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A NOTE ON THE RELATIVE ERROR FOR THE
EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM

1. Introduction

This work is motivated as an attempt to deal with an estimation of
the relative error for the eigenvalues of the Sturm-Liouville problem. We
are interested in finding upper bounds for such error. The uniform spectral
continuity of this operator was treated in [14] in very simple manner. It is
worth pointing out that the knowledge of the bounds for these two errors
allows us to consider the eigenvalue problem for Sturm-Liouville operator
in normal form to be perfectly posed for each eigenvalue regardless of its
index.

Similar problem in the finite dimensional space setting was considered in
[8] and [22]. Yet another approach to the bounds for the absolute errors of
eigenvalues by the Gerschgorin estimate under unitary similarity has been
recently investigated in [24].

2. Notation and the case of the absolute error
Suppose that

D = {u € H*(a,b) : au(a) + /u'(a) = 0, Bu(b) + B'v'(b) = 0}.

The constants a, a’, 3, 8’ are assumed to be real with o?+a/? > 0, 32+52 >
0, and the interval [a, b} is finite.
For u € D, let

Lu= —4" +qu,
Lu= —u" +§u,
where the real-valued functions ¢, ¢ are assumed to belong to C([a, b]). Now
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consider the eigenvalue problems for operators L and L:
(1) Lu=Mu, ueD,
(2) Lu=Xu, ueD.

It is known that the operators L and L are self-adjoint (see [23]), and
eigensystems (1) and (2) with the separated boundary conditions given,
are regular and have sequences of simple real distinct eigenvalues {Ax}32,,
{Xe}22, such that

A1 <A< A3<... and X1<X2<X3<...,

and corresponding sequences of orthonormal eigenfunctions {ur}f2,,
{ur}2, such that |luglle = |||l = 1 (see [5]). With this notation we
have the following theorem (see [14], [20] for more details).

THEOREM 1. If |7 - gllco = sup,e(q,p) 13(z) ~ g(z)| <€, then e — Ml <,
for each k=1,2,3,....

The important point to note here is that the estimation in Theorem 1 is
sharp (see e.g. [14]). The bound with the L2-norm is not valid; that is the
estimation |Xx — Ak| < || — gl|2, where ||ullz = (f: |u|? dz)'/? does not hold,
contrary to what was claimed in [13]. Here is an example.

ExAMPLE 1. Consider two equations —u" + ¢;(z)u = Au (i = 1,2) on the
interval [0,1], where g;(z) = 0.1 -z and go(z) = 0.1 - 22 with the same
boundary conditions u(0) = u(1) = 0. We compute an approximation of the
smallest eigenvalue of these equations. To do this we use the finite element
method with the AAdHP correction (see [2]); for other alternative numerical
schemes we refer the reader to [1], [4], [7], [11], [12] and [19]. Then the results

with the accuracy of 5 digit after the period are as follows: )\gl) = 9.91959,

/\52) = 9.89786. Thus the difference l)\gl) — )\52)| = 0.02173 is greater than
llg1 — g2|l2 = 0.018257.

3. The spectral bound of the relative error

To simplify our discussion it helps to assume that L is positive definite
which is in view of the Courant-Fischer-Poincaré minmax theorem equiv-
alent to having the lowest eigenvalue A; > 0. This can be achieved by
replacing g(z) by g(z) + A*, where X* is such that A* + A; > 0; this just
shifts all the eigenvalues up by A* without essentially changing the problem.
From now on we make the assumption stated above; so the sequence of
eigenvalues {\;}$2, from Section 2 satisfies one more inequality

(3) 0< A <Ad<A<....
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Let F denote the bounded symmetric operator F'u = (¢ — ¢)u defined for
u € L%(a,b). We begin with a straightforward lemma, an operator-norm
estimate of the relative error.

LEMMA 1. Under the above assumption the following inequality holds, for
eachk=1,2,3,..

Ak — Ak

(4) < LM - 1F]-

Proof. From Theorem 1 it follows that

Xe — Al <117 = qlloo = lF L2

We will write simply ||.|| instead of | - ||[z2) when it causes no confusion.
Remembering (3) we see that

X — i
by

1 1 -
<IFl - < IFl 5 = IF1- AT -

This completes the proof. =

Now we are in position to state the following strengthening of Lemma 1.
The bound in the next theorem is a bit sharper.

THEOREM 2. Under the assumption of this section we have, for each k =
1,2,3,...,

(5)

where p(-) denotes the spectral radius.

Proof. It is known that L=1: C([a,b]) — D exists and is a an integral oper-
ator with continuous kernel (see e.g. [16, Th. V.5.4]), hence its extension on
L?(a,b) is compact. By ([16, Th. IX 5.1]), L~1 is also positive definite, hence

it has the umque square root L~ 2 which is a positive definite operator. Let
F=L"3FL™%. Itis well known that each eigenvalue of the Sturm-Liouville

problem satisfies Poincaré’s minmax principle (see [6]), which asserts that
6 Ak = R

©) $ o g, A

where Hj, varies over any k-dimensional subspaces of D, and R[u] is the

Rayleigh quotient of (1), that is,

(Lu,w) .
(u, u)

Rlu] =
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Since (Lu,u) > 0 for 0 # u € D we can write the Rayleigh quotient of (2)
as follows
N (Lu,v) (Lu,u) (Fu,u)
7 = = . .
@ Rlu] (u,w) (u,u) 1+ (Lu,u)
It is easy to check that

u
8 = -
© Tww) ~ GO
where 0 # @ € L2([a, b)) is defined as L~ %% = u. Since F is also self-adjoint
we have

(9) (ff;g) < 1Bl = o(B).
This yields that
(10) oy < FBD iy

(@)
Since p(AB) (BA) provided that A, B are bounded we see that p(F) =
p(L=2FL~%) = p(L~'F). From the above and (7), (8), (10) it follows that

Rlu](1 - p(L™'F)) < Ru] < R[u](1 + p(L7'F)).
Applying “minmax” characterization (6) we deduce that
M(1 = p(L7TF)) < X < Me(1+ p(L71F))
and thus

which is the estimate desired. =
Let us denote by E = C([a,b]) and set

r(z) = q(z) - q(=).
Therefore if 7(z) > 0 on [a, b], the positive compact operator L™F : E —
E is irreducible (see [21, p. 269]) and hence has positive spectral radius
p(L~1F). The Krein-Rutman theorem (see [21, Th. 3.2, p. 270]) guarantees
that 1 = p(L~1F) is an eigenvalue of L~!F; it is the only eigenvalue of
L~!F whose associated eigenspace contains a positive function. Moreover
the geometric multiplicity of 1 is one, and since 7; is a pole of order 1 of
the resolvent of L' F, the algebraic and geometric multiplicities of 7; are
equal. Due to the above and as the numerical examples are involved for
the regular Sturm-Liouville problem, from now on we make the assumption
that 7(z) > 0 on [a,b]. In the general case, i.e. when r may change sign in
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[a,b] we are led to the linear eigenvalue problem with an indefinite weight
function (see [3], [17]). However, this topic exceeds the scope of this paper
and the author intends to consider this problem in another paper.

Furthermore it follows easily from the proof of the ”square root theorem”
that if we add an extra assumption that a positive operator is also compact
then its positive square root operator is compact as well. Thus we obtain
that L~3% is compact; so as the compact operators form a closed ideal we
have that F is also compact. According to the principle of related operators
for Riesz operators (see [15], [18]) we can deduce that Ag(F) = A(L71F)
for k =1,2,.... So one could expect that it would be possible to strengthen
the result in Theorem 2, namely

Ak = M| M(L7IF), k=1,2,....

(11)

However this may not be true as the following example shows:

EXAMPLE 2. Let [a, b} = [0, 6”151]. We will consider the perturbation of the

operator Lu = —u" to Lu = —u" + ZET(IIT)TU' The boundary conditions are
Dirichlet’s ones u(a) = u(b) = 0. For the unperturbed eigenvalue problem
we have the eigenvalues A\, = (52)2, k = 1,2, .. .. The eigenvalues of L are
computed as in Example 1. This example is so conceived as to have the
exact formulas for Ay (L71F) = m. Then we can present the results in
the table given below:

Bl a Yo | B | n(@R) oL E) | IL - IF)
1| 2.01334 2.99276 0.4865 0.8 0.8 49.6687
2| 8.05336 9.76398 0.2124 0.2353 0.8 49.6687
3| 18.12007 20.37210 0.1243 0.1081 0.8 49.6687
4| 32.21346 34.86920 0.0824 0.0615 0.8 49.6687
5 | 50.33353 53.29400 0.0588 0.0396 0.8 49.6687
10| 201.3341 | 205.05909 | 0.0185 0.00997 0.8 49.6687

4. Numerical examples

To provide numerical confirmation of the preceding results of Section 3
we intend to present two more examples. It is convenient for the purpose
of this section to choose the interval I = [a,b] = [0,n]. In each of these
examples we consider the perturbation of the operator L, which is simply
L= —ad;z,. Since the relative error ¢ is of order O(k~?), we will examine
only the case when k£ =1,2,3.
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EXAMPLE 3. In this example we perturb the operator L = -di:7 to the
operator L = —di:; + ¢ with the same boundary conditions u(0) = u(w) = 0,
where the function ¢ = g(z) is as follows:
2z, for z € (0,1/2]
glz) =<1, for z € [1/2,7m — 1/2]

2(r—z), forze[r—1/2,7).
For the unperturbed Sturm-Liouville problem we have the eigenvalues Ax =

k? and the eigenfunctions uy(z) = \/gsin kxz (k=1,2,...). The method
of computation remains the same and the results are presented in the table
given below:

k Ak Asde | p(LTIF) | LY |IF
1 | 1.98691 | 0.98691 | 0.98742 1
2 | 4.95277 | 0.23819 | 0.98742 1
3 | 9.91021 | 0.10113 | 0.98742 1

EXAMPLE 4. If we consider the perturbed equation —u" + eu = Au with
boundary conditions u(0) = u(7) = 0, € > 0 we obtain the eigenvalues A\ =

k? +e. Further p(L2F) = L7 - [|Fll = € and | 3228 | = \,(L1F) = &,
k=1,2,.... Hence for k = 1 equality |&%l = p(L™1F) = € holds.

5. Conclusion

To sum up, we have shown in Section 3, using accurate methods, that the
absolute and relative errors of eigenvalues Ax can be bounded independently
of k when the data (function g¢) are perturbed to function g. For numerical
analysis, the inequality in Theorem 1 provides bounds on the absolute differ-
ences |A\; — A\g| between approximate eigenvalues Ay, and the true eigenvalues
Ak of the eigenproblem (1). Such bounds are sometimes unsatisfactory for
small eigenvalues, which thereby suffer worse relative uncertainity than large
ones. However Theorem 2 yields information about such uncertainity and
its estimation of the relative error for the eigenvalues A\x (k=1,2,...) is in
some sense sharp (see Section 4).

6. Possible extensions
The idea of our proof can be extended to higher dimensions, so one can
consider the eigenvalue problems of the form

Lu(z) + Mu(z) =0, zeD,
u(z) =0, ze€dD.
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Here L is a linear second order selfadjoint elliptic differential operator, D
is a bounded domain in R? and 8D is the boundary of D. Under sufficient
smoothness conditions on the coefficients in L and 8D, an infinite sequence
of real eigenvalues, Ay, say

MMl

exists. Thus obtaining the bounds for the relative error of the above eigen-
value problem could be an interesting question.

Despite the negative answer to the validity of the bound with the L2-
norm in Theorem 1, Example 1 seems to be of independent interest. Namely,
consider the equations

—u" + spu = APy,
with given separated boundary conditions. Let us assume that s, € L%(]0, 1]),
n=0,1,2,... and ||s, — solj2 — 0. It is of interest to know whether for each

fixed k € {1,2,...}: /\,(c") — /\560) as n — co. One may even ask if this stays
still true uniformly with respect to k, i.e. whether the following estimation
holds

|/\§cn) _ A£°)| < const - ||sp — Sol|2-
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