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A NOTE ON THE ABSTRACT 
CAUCHY-KOVALEVSKAYA THEOREM 

Abstract. We give a version of the abstract Cauchy-Kovalevskaya Theorem for the 
Cauchy problem 

u = A(t,u), u(0) = uo 

when A is not necessaxily a Lipschitz continuous operator. The operator A(t, u) = 
F(t, u,u) verifies 

1) F : I x Britji x BRIR —• Xs for s < r < ro (ri < TQ is fixed), F(t, u, •) is Lipschitz 
continuous, and F(t, •,•) is a-Lipschitz continuous 

or 
2) F : I x x Xr —<> Xs for s < r < ro ( n < ro is fixed), and F(t,-,-) is 

a-Lipschitz continuous, 
where BrR denotes the ball of radius R in XT. 

We prove the result by using Tonelli approximations and fixed point theorems. 

1. Introduction 
Let us consider the Cauchy problem 

f u ' = i 4 ( i , u ) , t e l , 

\ u(o) = «o e xT0 

where A(t, •) is a continuous (but non necessarily Lipschitz continuous) 
operator in a scale of Banach spaces (Xr)o<r<r0 ( s e e Definition 2.1). 

Many authors considered this problem under a Lipschitz condition; i.e., 
there exist ^ C, M > 0 such that for s < r 
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Brin(tto) is the ball in Xr of radius R centered in UQ 
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(1.2) 

\\A(t,u) - < ™l|r, Vu,w e BTIR(Uo) 
r — s 

M M ) | | . < M 
TQ ~ S 

(see for example [3], [8], [10], [11], [12], for a bibliography we refer to [7]). 
Moreover some authors proved that (1.1) has a local solution under non-

Lipschitz assumptions. 
K. Deimling [6] assumed that 

A(t,u) = B(t)u + f(t, u), 

where B(t) : Xr —• Xs (s < r) is a continuous linear operator for every t € I 
and f : I x Br>n —> Xro (r < ro), is a uniformly continuous regularizing 
function such that for some constant K there is 

aro{f{t,B))<Kar{B) (r < r0), (uq) 

where a r is the Hausdorff noncompactness measure in Xr (see Definition 
2 . 2 ) . 

Furthermore some authors ([4], [9], [14]) treated (1.1), by assuming con-
ditions of "compact type", i.e., they supposed that the imbeddings XT Xs 

(s < r) are compact, and that A is a continuous function, verifying: 

if H r < — H. Begehr [4]; 
r — s r — s 

(1.3) < M + C | H | r V i e / , uexr, V. I. Nazarov [9]; 
r — s 

for some 0 < e < 1 and UQ = 0: 

l | A ( t , u ) | | , < c M : + , M v t e / , ueBrtR(o) 
r — s (ro — s)e 

in H. Reissig [14] (he treated some more general systems) Later on in [7] 
it was considered the case in which the imbeddings XT Xs (s < r) are 
not necessary compact and A : I x XT —• Xs (s < r) is a Caratheodory 
(weakly Caratheodory) operator such that: 

1. A verifies (1.3); 
2. there exists a constant K such that for every bounded set U C Xr 

as(A(I x U)) < K 

2) A is Caratheodory (weakly Caratheodory) if A(t, •) is continuous (weakly continuous) and 
A(-,u) is measurable (weakly measurable). 
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In this paper we give a generalization of the results of [6] and [7]. 

T H E O R E M 1.1 . (see [6]) Let (Xr)o<r<r0 be a scale of Banach spaces and 
0 < ri < 7*0- Let us assume that A(t,u) = B(t,u,u) and that: 

(i) B :I x BTUR{UQ) x BR<R(U0) XS (s < r ) ; 
(ii) B(-,v,u) is measurable and B(t, •, •) is continuous; 

(iii) B(t,v, •) is uniformly Lipschitz continuous (i.e. verifies (1.2) indepen-
dently from v); 

(iv) there exists a constant K such that 3) for every bounded set U C 
Br,R(uo)> and v ^ BritR{u0): 

l i m s u p a 3 ( B ( J , V , U ) ) < K{^^- + ari{V)) (s<r). 
r
 ~

 s 

Then problem (1.1) has at least a local solution. 

The second one generalize [7]. 

T H E O R E M 1.2 . Let (Xr)o<r<r0 be a scale of Banach spaces. Let 0 < r\ < RO-
Let us suppose that A(t,u) = B(t,u,u) and that: 

(i) B : I x BritR{u0) x l r - » l s (s < r), 
(ii) B(-,v,u) is measurable and B(t,-,-) is continuous, 

(iii) there exist C,M > 0 such that 

llB(*,t;,u)||,< C H l r + M ^ ^ ^ v € B ( u q ) ) j 
r — s 

(iv) there exists a constant K such that for every bounded set U C BTJR{Uo), 
and V C BTi<R(U0) 

l imsupa s (B{J , V, U)) < + aTl(V)) (s < r). 
|j|-»o r - s 

Then problem (1.1) has at least a local solution. 

Let us remark that in the case of a single Banach space the assumption 
(iv) of Theorems 1.1, 1.2 was introduced by G. Pianigiani [13]. 

These results may be applied to prove the existence of local analytic 
solutions of systems of PDE. For example by using Theorem 1.1, setting 4) 

B(t,V,U) = A(\\vl\\l...,\\vn\\2
2)Ux, 

we can prove that the problem 

(1.4) Ut = A(\\ui\\l,... ,\\un\\l)Ux, U(0,x) = UQ(x) 
3 ' | J | denote the Lebesgue measure of the interval J 
4) ||u||2 is the L 2 norm of u 
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has a local L2-analytic solution, where U = (u\,..., un) is a n-dimensional 
vector, A(-) : 5ftn —> is a continuous n x n matrix and Uo is a L2-analytic 
vector, that is there exists ro > 0 such that 

E 
je N 

d?UQ 

dxJ 
r2j r0 

(J'!)2 
< oo. 

This result improves the one well known in the particular case of the 
Kirchhoff equation utt = m(\\uxH^itzx, where m > 0 is a continuous real 
function. 

2. Preliminaries 

DEFINITION 2.1. A scale of Banach spaces is a family of Banach spaces (XT)r 

(where 0 < r < ro) with norm || • ||r such that 

Xr Xs and || • ||s < || • ||r (s < r). 

DEFINITION 2.2. Let X be a Banach space, C a bounded subset of X. The 
Hausdorff noncompactness measure of C is 

<*x(C) 
= inf{e > 0 : C can be covered by a finite number of balls of radius e}. 

When the Banach space X is unambiguously determined by the context, 
we denote a x only by a. 

Let C be a subset of X. Let us indicate by cl(C) the closure of C and 
by co(C) its convex hull. 

PROPOSITION 2.3. (see [6], p. 19). Let A, B be bounded subsets of X, then: 

1. a{co{A)) = a(A); 
2. a{cl{A)) = a(A); 
3. Q(iUB) < a(A.) V at(B); 
4. A(-I4) = 0 if and only if A is relatively compact; 
5. a(XA) = |A|a(A); 
6. a(A + B) < a(A) + a(B); 
7. a(A) < a(B) if Ac B. 
We recall now some well known results that we use in the sequel. 

THEOREM 2.4. (see [6] p. 25). Let C be a closed, bounded convex subset of X. 
Let F : C —» C be continuous and F be a-condensing, that is there exists 
K < 1 such that: a(F(C)) < Ka{C). Then F has at least one fixed point. 

PROPOSITION 2 . 5 . (see [1], Lemma 2 . 1 ) . Let I := [0,A], L C C°(I,X) = H. 
Let us suppose that there exists K > 0 such that 

v(EL=> ||u(i)-«(3)11 < J C | i - a | t,s€l. 
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Then a# (L) = sup 0 < t < a ax(L(t)), where L(t) := {x 6 X : 3u E L x = 
*(«)}• 

PROPOSITION 2 .6 . (see [6] p. 2 5 ) . Let (Xn)n be a nonincreasing sequence of 
nonempty bounded closed subsets of X such that lirrin^+oo a(Xn) = 0. Then 
X,x, = p| Xn is a compact nonempty set. 

DEFINITION 2.7. A set valued map F is upper semicontinuous at x if for 
every open set N D F(x) there exists a neighborhood M of x such that 
F(M) C N. 

Let us remark that if F : X —> 2X, where X is a complete metric space 
and F(x) is relatively compact, then F is upper semicontinuous at x if and 
only if 
(2.1) Ve > 0 3t] > 0 : v 6 B(x,tj) =» F(v) C B(F(x),e). 

For the set valued maps the following fixed point theorem holds true. 
THEOREM 2.8. (see [2]). Let K be a convex compact subset of a Banach space 
X. Let F : K —> 2K be an upper semicontinuous map. Then F has a fixed 
point, i.e., there exists x 6 K such that x G F(x). 

We shall use also the known existence result for (1.1) in the case of 
Lipschitz continuous mappings. 

THEOREM 2.9. Let us suppose that A : I x Brtn(uo) —» Xs (s < r) and that 
A(-,u) is measurable and A(t,-) is Lipschitz continuous (see (1.2)). 

Then the problem (1.1) has a unique local solution u and for every e > 0 
there exists Se = Se(R, M,C) such that u(t) 6 Bre^ ji(uo), where rE(t) = 
1 - e- Set fort < 

3. Proofs of the result 
First of all let us remark that we can assume uo = 0, and ro = 1 without 

loss of generality; moreover in the following we denote Bt^R{0) only by Bt R. 
We divide the proofs in some parts. 

3.1. A n "auxiliary" problem 
Let us set 

L = C°([0,a]-,BruR), 
Lp = {veL : | | « ( i ) -v (a ) | | r i < 0\t - s\ V i , s e [0,o]} 

for a > 0, ¡3 > 0. Let v be in L. In this section we discuss the problem of 
existence of local solutions for 

(3.1) u' = B(t,v,u), u{ 0) = 0. 

The following lemma is a straightforward consequence of Theorem 2.9. 
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LEMMA 3.1 . Let us suppose that the hypotheses of theorem 1.1 are verified. 
Then there exist a > 0, ¡3 > 0 such that for every v 6 L the problem 
(3.1) has a solution u defined on [0, a] such that u(t) 6 -Br(t)+/3,.R> where 
r(t) = 1 — St — ft for some S > 0 and r(a) > r\. 

Now let us set 

(3.2) 5 = 4 m a x | ^ + C , 2 i f | o = ^ ( l - n ) , „ = ^ ( l - n ) . 

LEMMA 3.2 . Let us suppose that the hypotheses of Theorem 1.2 are verified. 
Then for every v € L the problem (3.1) has a solution u defined on [0, O] such 
thatu(t) € #r(t)+/3,R wherea, S are defined by ( 3 . 2 ) , r(i) = 1 — St—1(1—J"i) 
and (3 = 1(1-n). 

P r o o f . We can use the same method as in [7]; so we give only the outline 
of the proof. We introduce for n € N the following approximate problems 
of Tonelli type (see [15]) 

un(t) = 0, i < 0 

(3.3) < r 
Unit) = \ B(t, v(t), un(T )) dr, 0 < t < a. 

o n 

It is easy to see that for every n € N the problem (3.3) has a solution defined 
on [0,a] and that un(t) € Xr for every r < 1 and t G [0, a]. 

Step 1 (some well-known estimate). Let us define: 

|t>|.>t = N L ( i - S i - * ) . 
It is easy to see that (see [3] and [7]): 

(3.4) IIMOIIkt < vR Vi < o, s < 1 — St. 

If we then set p(t) = 1 — St — u, we have ||un(i)||p(t) < R-

Step 2 (equicontinuity). Now let us define pi(t) = 1 — St — 2u. For every 
t < a the functions un : [0, t] —> Bpi^R are equi-Lipchitz continuous. Indeed 
if it, r G [0, t], a < t , then 

r 

IK(<r) -t*n(r)||w( t) < \ 
a 

< ir1{CR + M)\t - a\. 

Step 3 (compactness). For a subset U of Xs let us denote by cls(U) the 
closure of U in Xs and by co(U) its convex hull. Let us set 

fl(t) = {un(t) : n e N}, il(<7,t)= (J n(r), 
C<T<t 

B(x,v(x),un(x - ^ j j dx 
o, (t•> 



Cauchy-Kovalevskaya Theorem 337 

a ( n ( ( 0 , o ) ) ) = sup sup {Pl{t) - s)as(n(t)). 
t<a s<pi(t) 

Let e > 0, using step 2, we can find 8 > 0 such that 

0 < t - t < 6 = » n ( r , t) C i l( i) + e £ p i ( t ) > 1 . 

Now let t 6 [0, a], and (A*), i = 0 , . . . , 2m - 1 be a subdivision of [0, t] in 2m 

equal parts, with 2~m < 6. Let k >m and (tk) be a finite partition of [0,i] 
in 2k equal parts. Let s < pi(t). Then, as in [7], for all no > 1 we get 

2k-l 

t t i - t f ) c l s c o ( B ( l t ^ t t ^ V , Q ( t f - . 
no fino(t) C " tk3)dsco{B{[tkrtk+1], v;n(tk - i - , t } + 1 ) ) U { 0 } ) , 

j=0 

where V = {«(t) : t € [0,a]}, f l n o ( t ) = {u„(i) : n > n 0 } . 
We denote by i(j,k), the index i such that tk 6 [Aj^fc), A^^+jJ, j = 

0 , . . . , 2k - 1, k > m. Then, if i < <5, we find 

~ - + 2£BPi(\iU,k)+1)X> 

hence 
2fc —1 

iino(i) C ( i j + 1 - i J )c/ ic 0(S([ i J , i }+ 1] ,F,f2(A i ( j ) J f c ) + 1) 
i=0 
+2 ^ ( W h x ) , ! ) U {0} ) . 

Furthermore let us set 

Mr) = l\ i f T S 0 ' 
t %(pi{t) + s) o therwise ; 

and 

ckJ = B([t^^+1),VM\u,k)+i) + 2 e B M A i 0 i k ) + 1 ) , i ) -

By (iv) there exists A; such that for k > k and for every j = 0 , . . . , 2k — 1, i = 
0 , . . . , 2m - 1 

faMKu,k)+i)(n(XiU,k)+1)) + 2e 

Since 7 is compact in Xri, and \ f2no(i) is a finite set, we obtain 

« . W O ) < « + - flP'wWW»*'' 



338 M. Ghisi 

/ t1+1-tf \ 
<e(l + 2 if £ _2±i 

V f^ M\(j,k)+1)-a) 

2fc —1 tk _ tk 

j^o \MAiu,k)+i) - sy 

Moreover, by the choice of Aj and t j , we get 
2k-i +k _ +k 2m—1 x 

¿ 5 (¿.(AiWO+i) - *)« h ( ^ ( A i + i ) - « ) « ' q ' ' 
hence, by taking first m —> +oo and second e —» 0, we have 

t 
<*.(«(«)) < Ka(Sl(0, a)) j ^ ^ _ s ) 2 d r 

5 v v ' " ( P l ( i ) - S ) " 
Therefore 
(3.5) a(i î (0,a)) = 0. 

Now let ns set r*i(i) — 1 — St — Zw, thanks to (3.5) for every t € [0,a], the 
set Q(t) is compact in Bri^R. 

Step 4 (final step) By the Ascoli-Arzelà theorem and by a diagonal argu-
ment (see [14] and [7]) we can prove that there exists unk —> u, where u is 
solution of (3.1) u : [0,<] —> Sr(t)+/3,.R> for t < a: where r{t) = r\{t) — ¡3, 
P = \{l-rl),r1{a)>n+[3. . 

3.2. Properties of solutions 
Let us denote by uv the solutions of (3.1) as in Lemmas 3.1, 3.2. 
We have the following result. 

LEMMA 3 . 3 . The functions uv are equi-Lipschitz continuous, i.e. for every 
t £ [0, a] there is 

IK(T) - U » | | r ( t ) + | < ^(CR + M)\r-a\, r,a E [0,i]. 

P roof . It is enough to use the method of step 2 in the proof of Lemma 3.2, 
by remarking that in both the cases 

M + CR 
\\B(t,v,u)\\3 < (ueBr<R, veBTuR, s<r).m 

r — s 
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Let us set 
, v CR + M 
( 3 . 6 ) 7 = 2 P . 

R e m a r k 3 .4 . Let o , / 3 be as in Lemmas 3 .1 , 3 . 2 and v € L1. Let uv be a 
solution of ( 3 . 1 ) as in Lemmas 3 . 1 - 3 . 2 . Then, thanks to Lemma 3 .3 , uv G L7. 

If we define 

V = (J M i ) : v € L7}, n{t) = {uv(t) : v G L7}, 
0< i<a 

a( i i (0 ,a))= sup sup ( r ( t ) + - s]as(n(t)); 
o < t < a s < r ( t ) + l V 2 ) 

we can also prove the following lemma, using the method of step 3 in the 
proof of Lemma 3.2. 
L e m m a 3 .5 . It holds true 

4 K 
A ( I I ( 0 , A ) ) < — a{n{0,a)) + K a a r i ( V ) . m 

D 

3.3. Proof of Theorem 1 
Let us remark that in Lemma 3.1 we can suppose S > 5 K and replace 

a by a positive number ai such that 

r(ai) — 5Cai > r\ and A = Ql < 1. 
r 

Let us consider the map F : L7 —> L7 (where 7 is as in (3.6)) defined by 
F(v) = uv 

where uv is the solution of (3.1). Thanks to Remark 3.4, the map F is well 
defined. 

If we prove that 
1. F is continuous; 
2. F is a-condensing, 

then, by Theorem 2.4, the map F has at least one fixed point. 
Ad 1. Let vn —> v in L7. Define p(t) = r(ai)—5CI+f. Let t € [0,oi], s < 

p(t) and 
[ l if r < 0 

M7") = { p(r) + s ^ otherwise. 

Hence 
t 

I K n ( i ) - M O I I . < ! \\B{r,vn{r),uVn{r)) - B{T,v{r),uv{r))\\sdr 
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Let us set 

Therefore 

*I m t f ^ 

t 

+ \ ||B(r, vn(r), Uv(T)) - B(r, v ( r ) , u „ ( t ) ) | | s dr. 
o 

lluUn - = sup sup (p(t) - s)|Kn(f) - ^(i)lls-
0<t<ai s<p(t) 

|UVn(t) - tl„(f)||s < f ||Kn - Uv 5 II-Un 

t 

+ \\\B(r,vn(r),uv(T)) - B(T,v{T),uv(T))\\sdr. 
0 

Since s < r(ai) + we have 
a i 

III < 5 \ \\B{T,Vn(r),Uv(T)) - B(T,v(T),uv{T))\\rM+pdT] 

hence, for some ¿>i > 0 one gets 

SUP IK„( i ) - «v(i)llri 
0<t<ai 

Ol 
< ¿1 \ IIB(T,vN{T),uV(T)) - B(T,V{T),UV{T))||r(oi)+fi dr. 

o 2 

Finally, by the Lebesgue theorem, for the dominate convergence uVn —> uv 

in L] so F defined by (3.6), is continuous. 
Ad 2. By Lemma 3.5, we get supt aTl(ÇÏ(t)) < Aa r i (V) . Then, by Propo-

sition 2.5, we have a n { F { L 7 ) ) < A q:#(L7), where a n is the HausdorfF 
noncompactness measure in H = C°([0, oi], XTl). Since A < 1, then F is 
a-condensing. • 

3.4. Proof of Theorem 2 
We can suppose that 

, 10 Ka , 
A = — < 1 . 

Let us consider the map F : L 7 —> 2L"> (where 7 is as in (3.6)) defined as 
follows: 

uv € F(v) if uv is a solution of (3.1), that for every t € [0,a] and 
s < r(t) + I verifies 

uv(t) € BS!R and ||u„(cr) - Uu(t)||s < - a\ for ff,re[0,t]. 
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Thanks to Lemmas 3.2, 3.3 and Remark 3.4, the map F is well defined, since 
for every v the set F(v) is not empty. If we prove that: 

1. there exists a compact convex set N C L7 such that F : N —> 2N] 
2. F\N is upper semicontinuous, 

then, by Theorem 2.8 the map F has at least one fixed point, solution 
of (1.1). 

Ad 1. By Lemma 3.5 and Proposition 2.5, we get sup0 < t < a a r i(i)(i)) < 
Aari(V) and 
(3.7) ^ ( F ( L 7 ) ) < X A H ( L 7 ) 

where an is the Hausdorff noncompactness measure in H = C°([0, a], XTl). 
Define 

yn = d r i co( (J f » ) , 
veLy 

where cln(U), denotes the closure of U and co(U) its convex hull in Xri. 
Let us remark that Yn is a nonincreasing sequence of nonempty closed 

convex bounded sets and, by (3.7) limn^+00 afj(Yn) = 0. By Proposition 2.6, 
N = fl Yn is a nonempty convex compact set; moreover F : N —> 2N. 

Ad 2. For every v 6 N, the set F(v) is relatively compact. Now let 
us assume, by contradiction, that there exists vo such that F is not upper 
semicontinuous at vo. Then (see (2.1)), there exist e > 0, vn E N and 
ttn € F(vn) such that 5) 

(3.8) | N - V n | | n < - and ||un - ti>||H > e Vu> G F(VQ). 
n 

Since (un)n C N, there exists a subsequence unk —> u in H. Therefore by 
the Lebesgue theorem for the dominate convergence, 

t 
u{t) = l i m unk ( t ) = \ B(T, V0(T),U(T)) dr. 

fc-+OO ¿ 

Now let us prove that u 6 F(vo). Remark that 

Ori( U K ( t ) : n E N}) = 0. 0<t<a Let us set 
ili(i) = {«n(i) : n E N}, 

a( i l i (0 ,a))= sup sup (r{t) + ^ - a)a,(ni(i)). 
o<t<a s < r ( t ) + | V ¿ J 

II • IIH is the norm in H 
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As in Lemma 3.5 we have a(iîi(0,a)) = 0. Therefore, by Proposition 2.5, 
for every t G [0, a] the sequence unk is relatively compact in C°([0, i], -B^i?) 
for every s < r(t) + By this fact, u(t) e BsR for every s < r(t) + f , and 

H r ) - « ( f f ) | | 4 < 7 | r - a | <J,r€[0,i]. 

Hence u 6 F(vo), but, by (3.8); ||u — u;||ri > e Vu; G F(vo). By this contra-
diction, F must be upper semicontinuous at VQ. m 

Final remarks 

It is also possible to prove Theorems 1.1, 1.2 directly (i.e., without intro-
ducing the auxiliary problem (3.1)), using Tonelli approximations instead 
of fixed point theorems. By using this latter method, one can prove also 
the analogous of Theorems 1.1, 1.2 with respect to the weak topology, i.e. 
these results are still true if we replace: measurable by weakly measurable, 
continuous by weakly continuous and the noncompactness measure by the 
weak noncompactness measure . 
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