

Sławomir Krzyśka, Ireneusz Kubiaczyk

ON BOUNDED PSEUDO AND WEAK SOLUTIONS
OF A NONLINEAR DIFFERENTIAL EQUATION
IN BANACH SPACES

Abstract. In this paper, we prove an existence theorem for bounded pseudo and weak solution of the differential equation

$$x'(t) = A(t)x(t) + f(t, x(t))$$

where $f(\cdot, x(\cdot))$ is Pettis-integrable for each strongly absolutely continuous function x and $f(t, \cdot)$ is weakly-weakly sequentially continuous. We also assume some condition expressed in terms of De Blasi's measure of weak noncompactness.

1. Introduction

In this paper we shall consider the nonlinear differential equation

$$(1) \quad x' = A(t)x + f(t, x).$$

Existence theorem for the strong solutions in Banach space of (1) are well-known (see for example Szulfa [14], Dawidowski-Rzepecki [9]). An existence theorem for the weak solutions (where x' denotes the weak derivative of x) have been obtained by Cichoń [4].

We will use some of the notation, definitions and results from the book of Massera-Schäffer [11].

Let $R_+ = [0, \infty)$ and let $(E, \|\cdot\|)$ denote a Banach space such that the space $E_w = (E, \sigma(E, E^*))$ is sequentially complete. Moreover, we introduce the following notations: $L(E)$ is the algebra of continuous linear operators from E into itself with the standard norm $|\cdot|$; $L = L(R_+, E)$ is the space of all measurable functions $u : R_+ \rightarrow E$ integrable in the Bochner sense on every bounded interval $I \subset R_1$, with the topology of convergence in the mean

1991 *Mathematics Subject Classification*: 54D30, 34A34, 34G20.

Key words and phrases: measure of weak noncompactness, nonlinear differential equations, bounded pseudo and weak solutions of differential equations.

on every such I , $C_w(R_+, E)$ is the space of all weakly continuous functions from R_+ to E with the topology of almost uniform weak convergence.

Let $B = B(R_+, E)$ be a Banach space of measurable functions such that $\|x\| \in B(R_+, R)$ with the norm $\|x\|_B = \|\|x\|\|_{B(R)}$, where $B(R) = B(R_+, R)$ is a function space such that:

- (i) $B(R_+, R) \subset L(R_+, R)$ and $B(R_+, R)$ is stronger than $L(R_+, R)$,
- (ii) $B(R_+, R)$ contains all essentially bounded function with compact support,
- (iii) if $u \in B(R_+, R)$, $v : R_+ \rightarrow R$ is measurable and $|v| \leq |u|$, then $v \in B(R_+, R)$ and $\|v\|_{B(R)} \leq \|u\|_{B(R)}$,
- (iv) if $u \in B(R_+, R)$, $v_n \in L(R_+, R)$, $(n \in N)$, $|v_n| \leq |u|$ and $\lim_{n \rightarrow \infty} v_n(t) = 0$ a.e. on R_+ , then $\lim_{n \rightarrow \infty} \|v_n\|_{B(R)} = 0$.

Let B' denote the associate space to B (cf. [11], p.50).

We shall consider the nonlinear differential equation (1), where $A(t) \in L(E)$ for $t \in R_+$, x' denotes the weak derivative of x , $(t, x) \rightarrow f(t, x)$ is a function from $R_+ \times B_r$ into E which is weakly-weakly sequentially continuous and $B_r = \{x \in E : \|x\| \leq r\}$.

Let E_0 be a subspace consisting of all points of E which are values at $t = 0$ of all bounded weak solutions of the linear differential equation

$$(2) \quad x' = A(t)x.$$

We assume that E_0 is closed and has a closed complement E_1 , i.e., E is the direct sum of E_0 and E_1 . Take the Green function for (2):

$$G(t, s) = \begin{cases} U(t)PU^{-1}(s) & \text{for } 0 \leq s \leq t \\ -U(t)(Id - P)U^{-1}(s) & \text{for } 0 \leq t \leq s, \end{cases}$$

where $U : R_+ \rightarrow L(E)$ is the solution of the differential equation $U' = A(t)U$ with $U(0) = Id$, and P is the projection of E onto E_0 with $\ker P = E_1$ (cf. [8] and [11]). Thus there exists a positive number N such that $\|U(t)P\| \leq N$ for every $t \in R_+$, i.e., $\|G(t, 0)\| \leq N$.

Fix $x^* \in E^*$, and consider the equation

$$(1') \quad (x^*x)'(t) = x^*(A(t)x(t) + f(t, x(t))), \quad t \in R_+.$$

Let us introduce the following definition:

DEFINITION 1. A function $x : R_+ \rightarrow E$ is said to be a pseudo-solution of the equation (1) if it satisfies the following conditions:

- (i) $x(\cdot)$ is absolutely continuous,
- (ii) for each $x^* \in E^*$ there exists a negligible set $A(x^*)$ (i.e. $\text{mes}(A(x^*)) = 0$), such that for each $t \notin A(x^*)$ $x(\cdot)$ satisfies (1').

For the Cauchy problem there exist examples which have only pseudo-solutions, but no weak solutions or strong C -solutions ([1, 6]).

For any bounded subset W of E we denote by $\gamma(W)$ the measure of weak noncompactness of W , i.e., the infimum of all $\varepsilon > 0$ for which there exists a weakly compact subset P of E such that $W \subset \varepsilon B_1 + P$. For the properties of γ the reader is referred to [3] and [2].

We will use the following lemma and theorem.

LEMMA 1 [12]. *Let $H \subset C(I, E)$ be a family of strongly equicontinuous functions. Then*

$$\gamma_c(H) = \sup_{t \in I} \gamma(H(t)) = \gamma(H(I)),$$

where $\gamma_c(H)$ denotes the measure of weak noncompactness in $C(I, E)$. Moreover, the function $t \rightarrow \gamma(H(t))$ is continuous.

THEOREM 1 [10]. *Let D be a closed convex subset of E , and let F be a weakly sequentially continuous map from D into itself. If for some $x \in D$ the implication*

(3) $\overline{V} = \overline{\text{conv}}(\{x\} \cup F(V)) \implies V \text{ is relatively weakly compact,}$
holds for every subset V of D , then F has a fixed point.

We assume that:

- (A0) $f : R_+ \times B_r \rightarrow E$ is such that for each strongly absolutely continuous function $x : R_+ \rightarrow B_r$, $f(\cdot, x(\cdot))$ is Pettis integrable on every finite subinterval of R_+ , $f(t, \cdot)$ is weakly-weakly sequentially continuous,
- (A1) $A : R_+ \rightarrow L(E)$ is Bochner integrable on each bounded interval in R_+ ,
- (A2) $G(t, \cdot) \in B'$ and $\|G(t, \cdot)\|'_B \leq k$ for every $t \in R_+$,
- (A3) there exists $m \in B'$ such that $k\|m\|_B < r$ and $\|f(t, x)\| \leq m(t)$ for every $t \in R_+$ and $x \in B_r$,
- (A4) $p : R_+ \rightarrow R_+$ is non-decreasing continuous function such $p(0) = 0$, $p(u) < u$ for all $u > 0$,
- (A5) there exists $h \in B$ such that $k\|h\|_B < 1$ and

$$\forall a > 0 \ \forall \varepsilon > 0 \ \forall X \subset B_r \ \exists \text{ open } Z \subset [0, a] \ \text{mes}(Z) < \varepsilon \text{ and}$$

$$\gamma(f(T \times X)) \leq \sup\{h(t) : t \in T\}p(\gamma(X)) \text{ for every compact subset } T \text{ of } [0, a] \setminus Z.$$

THEOREM 2. *If (A0)–(A5) hold then for every $x_0 \in E_0$ such that $\|x_0\| \leq (r - k\|m\|_B)/N$ there exists at least one bounded pseudo-solution $x(\cdot)$ of (1) on any interval $I = [0, a]$, $a > 0$ with $px(0) = x_0$.*

Proof. Denote by $C(I, E)$ the space of continuous functions $I \rightarrow E$ with the topology of almost uniform convergence.

Let

$$\begin{aligned} K = \{x \in C(I, E) : & \|x(t) - x(\tau)\| \\ & \leq r \int_{\tau}^t |A(s)| ds + \int_{\tau}^t m(s) ds, \quad 0 \leq \tau \leq t\}. \end{aligned}$$

We see that K is convex closed and strongly equicontinuous subset of $C(I, E)$. We fix some $x_0 \in E_0$ such that $\|x_0\| \leq (r - k\|m\|_B)/N$. Then the function $G(t, 0)x_0$ is a solution of (2). Hence $\|G(t, 0)x_0\| \leq N\|x_0\|$ for $t \in R_+$. Put for a compact interval I

$$F_a(x)(t) = G(t, 0)x_0 + \int_0^a G(t, s)f(s, x(s)) ds$$

for every $x \in K$. Here \int denotes the Pettis integral.

By (A0), for $x \in K$, the function $G(t, \cdot)f(t, x(\cdot))$ is Pettis integrable on every compact subset of R_+ . We have

$$\|F_a(x)(t)\| \leq N\|x_0\| + k\|m\|_B \leq r$$

and since $z = F_a(x)$ is a weak solution of the differential equation $z' = A(t)z + f(t, x(t))$, by assumption (A3) and the mean value theorem we have

$$\begin{aligned} \|F_a(x)(t) - F_a(x)(\tau)\| & \leq \int_{\tau}^t \|A(t)F(x)(s) + f(s, x(s))\| ds \leq \\ & \leq r \int_{\tau}^t |A(s)| ds + \int_{\tau}^t m(s) ds. \end{aligned}$$

Hence we conclude that $F_a : K \rightarrow K$.

Since K is strongly equicontinuous, the sequence (x_n) of K converges weakly to $x \in C(I, E)$ if $x_n(t) \rightarrow x(t)$ in (E, w) for each $t \in R_+$ (cf. [12], Lemma 1.9).

Since $f(t, \cdot)$ is weakly-weakly sequentially continuous, then, by using the Lebesgue's Dominated Convergence Theorem for the Pettis integral for each $x^* \in E^*$ and each $t \in I$, we have

$$x^*(F_a(x_n)(t)) \rightarrow x^*(F_a(x)(t))$$

whenever $x_n \rightarrow x$ in $(C(I, E), w)$. So F_a is weakly-weakly sequentially continuous on K .

Now we will show that F_a satisfies (3). Let V be a subset of K such that

$$\overline{V} = \overline{\text{conv}}(F_a(V) \cup \{0\}).$$

Fix $t \geq 0$ and $\varepsilon > 0$. By (A3) we can choose $\alpha \geq t$ such that $\|m\chi_{[\alpha, \infty)}\|_B < \varepsilon$. Let $\delta = \delta(\varepsilon)$ be a number such that $\|m\chi_A\|_B < \frac{\varepsilon}{2}$ for $A \subset S$, ($S = [0, \alpha]$)

such that $\text{mes } A < \delta$. By the Luzin Theorem there exists a closed subset K'_ϵ of S with $\text{mes } (S \setminus K'_\epsilon) < \delta$ and such that h is continuous on K'_ϵ . Put $J'_\epsilon = S \setminus K'_\epsilon$. Since $\text{mes } J'_\epsilon < \delta$, hence $\|m\chi_{J'_\epsilon}\|_B < \frac{\epsilon}{2}$ and h is continuous on $S \setminus J'_\epsilon$. By (A5) there exists an open subset J''_ϵ of S such that $\text{mes } J''_\epsilon < \delta$ and

$$(*) \quad \gamma(f(T \times X)) \leq \sup\{h(t) : t \in T\}p(\gamma(X))$$

for every compact subset T of $S \setminus J''_\epsilon$. Also $\|m\chi_{J''_\epsilon}\|_B < \frac{\epsilon}{2}$.

Let $J_\epsilon = J'_\epsilon \cup J''_\epsilon$, $A := S \setminus J_\epsilon$. Then h is continuous on A , the inequality $(*)$ holds and $\|m\chi_{J_\epsilon}\|_B < \epsilon$.

We observe that (see also [4])

$$(3) \quad F_a(V)(t) \subset G(t, 0)x_0 + \int_{A \cap I} G(t, s)f(s, V(s))ds + \\ + \int_{J_\epsilon \cap I} G(t, s)f(s, V(s))ds + \int_{(\alpha, \infty) \cap I} G(t, s)f(s, V(s))ds,$$

where

$$\int_T G(t, s)f(s, V(s))ds = \left\{ \int_T G(t, s)f(s, x(s))ds : x \in V \right\}.$$

For any $x \in V$ we have

$$\left\| \int_{J_\epsilon \cap I} G(t, s)f(s, x(s))ds \right\| \leq k\|m\chi_{J_\epsilon}\|_B < k\epsilon, w$$

and

$$\left\| \int_{(\alpha, \infty) \cap I} G(t, s)f(s, x(s))ds \right\| \leq k\|m\chi_{(\alpha, \infty)}\|_B < k\epsilon.$$

Since $\gamma(W) \leq \text{diam } W$ for any bounded W , we have

$$(4) \quad \gamma \left(\int_{J_\epsilon} G(t, s)f(s, V(s))ds \right) < 2k\epsilon$$

and

$$(5) \quad \gamma \left(\int_{(\alpha, \infty) \cap I} G(t, s)f(s, V(s))ds \right) < 2k\epsilon.$$

Let $Z = V(A) = \{x(s) : x \in V, s \in A\}$.

Since $G(t, \cdot)$ and $(h(\cdot))$ are uniformly continuous on the (compact) set A , for every $\epsilon' > 0$ there exists a number $\eta > 0$ such that $|h(t') - h(t'')| < \epsilon'$ and

$$(**) \quad \|G(t, t') - G(t, t'')\| < \epsilon',$$

whenever $|t' - t''| < \eta$ ($t', t'' \in A$).

Let $t_0 < t_1 < \dots < t_n$ be a partition of the interval S , $I_i := (t_{i-1}, t_i)$, $J_i = I_i \setminus J_\varepsilon$, $i = 1, 2, \dots, n$ and let s_i, r_i be points in J_i such that $h(s_i) = \sup_{s \in J_i} h(s)$ and $\|G(t, r_i)\| = \sup_{t \in J_i} \|G(t, s)\|$.

Hence, by (*):

$$\gamma(f(J_i \times Z)) \leq \sup\{h(t) : t \in J_i\} p(\gamma(Z)).$$

By the Pettis-integral mean value theorem [13] for $x \in V$ we have

$$\begin{aligned} \int_{A \cap I} G(t, s) f(s, x(s)) ds &= \sum_{i=1}^n \int_{J_i \cap I} G(t, s) f(s, x(s)) ds \in \\ &\in \sum_{i=1}^n \text{mes } J'_i \text{conv} \{G(t, s) f(s, z) : s \in J'_i, z \in Z\}. \end{aligned}$$

So

$$\int_{A \cap I} G(t, s) f(s, V(s)) ds \subset \sum_{i=1}^n \text{mes } J'_i \text{conv} \{G(t, s) f(s, z) : s \in J'_i, z \in Z\}.$$

From above, by the properties γ and Lemma 1

$$\begin{aligned} &\gamma \left(\int_{A \cap I} G(t, s) f(s, V(s)) ds \right) \\ &\leq \sum_{i=1}^n \text{mes } J'_i \gamma \{G(t, s) f(s, z) : s \in J'_i, z \in Z\} \\ &\leq \sum_{i=1}^n \text{mes } J'_i \gamma \left(\bigcup_{s \in J'_i} \{G(t, s) f(J'_i \times Z)\} \right) \\ &\leq \sum_{i=1}^n \text{mes } J'_i \sup_{s \in J'_i} \|G(t, s)\| \gamma(f(J'_i \times Z)) \\ &\leq \sum_{i=1}^n \text{mes } J'_i \|G(t, r_i)\| h(s_i) p(\gamma(Z)). \end{aligned}$$

But from (**) it follows that

$$\begin{aligned} \text{mes } J'_i \|G(t, r_1)\| h(s_i) p(\gamma(Z)) &\leq p(\gamma(Z)) \int_{J'_i} \|G(t, s)\| h(s) ds \\ &+ \sup_{t \in J'_i} h(s) \varepsilon' \text{mes } J'_i \gamma(Z) + \sup_{t \in J'_i} \|G(t, s)\| \varepsilon' \text{mes } J'_i \gamma(Z). \end{aligned}$$

Moreover

$$\begin{aligned}
 & \sum_{i=1}^n \text{mes } J'_i \|G(t, r_i)\| h(s_i) p(\gamma(Z)) \\
 & \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds \\
 & \quad + \varepsilon' \gamma(Z) \text{mes } (S) \left(\sup_{s \in A \cap I} h(s) + \sup_{s \in A \cap I} \|G(t, s)\| \right) \\
 & \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds + \varepsilon' Q,
 \end{aligned}$$

From this and (A5) we deduce that

$$(6) \quad \gamma \left(\int_{A \cap I} G(t, s) f(s, V(s)) ds \right) \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds + \varepsilon' Q.$$

By (3), (4), (5), and (6)

$$\gamma(F_a(V)(t)) \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds + \varepsilon' Q + 4k\varepsilon.$$

This inequality holds for every $\varepsilon' > 0$ and $\varepsilon > 0$. Hence

$$\gamma(F_a(V)(t)) \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds.$$

From Lemma 1 we have

$$\begin{aligned}
 \gamma(F_a(V)(t)) & \leq p(\gamma(Z)) \int_{A \cap I} \|G(t, s)\| h(s) ds \leq p(\gamma(V)) \int_{A \cap I} \|G(t, s)\| h(s) ds \\
 & \leq p(\gamma(V)) k \|h\|_B < \sup_t \gamma(V(t)).
 \end{aligned}$$

If $\gamma(V) > 0$, because $\bar{V} = \text{conv}(F_a(V) \cup \{o\})$, by the properties of measure of weak noncompactness we have

$$\gamma(V) = \gamma(\bar{V}) \leq \gamma(F_a(V)) = \sup_t \gamma(F_a(V(t))) < \sup_t \gamma(V(t)) = \gamma(V),$$

a contradiction. So $\gamma(V) = 0$ and V is relatively weakly compact in $C(I, E)$.

Applying now Theorem 1 we conclude that F_a has a fixed point, which completes the proof.

REMARKS. Theorem 2 is true if in the assumption (A5) we use the axiomatic measure of weak noncompactness (cf. [2], [5]) or if (A5) is replaced by other assumptions (as for strong solution).

If f is weakly continuous function then a pseudo-solution is a weak solution.

Moreover, in some classes of spaces our pseudo solutions are also strong C -solutions (in separable Banach spaces for instance).

References

- [1] O. Arino, S. Gautier, J. P. Penot, *A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations*, Funkcial. Ekvac. 27 (1984), 273–279.
- [2] J. Banaś, J. Rivero, *On measures of weak noncompactness*, Ann. Mat. Pura Appl. 125 (1987), 213–224.
- [3] F. S. De Blasi, *On a property of the unit sphere in a Banach space*, Bull. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262.
- [4] M. Cichoń, *On bounded weak solutions of a nonlinear differential equation in Banach spaces*, Funct. Approx. Comment. Math. 21, (1992), 27–35.
- [5] M. Cichoń, *On measures of weak noncompactness*, Publication Math. Debrecen 45 (1994), 93–102.
- [6] M. Cichoń, *Weak solutions of differential equations in Banach spaces*, Discuss. Math. 15 (1995), 5–14.
- [7] E. Cramer, V. Lakshmikantham, A. R. Mitchell, *On the existence of weak solutions of differential equations in nonreflexive Banach spaces*, Nonl. Anal. Theory Math. Appl. 2 (1978), 169–177.
- [8] J. L. Daleckii, M. G. Krein, *Stability of solution of ordinary differential equations in a Banach space*, Moscow (1970) (in Russian).
- [9] M. Dawidowski, B. Rzepecki, *On bounded solution of nonlinear equations in Banach spaces*, Demonstratio Math. 18 (1985), 91–102.
- [10] I. Kubiaczyk, *On a fixed point for weakly sequentially continuous mappings*, Discuss. Math. 15 (1995), 15–20.
- [11] J. L. Massera, J. J. Shaffer, *Linear differential equations and function spaces*, New York - London (1966).
- [12] A. R. Mitchell, Ch. Smith, *An existence theorem for weak solutions of of differential equations in Banach spaces*, Nonlinear Equations in Abstract Spaces (V. Lakshmikantham, ed.), (1978), 387–404.
- [13] B. J. Pettis, *On integration in vector spaces*, Trans. Amer. Math. Soc. 44 (1938), 277–304.
- [14] S. Szufla, *On the existence of bounded solutions of non-linear differential equations in Banach spaces*, Funct. Approx. Comment. Math. 15 (1986), 117–123.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 ADAM MICKIEWICZ UNIVERSITY
 Matejki 48/49
 60-769 POZNAŃ, POLAND
 E-mail: kuba@math.amu.edu.pl

Received May 18, 1998; revised version November 13, 1998.