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A NOTE ON THE ABSTRACT
CAUCHY-KOVALEVSKAYA THEOREM

Abstract. We give a version of the abstract Cauchy—Kovalevskaya Theorem for the
Cauchy problem

v = A(t,u), u(0)=1up

when A is not necessarily a Lipschitz continuous operator. The operator A(t,u) =
F(t,u,u) verifies

1) F:Ix By p X Brp — Xs for s <r < 1o (r1 < ro is fixed), F(¢,u,-) is Lipschitz
continuous, and F(t,-,-) is a-Lipschitz continuous

or

2) F: Ix By ,r X Xr = Xs for s < r < 1o (1 < ro is fixed), and F(t,-,") is
a-Lipschitz continuous,
where B, g denotes the ball of radius R in X.

We prove the result by using Tonelli approximations and fixed point theorems.

1. Introduction
Let us consider the Cauchy problem

{u’zA(t,u), tel,

(1-1) u(0) =y € Xy,

where A(t,-) is a continuous (but non necessarily Lipschitz continuous)
operator in a scale of Banach spaces (X;)o<r<r, (see Definition 2.1).

Many authors considered this problem under a Lipschitz condition; i.e.,
there exist ) C, M > 0 such that for s <r
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1) B, p(uo) is the ball in X, of radius R centered in ug
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At u) — At, w)||s < w Vu,w € By, p(uo)
(1.2)
M
<
1A, 0)ll <

(see for example {3], (8], [10], [11], [12], for a bibliography we refer to [7]).
Moreover some authors proved that (1.1) has a local solution under non-
Lipschitz assumptions.
K. Deimling [6] assumed that

A(t,u) = B(t)u + f(t,u),

where B(t) : X, — X, (s < r) is a continuous linear operator for every ¢t € I
and f : I x B, p — X, (r < rp), is a uniformly continuous regularizing
function such that for some constant K there is

a'l‘o(f(t)B)) S Ka'r(B) (T < "‘0): VB g B’r,R(uO)

where ¢, is the Hausdorff noncompactness measure in X, (see Definition
2.2).

Furthermore some authors ([4], (9], [14]) treated (1.1), by assuming con-
ditions of “compact type”, i.e., they supposed that the imbeddings X, — X
(s < r) are compact, and that A is a continuous function, verifying:

M R
1A wlls < — i lully < — H. Begehr [4];

13) A w), < L

- vtel, weX,, V.1 Nazarov [9);

for some 0 < £ < 1 and ug = O:

M
A )l < cl'“_“r Rt Vte I, ue Brg(0)
in H. Reissig [14] (he treated some more general systems) Later on in (7]
it was considered the case in which the imbeddings X, — X, (s < r) are
not necessary compact and A : I x X, — X, (s < r) is a Carathéodory

(weakly Carathéodory) operator 2) such that:

1. A verifies (1.3);
2. there exists a constant K such that for every bounded set U C X,
an(A(I x 1)) < K2Y).

r—s

2) A is Carathéodory (weakly Carathéodory) if A(t,-) is continuous (weakly continuous) and
A(,u) is measurable (weakly measurable).
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In this paper we give a generalization of the results of [6] and [7].

THEOREM 1.1. (see [6]) Let (X:)o<r<r, be a scale of Banach spaces and
0 < ry <rg. Let us assume that A(t,u) = B(t,u,u) and that:
(i) B: I x By, r(uo) X Brr(ug) > Xs (s<r);
(if) B(:,v,u) is measurable and B(t,-,-) is continuous;
(iii) B(t,v,") is uniformly Lipschitz continuous (i.e. verifies (1.2) indepen-
dently from v);
(iv) there exists a constant K such that ® for every bounded set U C
By r(ug), and V C By, p(ug):

imsupa, (B V,U) < KD 4o (v)) (s <r).

|J|—0 r—s§
Then problem (1.1) has at least a local solution.

The second one generalize [7].

THEOREM 1.2. Let (X, )o<r<r, be a scale of Banach spaces. Let 0 < ry < 7.
Let us suppose that A(t,u) = B(t,u,u) and that:

(i) B: I x By pluo) x Xp = X; (s<r),
(ii) B(-,v,u) is measurable and B(t,-,-) is continuous,
(iil) there exist C, M > 0 such that
Cllull- + M
r—s
(iv) there ezists a constant K such that for every bounded set U C B, g(up),
and V C By, r(uo)

1B(t, v, u)lls < (u € X; v € By r(uo)),

(U)

limsup o, (B(J,V, U)) < K( + ar (V)) (s <r).

=0

Then problem (1.1) has at least a local solution.

Let us remark that in the case of a single Banach space the assumption
(iv) of Theorems 1.1, 1.2 was introduced by G. Pianigiani [13].

These results may be applied to prove the existence of local analytic
solutions of systems of PDE. For example by using Theorem 1.1, setting %

B(t,V,U) = A(|[w1ll3, - - -, l[val3)Us,
we can prove that the problem

(1.4) U= A(llurll3, -, lunll})Us,  U(0,2) = Up(2)

3)|J| denote the Lebesgue measure of the interval J
4 ||ull2 is the L2 norm of u
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has a local L?-analytic solution, where U = (u,...,uy) is a n-dimensional
vector, A(-) : R* — R is a continuous n x n matrix and Uy is a L2-analytic
vector, that is there exists rg > 0 such that

di Uo il
> %), Gp <
jeN
This result improves the one well known in the particular case of the
Kirchhoff equation uy = m(||ug)|3)uss, where m > 0 is a continuous real

function.

2. Preliminaries

DEFINITION 2.1. A scale of Banach spaces is a family of Banach spaces (X ),
(where 0 < 7 < 1) with norm || - || such that
X=X, and [[-fls <[l (s<7)

DEFINITION 2.2. Let X be a Banach space, C' a bounded subset of X. The
Hausdorff noncompactness measure of C is
ax(C)

= inf{e > 0 : C can be covered by a finite number of balls of radius ¢}.

When the Banach space X is unambiguously determined by the context,
we denote ax only by a.

Let C be a subset of X. Let us indicate by cl(C) the closure of C' and
by co(C) its convex hull.

PROPOSITION 2.3. (see [6], p. 19). Let A, B be bounded subsets of X, then:

1. a(co(A)) = a(A);

2. a(cl(A)) = a(4);

3. a(AUB) < a(A)V a(B);

4. a(A) = 0 if and only if A is relatively compact;
5. a(A) = [Aa(4);

6. a(A+ B) < a(A) + a(B);

7. a(A) < a(B) if AC B.

We recall now some well known results that we use in the sequel.

THEOREM 2.4. (see [6] p. 25). Let C be a closed, bounded convez subset of X.
Let F : C — C be continuous and F be a-condensing, that is there exists
K <1 such that: a(F(C)) < Ka(C). Then F has at least one fized point.

PROPOSITION 2.5. (see [1], Lemma 2.1). Let I :=[0,a}, L C C°(I,X) = H.
Let us suppose that there exists K > 0 such that

veL=|v(t)—v(s)|| < Klt—s| tsel.
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Then ap(L) = supg<i<q ax(L(t)), where L(t) :={z € X: Ju€e Ll z=
PROPOSITION 2.6. (see [6] p. 25). Let (X,), be a nonincreasing sequence of

nonempty bounded closed subsets of X such that lim,_, o a(Xp) = 0. Then
Xoo =N Xy is a compact nonempty set.

DEFINITION 2.7. A set valued map F is upper semicontinuous at z if for
every open set N 2 F(z) there exists a neighborhood M of x such that
F(M)CN.

Let us remark that if F: X — 2X where X is a complete metric space
and F(z) is relatively compact, then F is upper semicontinuous at z if and
only if
(2.1) Ve>0 3n>0:ve€B(z,n) = F(v) C B(F(z),¢).

For the set valued maps the following fixed point theorem holds true.
THEOREM 2.8. (see [2]). Let K be a convez compact subset of a Banach space

X. Let F: K — 25 be an upper semicontinuous map. Then F has o fized
point, i.e., there exists ¢ € K such that z € F(z).

We shall use also the known existence result for (1.1) in the case of
Lipschitz continuous mappings.

THEOREM 2.9. Let us suppose that A : I x B, p(ug) — Xs (s <r) and that
A(-,u) is measurable and A(t,-) is Lipschitz continuous (see (1.2)).

Then the problem (1.1) has a unique local solution u and for every e > 0
there exists S¢ = S¢(R, M,C) such that u(t) € B, () r(uo), where r¢(t) =
1—¢e— 8t fort< 1755—5

3. Proofs of the result
First of all let us remark that we can assume ug = 0, and rp = 1 without
loss of generality; moreover in the following we denote B, g(0) only by B, g.

We divide the proofs in some parts.
3.1. An “auxiliary” problem
Let us set
L = C°([0,a]; By,,R),
Lg={veL:|vt)-v(s)ln <Blt—s| Vtsel0a]}

fora > 0, 8 > 0. Let v be in L. In this section we discuss the problem of
existence of local solutions for

(3.1) u' = B(t,v,u), u(0)=0.

The following lemma is a straightforward consequence of Theorem 2.9.
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LEMMA 3.1. Let us suppose that the hypotheses of theorem 1.1 are verified.
Then there ezist a > 0, [ > 0 such that for every v € L the problem
(3.1) has a solution u defined on [0,a] such that u(t) € By)4+a,r, where
r(t) =1— St — 8 for some S > 0 and r(a) > r1.
Now let us set
M 1,4 1
(3.2) S—4max{;R+C,2K} a= ZS (1-r), v= 13

LEMMA 3.2. Let us suppose that the hypotheses of Theorem 1.2 are verified.
Then for every v € L the problem (3.1) has a solution u defined on [0, a] such
that u(t) € By)+8,r wherea, S are defined by (3.2), r(t) = 1-St—32(1-ry)
and B = 1(1 —ry).

Proof. We can use the same method as in {7]; so we give only the outline
of the proof. We introduce for n € N the following approximate problems
of Tonelli type (see [15])

up(t)=0, t<0
t

(1 fand 7‘1)

(33) un(t) = | B(r,o(r), un(r — 2))dr, 0<t<a

0

It is easy to see that for every n € N the problem (3.3) has a solution defined
on [0,a] and that un(t) € X, for every r < 1 and ¢ € [0, a].

Step 1 (some well-known estimate). Let us define:
lolls.e = llvlls(1 = St — s).
It is easy to see that (see [3] and [7]):
(3-4) fun(®)llse <vR Vt<a, s<1-St
If we then set p(t) = 1 — St — v, we have [lun(t)||,) < R

Step 2 (equicontinuity). Now let us define p;(t) = 1 — St — 2v. For every
t < a the functions uy, : [0,t] — 1(¢),R are equi-Lipchitz continuous. Indeed

ifo,7 €[0,t], o <7, then
a
(z,v(m),un(m - E))

_l(CR+ M)|t - a|.

Step 3 (compactness). For a subset U of X, let us denote by cl;(U) the
closure of U in X, and by co(U) its convex hull. Let us set

Q(t) = {un(t) : n € N}, Q(o,t) = U Q(r),

o<r<t

dz
pft)

ltn(@) = wn ()l < | |3
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a(((0,a))) = sup sup (p1(t) — s)as((2))-
t<a s<p(?)

Let € > 0, using step 2, we can find § > 0 such that

0<t—7<6=Q(r,t) C Q) + € Bpp),1-
Now let ¢t € [0,a], and (X;),i =0,...,2™ — 1 be a subdivision of [0, ] in 2™
equal parts, with 2™ < 4. Let k > m and (t;‘) be a finite partition of [0, t]
in 2% equal parts. Let s < p;(t). Then, as in [7], for all ng > 1 we get

2F—1
Qno(t) © Y (841 — t)elsco(B([t, 4], V. Q5 — — tkﬂ)) u{o}),
Jj=0 .
where V = {v(¢) : t € [0,a]}, Qo (t) = {un(t) : n > no}.
We denote by i(j, k), the index i such that t;? € Mgy NiGg+1) 7 =
0,...,2k — 1, k > m. Then, if% < §, we find

1
Q(tf - ;’6’ §+1) - Q()\i(j,k)+1) +2¢eB,,(

iG,k)+1 )1
hence
281
Qno(t) C Z (t§+1 —t?)clsco( ([t ) ]+1] V, Q(A i(4, k)+1)
J=0

+2 eBpl()\i(j,k)H)»l) u {0}).
Furthermore let us set
1 if r <0,
¢8(T) = { 1 .
5(p1(7) + 5) otherwise;
and

ck'rj = B([t;c’ t_’;+1]’ V’ Q(A'L(],k)'f'l) + 2 EBPI(A,'(]‘,k).’_l),l)'

By (iv) there exists k such that for k > & and for every j = 0,...,2¥—1, i =
0,...,2m -1

Cs(Xisk)+1) (Q()‘i(j,k)+1)) +2¢
bs(Xig k)+1) — 8

as(crj) < K( + a,.l(V)) +e€

Since V is compact in X;,, and Q(t) \ Q,,(t) is a finite set, we obtain

261 Qs irny) Qi ky41)) + 26€
@s(Xigj,k)41) i(5,k)+1

¢ <5+K§:t t’?( dELILs )
( ( )) (_7+1 ]) ¢3(Ai(]”k)+1) —s
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2k_1 k
t]+1 t )
=0 ¢8( jk)-}-l)

2k_1

§5<1+2K

k
tJ+1 t.‘l

=0 (¢s( z(],k)+1) - 3)2 '

+Ka(02(0,a))

Moreover, by the choice of A; and t’?, we get

2k—1 +1 k 2m—1 DA
L A , 9=1,2%
Z (¢3( z(],k)+1) - 3 Z (d’s z+1) - 5) 1
hence, by taking first m — 400 and second € — 0, we have
¢
1
a;(2(t)) < Ka(2(0,a))\ —————— dt
(A0 < Ka(20,0) | e
4K 1
< 4+—a(f2(0,a))————.
5 0D EH =)
Therefore
(3.5) a(2(0,a)) = 0.

Now let us set r1(t) = 1 — St — 3v; thanks to (3.5) for every t € [0, a}, the
set 2(t) is compact in B, (4) g-

Step 4 (final step) By the Ascoli-Arzela theorem and by a diagonal argu-
ment (see [14] and [7]) we can prove that there exists u,, — u, where u is
solution of (3.1) w : [0,t] = Br)44,r, for t < a: where r(t) = r1(t) —

B=31-r),ri(a)>r1+0 =

3.2. Properties of solutions
Let us denote by u, the solutions of (3.1) as in Lemmas 3.1, 3.2.
We have the following result.

LEMMA 3.3. The functions u, are equi-Lipschitz continuous, i.e. for every
t € [0,a] there is

() = ()l 18 < 5OR+MIr =0l 70 € 0,4

Proof. It is enough to use the method of step 2 in the proof of Lemma 3.2,
by remarking that in both the cases

M+ CR
IB(t,0,u)lls S ——— (u€Byn, vEBup s<r).
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Let us set

(3.6) y =gl M

B

REMARK 3.4. Let a, be as in Lemmas 3.1, 3.2 and v € L,. Let u, be a
solution of (3.1) as in Lemmas 3.1-3.2. Then, thanks to Lemma 3.3, u, € L,.

If we define
V= U {v(t): ve Ly}, Q)= {uy(t) :veL,}

0<t<a

a(2(0,0) = sup sup (r(t) + 30— s) (D)
0<t<a s<'r(t)+*§

we can also prove the following lemma, using the method of step 3 in the
proof of Lemma 3.2.

LEMMA 3.5. It holds true
4K
a((0,a)) < ?a(Q(O,a)) +Kaap (V). =
3.3. Proof of Theorem 1

Let us remark that in Lemma 3.1 we can suppose S > 5 K and replace
a by a positive number a; such that

r(a1) —5Ca; >r; and A= %l <1.
Let us consider the map F : Ly — L., (where « is as in (3.6)) defined by

F(v) = uy

where u, is the solution of (3.1). Thanks to Remark 3.4, the map F is well
defined.

If we prove that

1. F is continuous;
2. F' is a-condensing,

then, by Theorem 2.4, the map F has at least one fixed point.
Ad 1. Let v, — v in L.. Define p(t) = r(al)—SCt+§. Let t € [0,a1], s <

p(t) and
1 if <0
hs(t) =
o(7) &)2—4-—2 otherwise.

Hence

e, (8) = o ()lls < §I1B(T, vn(T), s, (7)) = B(7, v(7), uo(7)) | dr
0
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t

Clluw, (1) — o (7) llny(r) i
(S) hs(1) — s

+S | B(7, vn(7), uy(T)) — B(T,v(1),us(7))||s d7.

0
Let us set
o, — uoll = sup sup (p(t) — s)lluv, (t) — uu(t)|ls-
0<t<a) s<p(t)
Therefore
1
o, () = wo ()]s < Elleo, — Uv|||p—(t)—_—;

+S || B(7,vn(7), uy (7)) — B(1,v(7), uy (7))} sd7-
0

Since s < r(a1) + '[22, we have

a1

e = woll <5 § BT, vn(7), u(7)) = B(7,0(7), wo(7)) 0,4 £ 47
0

hence, for some §; > 0 one gets

sup  lue, () — uu(t)llry
0<t<a1

<6 Sl | B(7, vn(T), uu(7)) — B(T,U(T),uv(T))||T(al)+% dr.
0

Finally, by the Lebesgue theorem, for the dominate convergence u,, — u,
in L; so F defined by (3.6), is continuous.

Ad 2. By Lemma 3.5, we get sup, o, (§2(t)) < Ay, (V). Then, by Propo-
sition 2.5, we have ay(F(Ly)) £ A an(Ly), where ay is the Hausdorff
noncompactness measure in H = C°([0, a1}, X;,). Since A < 1, then F is
a-condensing. =

3.4. Proof of Theorem 2

We can suppose that
10K a

B

Let us consider the map F : L, — 27 (where 7 is as in (3.6)) defined as
follows:

uy € F(v) if u, is a solution of (3.1), that for every ¢t € [0,a] and
s<r(t)+ g verifies

uy(t) € Bsp and |luy(o) — uy(7)||s < v|lr — 0o} for o,7 €0,t].

A= <1
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Thanks to Lemmas 3.2, 3.3 and Remark 3.4, the map F is well defined, since
for every v the set F(v) is not empty. If we prove that:

1. there exists a compact convex set N C L., such that F: N — oN.
2. F|n is upper semicontinuous,

then, by Theorem 2.8 the map F has at least one fixed point, solution
of (1.1).

Ad 1. By Lemma 3.5 and Proposition 2.5, we get supg<;<, or, (2(t)) <
Aay, (V) and
(3.7) an(F(Ly)) < Aan(L,)
where ay is the Hausdorff noncompactness measure in H = C°([0, a}, X,)-
Define
Y, = clrlco( U F"(v)),

VELy

where cly, (U), denotes the closure of U and co(U) its convex hull in X, .

Let us remark that Y,, is a nonincreasing sequence of nonempty closed
convex bounded sets and, by (3.7) limp—, 400 g (¥Y5) = 0. By Proposition 2.6,
N =Y, is a nonempty convex compact set; moreover F : N — 2V,

Ad 2. For every v € N, the set F(v) is relatively compact. Now let
us assume, by contradiction, that there exists vg such that F' is not upper
semicontinuous at vg. Then (see (2.1)), there exist ¢ > 0, v, € N and
uy, € F(v,) such that 5

1
(3.8) llvo — vnllg < - and |lup —wl|g =€ Yw € F(uw).

Since (un)n C N, there exists a subsequence u,, — u in H. Therefore by
the Lebesgue theorem for the dominate convergence,

t
u(t) = kﬁglw Un, (1) = S B(7,vo(7),u(7)) dr.
0

Now let us prove that u € F(vp). Remark that

ar, ( U {vn(t) :n e N})=0.
0<t<a
Q1(t) = {un(t) : n € N},

a(@1(0,a)) = sup  sup (r(t>+§—s)as(m(t)).
0<t<a s<r(t)+§

Let us set

5 || - & is the norm in H
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As in Lemma 3.5 we have a(€1(0,a)) = 0. Therefore, by Proposition 2.5,
for every t € [0, a] the sequence u,, is relatively compact in C°([0,¢}, Bs gr)
for every s < r(t) + g By this fact, u(t) € B, g for every s < r(t) + g, and

lu(r) = u(o)|ls L vlr— o] o,7€][0,t].

Hence u € F(vp), but, by (3.8); ||lu — wl|lr, > € Yw € F(v). By this contra-
diction, F' must be upper semicontinuous at vy. =

Final remarks

It is also possible to prove Theorems 1.1, 1.2 directly (i.e., without intro-
ducing the auxiliary problem (3.1)), using Tonelli approximations instead
of fixed point theorems. By using this latter method, one can prove also
the analogous of Theorems 1.1, 1.2 with respect to the weak topology, i.e.
these results are still true if we replace: measurable by weakly measurable,
continuous by weakly continuous and the noncompactness measure by the
weak noncompactness measure .
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