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A NOTE ON THE RELATIVE ERROR FOR THE 
EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM 

1. Introduction 
This work is motivated as an attempt to deal with an estimation of 

the relative error for the eigenvalues of the Sturm-Liouville problem. We 
are interested in finding upper bounds for such error. The uniform spectral 
continuity of this operator was treated in [14] in very simple manner. It is 
worth pointing out that the knowledge of the bounds for these two errors 
allows us to consider the eigenvalue problem for Sturm-Liouville operator 
in normal form to be perfectly posed for each eigenvalue regardless of its 
index. 

Similar problem in the finite dimensional space setting was considered in 
[8] and [22]. Yet another approach to the bounds for the absolute errors of 
eigenvalues by the Gerschgorin estimate under unitary similarity has been 
recently investigated in [24]. 

2. Notation and the case of the absolute error 
Suppose that 

V = {u € H2(a, b) : au(a) + a'u'{a) = 0 , (3u{b) + P'u'(b) = 0} . 

The constants a, a', ¡3, /?' are assumed to be real with a 2 + a ' 2 > 0, f32+f3'2 > 
0, and the interval [a, 6] is finite. 

For u e V , let 
Lu = — u" + qu, 

Lu = — u" + qu, 

where the real-valued functions q,q are assumed to belong to C([a, 6]). Now 
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consider the eigenvalue problems for operators L and L: 

(1) Lu = A u, ueV, 
(2) Lu = Au, ue V. 

It is known that the operators L and L are self-adjoint (see [23]), and 
eigensystems (1) and (2) with the separated boundary conditions given, 
are regular and have sequences of simple real distinct eigenvalues {Afcj^j , 
{Afc}^ such that 

A 1 < A 2 < A 3 < . . . and Ai < A2 < A3 < . . . , 

and corresponding sequences of orthonormal eigenfunctions {ufc}^!, 
{^fc}fcLi s u c h that ||ufc||2 = HSfclb = 1 (see [5]). With this notation we 
have the following theorem (see [14], [20] for more details). 

THEOREM 1. If \\q - = supx(E[a)6] \q(x) - g (X) | < e, then |Afe - Afc| < E, 
for each k = 1, 2 ,3 , . . . . 

The important point to note here is that the estimation in Theorem 1 is 
sharp (see e.g. [14]). The bound with the L2-norm is not valid; that is the 
estimation |Afc — < — g||2, where 11ia||2 = (/^ dx)1^2 does not hold, 
contrary to what was claimed in [13]. Here is an example. 

EXAMPLE 1. Consider two equations — u" + qi(x)u = Au (i = 1,2) on the 
interval [0,1], where q\{x) = 0.1 • x and <72(2:) = 0.1 • x2 with the same 
boundary conditions u(0) — u( 1) = 0. We compute an approximation of the 
smallest eigenvalue of these equations. To do this we use the finite element 
method with the AAdHP correction (see [2]); for other alternative numerical 
schemes we refer the reader to [1], [4], [7], [11], [12] and [19]. Then the results 
with the accuracy of 5 digit after the period are as follows: A = 9.91959, 
A^2) = 9.89786. Thus the difference lA^ - A^2)| = 0.02173 is greater than 
1191-92112 = 0.018257. 

3. The spectral bound of the relative error 
To simplify our discussion it helps to assume that L is positive definite 

which is in view of the Courant-Fischer-Poincare minmax theorem equiv-
alent to having the lowest eigenvalue Ai > 0. This can be achieved by 
replacing q(x) by q(x) + A*, where A* is such that A* + Ai > 0; this just 
shifts all the eigenvalues up by A* without essentially changing the problem. 
Prom now on we make the assumption stated above; so the sequence of 
eigenvalues {Afc}^=1 from Section 2 satisfies one more inequality 

(3) 0 < Ai < A2 < A3 < • • • • 
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Let F denote the bounded symmetric operator Fu = (q — q)u defined for 
u € L2(a,b). We begin with a straightforward lemma, an operator-norm 
estimate of the relative error. 

LEMMA 1. Under the above assumption the following inequality holds, for 
each k = 1, 2, 3, . . . , 

(4) 
AFC — A K 

Xk 
< I l i - l - M -

P r o o f . Prom Theorem 1 it follows that 

I Afc — Afc| < \\q — gHoo = ||F||[£,2]. 

We will write simply ||.|| instead of || • 11[x,2] when it causes no confusion. 
Remembering (3) we see that 

Afc — Afc 
Afc 

This completes the proof. • 
Now we are in position to state the following strengthening of Lemma 1. 

The bound in the next theorem is a bit sharper. 

THEOREM 2. Under the assumption of this section we have, for each k = 
1,2,3, . . . , 

(5) 
Afc — Afc 

Afc 

where p(-) denotes the spectral radius. 

P r o o f . It is known that L - 1 : C([a, 6]) —» V exists and is a an integral oper-
ator with continuous kernel (see e.g. [16, Th. V.5.4]), hence its extension on 
L2(a,b) is compact. By ([16, Th. IX.5.1]), L~l is also positive definite, hence 
it has the unique square root L~2, which is a positive definite operator. Let 

is well known that each eigenvalue of the Sturm-Liouville 
problem satisfies Poincare's minmax principle (see [6]), which asserts that 

(6) Afc = min max Mul, 
HkCT>OjiueHk 

where Hk varies over any A>dimensional subspaces of V, and i?[u] is the 
Rayleigh quotient of (1), that is, 

R[u] = 
(Lu, u) 
(u,u) ' 
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Since (Lu, u) > 0 for 0 ^ u 6 V we can write the Rayleigh quotient of (2) 
as follows 

(7) i2[u] = 

It is easy to check that 

(8) 

(Lu, u) (Lu, u) 
1 + 

(Fu, u) 

(u,u) (u,u) \ (Lu,u) 

(Fu, u) (Fu, u) 

(Lu, u) (u, u) ' 

where 0 u € L2([a, 6]) is defined as L ~ % u — u. Since F is also self-adjoint 
we have 

(9) 

This yields that 

(10) 

(Fu, u) 

(u,u) 
<\\F\\=p(F). 

, (Fu, u) . ~ 

Since p(AB) = p(BA) provided that A, B are bounded we see that p(F) — 
p(L-?FL~?) = /9(L_1F). From the above and (7), (8), (10) it follows that 

R[u]( 1 - p(L _ 1 F)) < ^[u] < i?[u](l + p(L_ 1F)). 
Applying "minmax" characterization (6) we deduce that 

Afc(l - p(L"xF)) < Afc < Afc(l + p ^ F ) ) 
and thus 

Afc — Afc 
Afc 

< P ^ F ) , 

which is the estimate desired. • 
Let us denote by E — C([a, 6]) and set 

r(x) = q(x)-q(x). 

Therefore if r(x) > 0 on [o, 6], the positive compact operator L _ 1 F : E —> 
E is irreducible (see [21, p. 269]) and hence has positive spectral radius 
p(L~1F). The Krein-Rutman theorem (see [21, Th. 3.2, p. 270]) guarantees 
that t\ = p(L~1F) is an eigenvalue of L ~ l F \ it is the only eigenvalue of 
L~1F whose associated eigenspace contains a positive function. Moreover 
the geometric multiplicity of Ti is one, and since t\ is a pole of order 1 of 
the resolvent of L~lF, the algebraic and geometric multiplicities of t\ are 
equal. Due to the above and as the numerical examples are involved for 
the regular Sturm-Liouville problem, from now on we make the assumption 
that r(x) > 0 on [a, 6]. In the general case, i.e. when r may change sign in 
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[a, b] we are led to the linear eigenvalue problem with an indefinite weight 
function (see [3], [17]). However, this topic exceeds the scope of this paper 
and the author intends to consider this problem in another paper. 

Furthermore it follows easily from the proof of the " square root theorem" 
that if we add an extra assumption that a positive operator is also compact 
then its positive square root operator is compact as well. Thus we obtain 
that L~ 2 is compact; so as the compact operators form a closed ideal we 
have that F is also compact. According to the principle of related operators 
for Riesz operators (see [15], [18]) we can deduce that A k(F) = A f e(L_1F) 
for k = 1, 2, — So one could expect that it would be possible to strengthen 
the result in Theorem 2, namely 

(11) 
Afc — A k 

<1X^-^)1, k = 1 ,2 , . . . . 

However this may not be true as the following example shows: 

EXAMPLE 2. Let [a, 6] = [0, ^q 1 ] - We will consider the perturbation of the 
operator Lu = — u" to Lu = —u" + u. The boundary conditions are 
Dirichlet's ones u(a) — u(b) = 0. For the unperturbed eigenvalue problem 
we have the eigenvalues A& = (^p)2, k = 1 ,2 , . . . . The eigenvalues of L are 
computed as in Example 1. This example is so conceived as to have the 
exact formulas for A k { L ~ 1 F ) = fe2+o 25 • Then we can present the results in 
the table given below: 

k Afc Afc A k i L ^ F ) p i L - ' F ) i i ^ n - m i 
1 2.01334 2.99276 0.4865 0.8 0.8 49.6687 
2 8.05336 9.76398 0.2124 0.2353 0.8 49.6687 
3 18.12007 20.37210 0.1243 0.1081 0.8 49.6687 
4 32.21346 34.86920 0.0824 0.0615 0.8 49.6687 
5 50.33353 53.29400 0.0588 0.0396 0.8 49.6687 
10 201.3341 205.05909 0.0185 0.00997 0.8 49.6687 

4. Numerical examples 
To provide numerical confirmation of the preceding results of Section 3 

we intend to present two more examples. It is convenient for the purpose 
of this section to choose the interval I — [0,6] = [0,7r]. In each of these 
examples we consider the perturbation of the operator L, which is simply 
L = —j^i•• Since the relative error is of order 0(k~2), we will examine 
only the case when k = 1,2,3. 
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,2 
EXAMPLE 3. In this example we perturb the operator L = to the 
operator L = --¿¿i + q with the same boundary conditions u(0) = u(n) — 0, 
where the function q = q(x) is as follows: 

' 2x, for x 6(0,1/2] 
q(x) = 1, for x e [1/2, TT — 1/2] 

2(7t — x), for x E [tt - 1/2,7I-). 
For the unperturbed Sturm-Liouville problem we have the eigenvalues Ak = 
k2 and the eigenfunctions Uk{x) = sin kx (k = 1,2,. . .) . The method 
of computation remains the same and the results are presented in the table 
given below: 

k Âfc Afc-Afc Afc p{L~lF) WL-'W • M 
1 1.98691 0.98691 0.98742 1 
2 4.95277 0.23819 0.98742 1 
3 9.91021 0.10113 0.98742 1 

EXAMPLE 4. If we consider the perturbed equation — u" + eu = Xu _with 
boundary conditions u(0) = u(7r) = 0, e > 0 we obtain the eigenvalues A& = 
k2 + e. Further p(L~1F) = HL^H • ||F|| - e and - A fc(L_1F) = 

k = 1,2, . . . . Hence for k = 1 equality = p(L~1F) = e holds. 

5. Conclusion 
To sum up, we have shown in Section 3, using accurate methods, that the 

absolute and relative errors of eigenvalues Afc can be bounded independently 
of k when the data (function q) are perturbed to function q. For numerical 
analysis, the inequality in Theorem 1 provides bounds on the absolute differ-
ences |Afc — Afc| between approximate eigenvalues Ak and the true eigenvalues 
A fc of the eigenproblem (1). Such bounds are sometimes unsatisfactory for 
small eigenvalues, which thereby suffer worse relative uncertainity than large 
ones. However Theorem 2 yields information about such uncertainity and 
its estimation of the relative error for the eigenvalues Afc (k = 1,2, . . . ) is in 
some sense sharp (see Section 4). 

6. Possible extensions 
The idea of our proof can be extended to higher dimensions, so one can 

consider the eigenvalue problems of the form 
Lu(x) + \u(x) = 0, x G D, 

u(x) = 0, x € dD. 
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Here L is a linear second order selfadjoint elliptic differential operator, D 
is a bounded domain in Rd and dD is the boundary of D. Under sufficient 
smoothness conditions on the coefficients in L and dD, an infinite sequence 
of real eigenvalues, Ak, say 

Ai < A2 < A 3 < • • • , 

exists. Thus obtaining the bounds for the relative error of the above eigen-
value problem could be an interesting question. 

Despite the negative answer to the validity of the bound with the L2-
norm in Theorem 1, Example 1 seems to be of independent interest. Namely, 
consider the equations 

-u" + snu = A ( n )u, 
with given separated boundary conditions. Let us assume that sn e L2([0,1]), 
n = 0 ,1 ,2 , . . . and ||sn — S0II2 _Hk 0. It is of interest to know whether for each 
fixed k € {1, 2, . . .}: A ^ —» A ^ as n —> 00. One may even ask if this stays 
still true uniformly with respect to k, i.e. whether the following estimation 
holds 

l^fcn) - - c o n s t ' IIs" _ H2-
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