

= ay(z) + ay(2),

i.e., ay is an additive function. Now we are going to show that the function
a, does not depend on y. From (14) and (17) we obtain

o sera-a() < (5) ()
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for all z,y € M. Setting z = y we get hence

wa(3) 4 1(2)

The last relation and (18) yield

o (3) +1(2) - (3) ()

whence, since ay is additive,

f(z) + ay <g) =ay(z)+ f (g)

for every z,y € M. Inserting 2™z in the place of z yields

%f(?‘a:) + %ag (%) = ay(z) + %f(%)

for every z,y € M. Letting n — 0o we obtain hence in view of Lemma 4

o3(@) = fim s ()

n—oo 27

for all z,y € M. We put a(z) = ay(z), x € M for some y € M. The
definition of a is unambiguous. Now (17) yields

f(z+y) =a(z)+ f(y)

for all z,y € M. The first part of theorem was proved. Conversely, we will
show that every function of form (15), where a : M — S is additive actually
satisfies equation (14). By (15)

2f(z+y)—2f( (z+y)+2 (:I:+y)> ( ;y)+2f<x-;y)

— a(z) + a(y) +2f(”+y),

a(z) + f(y) = f(z +y),
aly)+ f(z) = f(z+y), =z,yeEM.

Hence

2/ (2 +5) +a(z) +aw) + F(y) + f(z) = a(z>+a(y>+2f(”” *

y>+2f(z+y),
T,y € M.



Jensen and Pexider functional equations 371
Cancelling a(z) + a(y) + 2f(z + y) we get
T+
27 (252) = j@)+ f0), mye M,

i.e., f is a Jensen function. =

REMARK 1. An additive function in formula (15) is uniquely determined.
From Theorem 1 we deduce two corollaries.

COROLLARY 1. Let M and S be as in Theorem 1. If f : M — S is a Jensen
function, then there exists an additive function a : M — S such that

f(z)+a(y) = fly)+a(z), =z,yeM

COROLLARY 2. Let (M,+) be an Abelian semigroup with zero such that
the division by 2 is performable and let (S,+,-) be as in Theorem 1. Then,
f: M — S is a Jensen function if and only if there erist an additive function
a:M — S and a constant b € S such that

f(z)=a(z)+b forall ze M.

3. Pexider equation on a semigroup
In this part of the paper we will deal with the Pexider functional equation

(19) flz+y) = g(z)+ h(y).

At first we will prove that f, g, h satisfying equation (19) have to be Jensen
functions.

LEMMA 5. Let (M, +) be an Abelian semigroup such that the division by 2
is performable and let (S,+) be an Abelian semigroup with zero satisfying
the cancellation law. If f: M — S,g: M — S,h: M — S are solutions of
equation (19), then they satisfy the Jensen functional equation.

Proof. Take arbitrary z,y € M. Inserting in (19) —;-z: and %y instead of x
and y, respectively, we get

(557) =o(3) +#(3): #(5) =o(5) ++(3),

whence

2f<m;ry> =g(:—;-) +h(§> +g<%) +h(%> = f(z)} + f(y),

i.e., f is a Jensen function.
Now take arbitrary z,y,z € M. Setting in (19) successively z, y, z—',}u in
the place of z and z in the place of y, we obtain

flz+2z) =g(z)+h(2), fly+2)=9(y)+h(2),
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f(:c—;—y +z) =g<z;—y) + h(z).
Hence

29<z+y) +2h(z)=2f(m—;_y+z> =2f<%(x+z+y+z))

2
= fz+2)+ f(y + 2) = g(z) + 9(y) + 2h(z).

Cancelling 2h(z) we see that g is also a Jensen function. Similar calculations
leads to the equality

2}1(”C ;’ y) = h(z) + h(y). w

Lemma 5 generalizes Lemma 4 in [7].

THEOREM 2. Assume that (M, +) and (S,+,-) are as in Theorem 1. Then
functions f : M — S,g: M — S,h: M — S satisfy equation (19) if and
only if there exists an additive function a : M — S such that
flz+y)=a(z) + f(y), g(z+y)=a(z)+g(y),

h(z + y) = a(z) + h(y)

for all z,y € M and there is an element u € M such that

(21) f(2u) = h(u) + g(w).

Proof. Let f, g, h satisfy equation (19). In virtue of Lemma 5 and Theorem
1 there exist additive functions a; : M — S, ¢ = 1, 2, 3, such that

flz+y)=ai(z) + f(y),
(22) 9(z +y) = az(z) + g(y),
hz +y) = az(z) + h(y)

(20)

for all z,y € M. Hence we have

(23) flz+y+z)=ai(z) + fly+2)

for all z,y,z € M. On the other hand

(24) f(z+y+2z) =g(z+y)+h(2) = az(2) +9(y) +h(2) = az(z) + f(y +2)

for z,y,z € M, whence by (23) ai1(z) = a2(z), * € M. Similarly we can
derive that a;(z) = ag(z), z € M. With a := a; we obtain (20) according
to (22). Relation (21) with arbitrary v € M is obvious.

Conversely, assume that functions f : M — S,g: M - Sandh: M — §
satisfy (20) for all z,y € M and (21) for some u € M, wherea: M — S is
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additive. We have
fz+y+2u)=a(z+y)+ f(2u) = a(z) + a(y) + h(u) + 9(u)
= g(z + u) + h(y + u) = g(z) + h(y) + 2a(u)
for all z,y € M. On the other hand,
flz+y+2u)= f(z+y)+a(2u) = f(z +y) + 2a(u)

for all z,y € M. Comparing the above equalities we get

fle+y)=g(x)+nh(y), =yeM,
i.e., f,g,h satisfy the Pexider equation. m

As an immediate consequence of Theorem 2 we obtain the following

COROLLARY 3. Assume that (S,+,-) is as in Theorem 1 and (M,+) is an
Abelian semigroup with zero such that the division by 2 is performable. Then
functions f : M — S, g: M — S, h: M — S satisfy the Pezider equation
if and only if there erist an additive function a : M — S and constants
b,c € S such that

f(z)=a(z)+b+c, g(z)=alz)+b, h(z)=0a(z)+c
forallz € M.

4. Applications
Let X be a real normed space. From Lemma 1, formulas (1) and (2) we
derive the following result.

LEMMA 6. The set ccl(X) with the operation + and the multiplication by
non-negative numbers is an abstract conver cone with the cancellation law.

The abstract convex cone ccl(X) satisfies the assumptions of Theorem
1 in virtue of (3) and Lemmas 6, 2 and 3. The following result follows from
Theorem 1.

THEOREM 3. Let (M, +) be an Abelian semigroup such that the division by
2 is performable and let X be a Banach space. Then a set-valued function
F: M — ccl(X) is *Jensen if and only if there exists a set-valued function
A: M - ccl(X) such that

(25) Az +y) = A(z) + A®y)
and
(26) F(z+y) = A(z) + F(y)

forallz,ye M.

Assuming that a semigroup M contains zero we have
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COROLLARY 4. Let (M, +) be an Abelian semigroup with zero such that the
division by 2 is performable and let X be a Banach space. Then a set-valued
function F : M — ccl(X) is *Jensen if and only if there ezist a set-valued
function A : M — ccl(X) and a set B € ccl(X) such that (25) holds for
z,y € M and

F(z)=A(z)+ B, zeM.

Similar results under the assumption that F' has compact values have
been obtained by Fifer (see Theorem 2 in [3]) and Nikodem (see Theorem
5.6 in [5]).

In the above two theorems the assumption that the values of the function
F are convex and closed is superfluous. In fact, if a set-valued function F

is *Jensen, then setting y = z in the equality F((z + y)/2) = (1/2)(F(z) +
F(y)) we obtain 2F(z) = F(z) 1 F(z) for z € M. Thus F(z) has to be
closed and since F'(z)+ F(z) C 2F(z), the set F(z) is also convex for every
z€E M.

From Theorem 2 we can derive the following

THEOREM 4. Let (M, +) be an Abelian semigroup such that the division by
2 is performable and let X be a Banach space. Then set-valued functions
F: M- cld(X),G: M — cc(X),H: M — ccl(X) satisfy the functional
equation
(27) Fz+y)=G(@) + H), zyeM
if and only if there erists a set-valued function A : M — ccl(X) such that
(25),
F(z+y) = Az) + F(y), G(z+y) = Alz) +G(y), H(z)=A(z) + H(y)
hold, for all z,y € M and there is an element u € M such that F(2u) =
G(u) + H(u).

If a semigroup contains zero, Theorem 4 can be improved.

COROLLARY 5. Let (M,+) be an Abelian semigroup with zero such that
the division by 2 is performable and let X be a Banach space. Then set-
valued functions F : M — ccl(X),G : M — ccd(X),H : M — ccl(X)
satisfy functional equation (27) if and only if there exist a set-valued function
A: M — cd(X) and sets B, C € ccl(X) such that (25) and

F(z)=A(@)+ B+ C, Gz)=A{@)+ B, H(z)=A()+C
hold, for all x € M.
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Corollary 5 is known even in the case when X is a Hausdorff topological
vector space but set-valued functions appearing there have compact values
(cf. [5], Theorem 5.7).

From Proposition and Corollary 4 we can derive the following theorem
concerning to Nemytskii operators

THEOREM 5. Let (X,|-|), (Y,|-|) be normed spaces and let (Z,|-|) be a
Banach space. Assume that C is a convex cone with zero in Y and that
UcC X is a conver set, 0 € U and h : U x C — ccl(Z). If the Nemytskii
operator N defined by (4) satisfies the following conditions:

1. N(lzp(U, C)) C Lip(U, 2);
2. there exists ¢ > 0 such that

p(No1, Np2) < cd(d1,92), 1,2 € lip(U,C),

then there exist set-valued functions A : U x C — ccl(Z) , B € Lip(U, Z)
such that

A(z,y+w) = A(z,y) ¥ A(z,w) forzelU, yweC
and

(a) A(-,y) € Lip(U, Z) for ally € C;

(b) for every x € U the set-valued function A(z,-) is a Lipschitz function
with the Lipschitz constant c;

(c) the function x — A(z,-) defined on U is Lipschitz with the Lipschitz
constant c ;

(d) h(z,y) = A(z,y) + B(z) for allz € U and y € C.

Analogous theorems to Theorem 5 for set-valued function h with com-
pact, convex values can be found in [8)] (see Theorem 1).
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