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ON CONNECTED HALF-LINEAR
DIFFERENTIAL EQUATIONS

Abstract. In this paper connections between several classes of “half-linear” differ-
ential equations with or without delays are established. By means of these connections,
existence of eventually positive solutions can be inferred from the properties of either one
of these families of equations.

1. Introduction

To motivate our concerns in this paper, let us first look at the following
four differential equations in a formal manner:

(1) ((z(8) —2(t ~ 7)) + q(t)z*(t — 0) =0,

(2) ((z'(£)*) + Q(t)z*(t —0) =0,

3) (((z(t) + p(t)z(t — 1)) )*) + Q(t)z*(t — o) =0,
and

(4) (&)%) + Q(t)z*(t) = 0,

where a is a quotient of positive odd integers and 7 a positive number. First
of all it is clear that an obvious relation exists between (2) and (4) by taking
o = 0 in (2). Next, if we divide equation (1) by 7%, then

((z(t) —z(t — T))a)/ + qT(ctx)za(t —o)=0,

Ta
so that one of its “limiting equation” as 7 — 0 occurs to be in the form
(2) for some appropriate function @Q(t). Next, if we take p(t) = 0 in (3), we
also obtain equation (2). The above observations suggest that qualitative
properties of the above equations are related when appropriate conditions
are imposed.

1991 Mathematics Subject Classification: 34A35.
Key words and phrases: half-linear differential equations, eventually positive solutions,
delay.



346 G. Zhang, S. S. Cheng

Several results related to equation (4) have already been reported by
Kusano and Norio [1], and Li and Yeh {2, 3, 4] and others (5, 6, 7]. Therefore,
once we have made clear the relationships between these equations, the
known results will immediately yield qualitative information for the others.
In this paper, we will be mainly concerned with the relations between the
eventually positive solutions of these equations. In order to obtain these
relations, the relations between these equations and their companion some
functional inequalities will be needed first.

We remark that if z = z(¢) is a “solution” of one of the above equations,
then a constant multiple of it is also a solution of the same equation. For
this reason, some authors have called these equations half-linear.

2. First connection
We first consider the following functional differential equation

(5) ((z(t) - p(t)z(t — 7)*) +q(t) f(z(t —0)) =0, >0,
and one of its companion functional differential inequality
(6) ((z(t) = p()z(t = 7))*) + a(®)f(z(t = 0)) <0, ¢2>0,

where a is a quotient of positive odd integers, 7 is a positive number, o is
a nonnegative number, p and ¢ are continuous functions defined on [0, o)
such that g(¢) > 0 for ¢ > 0 and g(tx) > 0 for some increasing sequence {t;}
which diverges to co. The function f : R — R is assumed to be continuous
and nondecreasing with f(z) > 0 for z > 0.

A function z = z(t) is said to be a solution of (5) if it is continuous for all
large t and ((z(t) —p(t)z(t —7))®)’ is continuous and equals —q(t) f(z(t — o))
for all large t. A solution of (6) is similarly defined.

LEMMA 1. Suppose p = p(t) is nonnegative for t > 0 and suppose there is
some positive number N such that p(N + j7) < 1 for j = 0,1,2,... Then
for any eventually positive solution z = z(t) of (6), the function

y(t) ==z(t) —p(t)z(t—7), t20,
will satisfy y'(t) <0 and y(t) > 0 for all large t.

Proof. In view of (6) and the properties of the functions g and f, [y*(¢))’
is eventually nonpositive and does not vanish identically for large ¢. Thus
y(t) is of constant sign and y*~!(t) is positive for all large ¢. Therefore,
y'(t),ay® 1(t)y'(t) < 0 eventually. Suppose to the contrary that y(t) is
eventually negative. Then there exists ¢; such that z(t) > 0,3'(¢) < 0 and
y(t) < y(t1) < 0 for ¢t > t;. That is,

z(t) < y(t1) +p(t)z(t — 1), t>t.
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Choosing k* so large that N + k*r > t;, we have
(N + k't + j7) = y(N + k*7 + j7)
+p(N + k*1 + jr)z(N + k*r + (F — 1)7)
<ylt)+z(N+k*'7+ (G- 1)7)
<...<jylt) +z(N+k*r), ;>0
Letting 7 tend to infinity, we see that the right-hand side diverges to —oo,

which is contrary to our assumption that z(t) > 0 for ¢ > t;. The proof is
complete.

THEOREM 1. Suppose p = p(t) is nonnegative for t > 0 and suppose there is
some positive number N such that p(N + j7) <1 for 5 =0,1,2,... Suppose
further that either p(t) > 0 fort > 0, or, 0 > 0 and q(t) > 0 fort > 0. Then,
equation (5) has an eventually positive solution if and only if the functional
differential inequality (6) has an eventually positive solution.

Proof. It suffices to show that if (6) has an eventually positive solution z(t),
then so does the equation (5). To see this, note that by means of Lemma 1,
we may assume that there is M such that for ¢ > M — max(7,0), we have
z(t) > 0,z(t — 1) > 0,z(t — o) > 0 and y(t) = z(t) — p(¢t)z(t — 1) > 0. In
view of (6),

@*(®) < —q(®)f(z(t-0)), t=M,
so that by integrating from ¢ to infinity, we obtain

oo

(7 z(t) > p(t)z(t — 1) + ( S q(s)f(z(s - 0)) ds)%, t> M.

Let Q be the set of all real functions defined on [M — max(7, ), 00). Define
an operator F : ! — by

(Fw)(t) =1
for M — max(7,0) <t < M, and

o0

(Pu)(®) = e {pOs(t = u(t =) + (] a(6)(als = pu(s - o)) ds) "}

t

for t > M. Consider the sequence of successive approximations: w(o)(t) =1
and wx41)(t) = (Fwy)(t) for £ =0,1,2,... Clearly, in view of (7),

OS'w(k+1)(t)Sw(k)(t)$1, t>Mk=0,1,2,...

Thus as k — 0o, w) converges pointwise to some nonnegative function w(t),
and

z(t)w(t) = p(t):v(t—'r)w(t—'r)+( S q(s) f(z(s—o)w(s—0)) ds)é, t>M.

s
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Let v(t) = z(t)w(t) for t > M — max(7,0). We assert that v(t) > 0 for
t > M —max(7,0). Indeed, since v(t) = z(t) > 0 for M —max(r,0) <t < M,
we may assume that v(¢) > 0 for M — max(7,0) < t < t*, where t* > M,
and v(t*) = 0. But then

oo

0= (") (t") = p(t")a(t" —Tw(t" — 1)+ ( | a(s)f(a(s - o)w(s - 0)) ds)

t*

R =

Thus p(t*) = 0 and ¢(s)f(z(s — o)w(s — o)) = 0 for s > t*, which is a
contradiction. Finally, it is easily verified that v(¢) is a solution of (5). The
proof is complete.

3. Second connection
Next, we consider the following differential equation

8) (@)% +QW)f (=) =0, t20,
and one of its companion differential inequality
(9) ((@'@)*) + Q@) f(=() <0, 20,

where a is a quotient of positive odd integers, @ = Q(¢) is a continuous
function defined on [0, 00) such that @Q(¢t) > 0 for ¢ > 0 and Q(¢x) > 0 for
some increasing sequence {t;} which diverges to co. The function f : R —» R
is assumed to be continuous and nondecreasing and satisfies f(z) > 0 for
z > 0.

A function z = z(¢) is said to be a solution of (8) if it is continuous for
all large ¢t and ((z'(t))®)’ is continuous and equals —Q(t) f(z(t)) for all large
t. A solution of (9) is similarly defined.

THEOREM 2. The equation (8) has an eventually positive solution if and only
if the differential inequality (9) has an eventually positive solution.

Proof. It suffices to show that if (9) has an eventually positive solution z(t),
then so does equation (8). To see this, note that in view of (9), ((z'(¢))*)
is eventually nonpositive and does not vanish identically for large t. Thus
Z'(t) is of constant sign for all large t. If 2/(t) < 0 for all large ¢, then there
is some number M such that z(t) > 0,z'(t) < 0 and (z/(t))* < (z'(M))* for
t > M. Hence

¢

z(t) =z(M)+ | 2'(s)ds <z(M)+ ' (M)t - M), t>M.

M
As t — oo, the right hand side tends to —oo, which is a contrary to the fact
that z(t) > 0 for ¢t > M. In other words, z'(t) > 0 for all large t.
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We may now suppose there is some number T such that z(¢) > 0 and
z'(t) > 0 for t > T. Integrating (9) twice, we obtain

o0

2(t) 2 2(1) + | { | Q) @(w) du} ™ ds
T s

for t > T. Let Q be the set of all real functions defined on [T, 00). Define an
operator F : Q — 2 by

t oo 1
(Fw)(t) ==(T) + | { | Q) f(w(w)du}"ds, ¢>T.
T s
Consider the sequence of successive approximations: w(g)(t) = z(t) fort > T,
and w(x41)(t) = (Fw)y(t) for k=0,1,... and ¢t > T. Clearly, we have
0 < z(T) Swpy1)(t) Swy(t) <z(t), t>T, k=0,12,...

Thus as k — oo, w)(t) converges pointwise to some positive function w*(t),
and

w*(t) = o(T) + | {TQ(u) f(w*(u))du}%?ds, t>T.
T s

In view of this, it is easily verified that w*(¢) is a solution of (8). The proof
is complete.

4. Third connection
We now set p(t) = 1 in the equation (5) and Q(t) = gq(t)/7® in (8) to
obtain

(10) ((2(t) = z(t = 7))%) + q(t)f(z(t - 0)) =0, 20,
and

(11) (@ + Yse@r=0, t20,
respectively.

THEOREM 3. The equation (10) has an eventually positive solution if and
only if the equation (11) has an eventually positive solution.

Proof. Let z(t) be an eventually positive solution of (10) and let y(t) =
z(t) — z(t — ) for t > 0. By Lemma 1, we may assume that z(t — 7) >0,
y(t) > 0 and 3/(t) <0, for t > M — max(7,0). For any t > M + 7 + o, there
is a positive integer k£ such that
t—o—kre[M-r,M].
Thus we have '
k-1

a:(t—a)=z(t—a-k7’)+2y(t—a—j'r)
=0
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k—1
1
>  mi £)+ = —o—j
—M_Tg‘?gmm(Hrf;Ty(t o — j7)
1 t—SU
> min  z(t)+ - y(s)ds,
M-7<t<M TM+21'

where the last inequality holds since y'(t) < 0 for t > M — max(r, o). Note
that

t—o t—o
S y(s)ds > s y(s)ds,
M42T M+42740
thus
1 t—-o
z(t —o) > M—Elgl?SMz(t) + = S y(s) ds.
M+42r40
Let
1 t—o
Z(t) = i t - d
(8) =, min () +~ M+§T+ay(8) s

for t > M + 27 + 0. Then

T(Z'(£))°] = —q(®)f((t — 0)) < —q(t) f(Z(¢))
for all large t, as desired.
Conversely, let w(t) be an eventually positive solution of (11). It is clear

that w(t) is eventually increasing and concave. We may thus assume that
0 < 7w'(t) < w(t —7) for t > T, where T is a positive integer. Let

Tw'(t) t>T,
Ht)y=3 ¢—-T+n)w'(T)T-7<t<T,
0 t<T—rT,

and set
oo
u(t) = ZH(t —17).
i=0
In view of the definition of H (), it is clear that 0 < u(t) < oo for t > T — 7,
wt)—u(t—-7)=H@Et)=71v'(t), t>T

and

_ '
T—nrlsa'xth u(t) = Tw'(T) > 0.

For any t > T'+0, there is a positive integer k such that t—kr—o € [T—7,T).
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Thus
k-1
u(t — o) =u(t—a—k1’)+’rZw'(t—a—z’T)
i=0
t—oc
)
< T—Tg<Tu(t) + S w'(s)ds
- T-7
¢
<t'(T)+ | w'(s)ds
T-r
= 7w (T) + w(t) — w(T — 7) < w(d).
Finally,

[(u(t) - u(t — )% = 7°[(@'())*] < ~a(t)f(w(t))
< —q(t)f(u(t — o))
for all large t. The proof is complete.

Since o is an arbitrary nonnegative number in (10), we see that if we
replace o by o1 > 0 and o2 > 0 in (10) then we obtain

((z(t) —z(t - 7))%) +q®)f(z(t - 1)) =0, t20,
and
((z(t) —z(t — 7)) + ¢(®)f(z(t —01)) =0, ¢20.
We see that one of these two equations has an eventually positive solution
if and only if the other one has an eventually positive solution.
As another immediate corollary, if we replace the function f(z) with
f(u) = u® in (10) and (11) we obtain
((z(t) — z(t —7))*) + q(t)z*(t —0) =0, ¢2>0,
and
(@) + ey =0, 120
Then we see that one of these two equations has an eventually positive

solution if and only if the other one has an eventually positive solution. In
particular, note that the equation

(@)Y +(55) et =0

has an eventually positive solution z(t) = t®/(¢+1) thus the following equa-
tion

(z(t) — z(t — 7)) + 7 ( )a 7 g%t —0) =0

has an eventually positive solution.

[0
a+1
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5. Fourth connection

We now consider the following functional differential equation
12) (=) +p®)z - 7)) +at)f(z(t—0))=0, 20,
where o is a quotient of positive odd integers, 7 is a positive number, o is
a nonnegative number, p and ¢ are continuous functions defined on [0, 0c0)
such that g(t) > 0 for ¢ > 0 and ¢(¢;) > 0 for some increasing sequence {tx}
which diverges to co. The function f : R — R is assumed to be continuous
and nondecreasing and satisfies f(z) > 0 for z > 0.

A function z = z(t) is said to be a solution of (12) if it is continuous for all
large t and (((z(t) + p(t)z(t — 7))')*) is continuous and equals —q(¢) f(z(t —
o)) for all large t.

THEOREM 4. Suppose that 0 < p(t) < 1 fort > 0 and f(zy) > T f(z)f(y)
for z,y > 0 and some T' > 0. If (12) has an eventually positive solution,
then the equation

(13) (/@)% +Ta(t) f(1 -~ p(t — 0)) fy($)) = 0
has an eventually positive solution as well.
Proof. Let z(t) be an eventually positive solution of the equation (12) such
that z(¢) > 0, z(t — 7) > 0 and z(t — o) > 0 for t > ¢t; > max(7,0). Set
(14) Z(t) = z(t) + p(t)z(t — 7).
Since p(t) > 0 for ¢ > 0, we see that Z(t) > 0 for ¢t > t;. In view of
((Z'(t))?) = —q(t)f(z(t — o)) < 0 and the assumption on g, we see that
(Z'(t))* is non-increasing for ¢ > t; and of constant sign for all large t. We
assert that Z'(t) > 0 for all large t. Otherwise, Z'(t) < 0 for ¢t > t2 > ¢;. In
view of (12),

Z(t) < Z(t2) + Z'(t2)(t — t2)

and hence we see that lim;_,o, Z(t) = —o0o. But this is a contradiction.
Now since we have shown that Z(t) > 0 and Z’(t) for all large t, then
by our assumptions on f,
f@(t—0)) 2 f(Z(t - o) —p(t —o0)z(t -0 — 7))
> £(2(t - 0) - p(t = 0)Z(t ~ o — 7))
> f(Z(t— 0 — 1)~ plt — 0)Z(t — o — 7))
2Tf(1-p(t—0))f(Z(t—0—7)).
Thus, in view of (12), we have
((Z')*) +Tg(t)f(1—p(t - 0))f(Z(t~0o 7)) <O
for all large ¢. But then by Theorem 2, we see that the equation (13) has an
eventually positive solution. The proof is complete.
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THEOREM 5. Suppose that —1 < p* < p(t) < 0 fort > 0 and f(zy) >
Tf(z)f(y) for z,y > 0 and some I’ > 0. If (12) has an eventually positive
solution which satisfies liminf; o, z(t) = w > 0, then the following equation

(W®)%) +Ta@)f(1-pt— o) fly(t—7—0))=0
has an eventually positive solution.

Proof. Let z(t) be an eventually positive solution of equation (12). Set
Z(t) = z(t) + p(t)z(t — 7) as in (14). In view of ((Z'(t))?) = —q(t) f(z(t —
o)) < 0 and the assumption on ¢, we see that Z’(t) and Z(t) are eventually
of constant sign.

We first assert that Z’(t) > 0 eventually. Suppose to the contrary that
Z'(t) < 0 for all large t. We assert that Z(¢) is eventually positive. Otherwise,
there would be positive numbers N and £ such that Z(t) < —f fort > N.
Hence

zt)=—-pt)z(t—7T)+ Z(¢) <z(t-T)+Z(t)<z(t—7)-p
for ¢ > N. By induction, it is easy to see that
c(Jr+ M) < Z(Gr+ M) +z((j - 1) + M)
SZr+M)+Z(G-)+M)+z(-2)+ M)
<. <—jB+Z(M)

for j > 1. By taking j — oo, the right-hand side will be negative, which is
a contradiction.

Thus there is some T > 0 such that Z(¢t) >0, Z'(t) <0 and [(Z'(t))*]' <0
for t > T. In view of (12),

Z(t) < Z/(T)(t - T) + Z(T).

But then by taking ¢ — oo, the right hand side is negative, which is a
contradiction.

Now since we have shown that Z'(¢) > 0 eventually, we assert that Z(¢) is
again eventually positive. Suppose to the contrary that Z(¢) < 0 eventually.
Then lim;_, Z(t) = v < 0. However, since

z(t+71)—Z(t+71)=—pt+71))z(t) < —p*z(t),
thus by taking limit inferior on both sides, we obtain
w—7v< —-piw.
Thus v> (1 + p*)w > 0, which is a contradiction.
Since we have shown that Z(t) > 0 and Z’(t) > 0 for all large t, we are

in the same situation as in last stage of the proof of Theorem 4. The rest of
the proof is the same and it can be omitted.
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