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THE CAUCHY PROBLEM FOR CERTAIN GENERALIZED
DIFFERENTIAL EQUATIONS OF FIRST ORDER
WITH SINGULARITY

The present paper is devoted to a natural generalization of differen-
tial equations for mappings from subset of a Banach space into a Banach
space.The subject matter refers to studies of generalized differential equa-
tions of the first order introduced in [7].

Let X,Y be Banach spaces over the field R and let U and V be open
subsets of X and Y, respectively. Let h be a mapping from U into X and
F a mapping from U x Vinto Y.

We shall start with defining a derivative of a function f in a direction
of the mapping h on U, denoted by (V,f)(z) for z € U, and generalizing
the well known notion of the directional derivative [6]. From a point of view
of differenitial geometry, a directional derivative Vj f means a derivative in
the direction of a vector field (with a singularity, because h(0) = 0). Then
we consider the Cauchy problem

(Vn)f(z) + Af(z) = F(z, f(z)), f(0)=0
for mappings from a subset of a Banach space into a Banach space, which
are defined in C or in C>'!, with the assumption that 0 is a singular point
(i.e. h(0) = 0). We also study the Cauchy problem

Df(z)h(z) + Af(z) = F(z, f(z)), £(0)=0
for mappings from a subset of a Banach space into a Banach space which
are defined in C? class, with the assumption that 0 is a singular point (i.e.
h(0) = 0).

1. Introduction
In lemmas and theorems presented in this paper the real Banach space
X will be considered with a semi-inner product, defined as follows [3], [4].
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Let X™ be the dual space of Y and
T(z)={z* € X*; ||lz*|| =1, z*(z) = ||z||} for ze€X

and Xy a set of nonzero elements with norm equal to 1, chosen one by one
from each line in X through zero. Let Sy be any (fixed in further consid-
erations) mapping from Xy into X* such that So(y) € T(y) for y € Xo.
Define by S(Ay) = ASo(y) for y € Xp, A € R the homogenous extension &
of 8o to the whole space X and a semi-inner product by (z,y) = $(y)(z)
for z,y € X, having the following properties:

(a) it maps X x X into R,

(b) (z+y,2) =< z,2 >+ < y,z > (Az,y) = A < z,y >, (z,Ay) =
Mz,y) for z,y,z € X, A €R,

(c) (z,z) = ||z||? for z € X,

(d) iz, 9)I* < (z,2){y,y) for 2,y € X.

Denote by B, the open ball in X with radius p and centre zero, i. e.,
B,={z€X:|z| < p}.

DEFINITION 1. A mapping k : B, — X of the class C* will be called a
regular mapping (in zero) if:
(i) is bounded with its first derivative Dh in B,,

(i) A(0) = 0,

(iii) there exists such a constant C > 0 that
(1) y"(Dh(0)y) 2 C
for y* € T(y) and for every y € X such that ||y|| = 1.

It is not difficult to prove the following lemma.

LEMMA 1. If h : B, — X is a regular mapping (in zero), then for every
a € (0,C) there ezists a constant r € (0, p) such that Cauchy problem

0
(2) 50 (h2) = —h(v(t,2)), v(0,z)=z
has in the domain [0, 00) X B, ezactly one continuously differentiable solution
v = v(t,z), having the properties
(3) ot 2)ll < ezl for te[0,00),z € B,
(4) v(t,v(r,z)) =v(t+7,2) for t,7€[0,00),z € B,.

LEMMA 2. If h: B, — X is a regular mapping (in zero) of class C? then for
every B € (0,C) there exists such ¥ € (0,7] (where r denotes the constant
from Lemma 1), that

(5) |Dav(t, z)|| < e Pt for te[0,00),z € Bs.
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Proof. Let C denote such positive constant that the inequality (1) is ful-
filled. Then
(6) (Dh(0)g,9) > Cllg|® for every g€ X.

Since h is a regular mapping of class C?, we have
Dh(y) = Dh(0) + #(y), where lin% I#(x)]] = 0.
y—)

Therefore for every 8 € (0, C) there exists such 7 € (0, p), that

(7) I#y)| <C—B for ye€ B:.
From (6), (7) and the Schwarz inequality for semi-inner product we obtain
(8) (Dh(y)g,9) 2 Cligl* = I¥w)llllgl® = Blgll?

for y € B;, for every g € X and for § € (0,C).
The function v = v(¢,z) for ¢t € [0, 00) and = € B, fulfills the equations

%v(t,gc) — _h(v(t,z)), v(0,z)=uz.

Differentiating the above equations with respect to z at the point u € B,
and considering Theorem 29 in [8] and Theorem IX.5' in [6] we obtain
0
E(ng(t,z)u) = —Dh(v(t,z))Dyv(t,z)u and Dyv(0,z)u=1u
for t € [0,00) and z,u € B,.

Hence the function g(¢,z,u) = Dav(t, z)u for z,u € B, is the solution
of the equations

d

Eig(t,z,u) = —Dh(v(t, z))g(t,z,u), ¢(0,z,u)=u for te[0,00).
The mapping g(-,z,u) is continuously differentiable on [0, 00). Therefore
the function ||g(-, z,u)|| is absolutely continuous on every interval [0, 7] ([5]

p-172) and so almost every differentiable on [0, 00). By Lemma 1.3 in [2] we
have

d
allg(t,z,U)llz = —2(Dh(v(t, z))g(t, z,u), g(t, T, u))
for almost every t € [0, 00).
Fix now g3 € (0,C) and denote ¥ = min(r,7). By Lemma 1, v(t,z) € B,
if z € B,. It follows from the inequality (8) that particular for g = g(¢, z, u)
we have

(Dh(v(t> :l:))g(t, T, u)> g(t, T, u)) > B”g(t, z, u)”2
for almost every t € [0,00) and z,u € B;. Therefore we obtain

d
9tz w* < -28g(t, 2, v))"
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for almost every t € [0, 00) and z,u € B;. Hence

d
=& g(t,2,w)]?) < 0

for almost every t € [0,0) and z,u € B;.
From the absolute continuity of the function ||g(¢,z,u)|| it follows that
the function e?#t||g(t, z,u)||? is decreasing on ¢ € [0, co). Therefore

190, z,u)||? > e2Pt||g(t, x,u)||? for te€[0,00) and =z,u € B;.
Since ¢(0, z,u) = u, the above inequality takes the form
lg(t, z,u)|| < e P||lu|| for te[0,00) and =z,u€ Bs.
Hence we obtain
| Dav(t, z)u|| < e P|jul| for te€[0,00) and z,u€ B;.
Consequently for 8 € (0, C) there exists ¥ > 0 such that
|Dav(t,z)|| < e P for te[0,00) and z,u€ B;. m

A function v satisfying the problem (2) will be called in this paper a
natural transformation generated by the mapping h.

EXAMPLE 1. Consider the mapping h : R2 — R? defined by h(z;,z2) =
[8:121 —2z9,-221 + 52:2]. Then

v(t, z)={2(2z1—72)e "%+ L (z14+222)e ¥, — 1 (221 —72)e 7%+ 2 (21 + 222 )e ™|
is the natural transformation generalized by h. Since the symmetric matrix

Dh(0) = [_82 ;2]

has the eigenvalues A; = 4, Ay = 9, the inequality (1) takes the form
8 -2 _ _
[v1, v [_2 5 ] [g;] =8y} — dyryz + 5y3 = 437 + 955 > 4llyll* = 4,

where {1, §2 are the coordinates of the vector y € R? in the normed ortogonal
base composed of the eigenvectors. Consequently C = 4. This is easy to
verify that

- 1 _

llo(t, 2)]1? - ll=]e~® = z¢ 181 - e!%)(221 — 2)* < 0.
Therefore ||u(t,z)| < ||z]le* < ||z]le~** for t € [0,0), z € R?, a € (0,4].
Moreover, it can be shown that
1
| Dav(t, )ul| — ||jul®e8 = ge_ISt(l —el%)(2u; —u2)? <0,

Then ||Dav(t, z)|| < e * < e P! for t € [0,00), z € R?, and S € (0,4].
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Let C? ’I(BTO,Y) be the space of the continuous mappings f : B,, — Y,
B,, C X, such that for every mapping f there exists such a constant C, > 0
that || f(z)|| £ Cillz|| for =z € B,. Let

(9) [flle = inf{Cu > 0; || f(2)l| < Cuflzll for =z € Br}.

This is not difficult to verify that this functional is a norm.

In what follows we shall denote by B, = C(B,,, B,) C C(B;,,Y) the
ball with centre at zero and radius p > 0 considered in the space of the
continuous functions with sup norm and by B} C C2>Y(B,,,Y) the ball with

centre at zero and radius p > 0 considered in the space C? ‘l(B.,.o, Y) with
the norm || - |-

It is not difficult to prove

THEOREM 1. The space CE’I(BTO,Y) with the norm defined by (9) is the
Banach space.

2. The Cauchy problem for the generalized differential equations
of first order with singularity in a point zero, in C and co!
classes
Let X,Y be a real Banach spaces, U an open subset of X and h: U — X

be a function of class C!, bounded together with its first derivative on U.

From Theorem 10.4.5 and Theorem 10.8.2 in [1] it follows that for any

zg € U there exists a constant tg > 0 and a neighbourhood Uy C U of a

point zp such that the Cauchy problem (2) has in the domain (—tg,%) X

Up exactly one continuously differentiable solution v = v(¢,z). Lemma 1

specifies the additional properties of the solution of the problem (2) for x in

a neighbourhood of zero in the case of regular mapping h.

DEFINITION 2. We say that the mapping f: U — Y hasat apoint z € U a
derivative in a direction of the mapping h if there exists a limit

o J((0,2)) — f(v(t, z))
(Vrf)(z) := lim -

where v = v(¢, z) is the solution of the problem (2) in a neighbourhood of a
point (0, z).

for t€R,

We can use in Definition 2 the natural transformation generated by the
regular mapping h (for ¢ > 0), since

(Vn)5(e) = | 2 100(0.2)|

in a neighbourhood of a point z = 0.

t=0
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COROLLARY 1. If the mapping f : U — Y 1is differentiable at a point z € U,
then there ezists a derivative of a function f in a direction of mapping h at
a point x € U and the following equality is true (V) f(z) = Df(z)h(z).

Proof. Since f is differentiable, we have

[;%f(v(t,m))] = — [Df(v(t,z))h(v(t, 2))]t=0 = —Df(z)h(z) forz € U.
t=0

Consequently, by Definition 2, we obtain the thesis. m

COROLLARY 2. The directional derivative from Definition 2 is equivalent
to the ordinary derivative in the case of constant h and v having the form
v(t,z) =z — th fort € (—to,t0) andz € U.

COROLLARY 3. Let h : B, — X, with B, C X, be a regular mapping.
Moreover, let C > 0,7 € (0,p) be such constants that the inequalities (1),
(3) hold. If there exists a derivative of a function f in a direction of the
mapping h in B, then

(Vi) f(v(t, z)) = —% (v(t,z)) for te€[0,00), z € B,.

Proof. Let v = v(t,z), for t € [0,00) and z € B,, be a natural transfor-
mation generated by a mapping h. By Lemma 1, we have v(tg,v(t,z)) =
v(to + t,z) for t,tg € [0,00), = € B;; hence

[%f(v(t,m))]tzto - [Ztte+ t0.2) - 32/ 0(0,0(00,2))

From Lemma 1 it follows that the inequality ||v(to, z)|| < e~**||z|| holds for
to € [0,00), z € B,. Consequently,

t=0

3wt a)| = =(Vaf)(eliea)) for to€ [0,00),2 € By m

t=0

DEeFINITION 3. Let U and V be open subsets of Banach spaces X and Y,
respectively. Let h : U — X be a mapping of class C!, F be any function
fromUxV into Y, and A (A € L(Y,Y)) be a linear and continuous operator
in the Banach space Y. Every function f : U — V which has a derivative in
a direction of mapping h in U and fulfills the equation Vf(z) + Af(z) =
F(z, f(z)) for z € U will be called its solution.

We shall introduce the following assumption.

AssuMPTION 1. Let h : B,, — X, with B,, C X, be a regular mapping and
let C > 0 be a constant such that (1) holds. We assume that o is a fized
constant from (0,C), v : [0,00) x B,, — X, where r, € (0, p1), is a natural
transformation generated by the mapping h and (8) holds for z € B,,.
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For the mapping F : B,, x B,, =Y, with B,, x B,, C X xY, and for
the operator A € L(Y,Y), fulfilling one of the conditions:

1) A = aly for a > —a, where Iy is the identity operator on Y,
2) Al < e,
we consider the Cauchy problem
(10)  (Vn)f(z)+ Af(z) = F(z, f(z)) for z€B,, f(0)=0
under the Assumption 1.
LeEMMA 3. Let F : B, x By, = Y, with B,, x B,, C X XY, be a continuous
mapping such that for certain constants g1 € (0, p1], 62 € (0, p2] and K > 0
we have
(11) IF(z,9)ll < Kljzl| for (z,y) € Bj, x B,

Then for Ty := min(ry, p1) (where r1 is a constant from Assumption 1) and
for any continuous function f : B, — Bj, two following conditions are
equivalent:

1. f is the solution of the Cauchy problem (10) in the class C3"'(B,,,Y)
(in particular f is differentiable in a direction of the mapping h),

IL f € C2Y(B,,,Y) and
(12) f(@) = | A Fw(t,2), F(0(t, 2)))dt

0

for x € B;,, where the above integral is absolutely convergent. If we reduce
our considerations to the mapping A of the form A = aly,a > 0, two
following conditions are equivalent in the class of continuous mappings:

IIL. f is the solution of Cauchy problem (10),

IV. f fulfills the integral equation (12).

Proof. Let 7, = min(ry, 51). By (11) and according to the form of the map-
ping A, any function f € B;, C C(B,,,Y) fulfills the following inequalities

(13)  lle™®*F(u(t, 2), f(u(t, o))l < el VKo 2, 2)]| < Kllalle™ @14,

or

(13 le™* F(u(t,2), f(v(t, 2)|| < Kljz[le™+)*
for t € [0,00),z € B,,. Therefore for both forms of the mapping A we have
(14) le=4* F(v(t, z), f(v(t,2))|| < K||z||le™™

for t € [0,00), z € B;,, where

1) A = a — ||A|| from the inequality (13);
2) A = a + a from the inequality (13).
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Let f € C(B,,,Y) be the solution of the problem (10). By Lemma IX.7,
from [6] and Corollary 3 we get the equality

S e (o6, 2))) = €A F(t,2), f(o(6,2))) for € (0,00),a € B,
which, together with the initial condition v(0,z) = z, is equivalent to
t
(15) e~ f(v(t,z)) — f(z) = — | e 4" F(v(r,z), f(v(r, z)))dT
0
for t € [0,00),z € B,. If in addition f € C¥'(B,,,Y), then we have the
estimate

If @t 2D < Ifl Do @) < [ e |lll for ¢t € [0,00), z € By,

implying, due to the condition f(0) = 0 and the form of the mapping A,
that lim;_, o, e~ 4% f(v(¢, z)) = 0. By (15), we obtain
[o <]
flz)= S e A" F(v(r, ), f(v(r,z)))dr for z € By,
0
where the above integral is absolutely convergent, by (14).

Now we shall show that every solution f € C>Y(B;,,Y) of the above
integral equation is a solution of the problem (10). By Lemma 1, we have
v(ty,v(t, z)) = v(t1 + t,z) for t,¢; € [0,00) and = € B,,. Hence

o0
f(v(t, z)) = e S e A" F(v(r, z), f(v(,2)))dr for te€[0,00), z € By,.
t
Differentiating above equation with respect to ¢, we obtain
-(%f(v(t,-’v)) = Ae** | e=4"F(v(7,), f (v(r, )))dr — F(o(t,2), f(v(t,2)))

t
for ¢t € [0,00), z € B,. Therefore, by (12), for t = 0 we have

Vif(z)+ Af(z) = F(z, f(z)) for =z € B,,.

Now, it is sufficient to show that f(0) = 0. By Lemma 1, we have v(¢,0) =
0 for t € [0,00) and the assumption (11) leads to F'(0,y) = 0 for y € B;,.
Therefore

| e=4"F(v(r,0), f(v(r,0)))dr =0

0
and hence f(0) = 0. Consequently, f € C*'(B,,,Y) is a solution of the
problem (10).



The Cauchy problem 311

If we only assume that f € C(B,,,Y) and the mapping A has the form
A=aly,a >0, then

le=** f(o(t, 2Dl < [ f(v(t,z))ll for ¢t € [0,00),2 € Br,.

Moreover, the left-hand side of the above inequality tends to ||f(0)|| = 0 as
t — o0o. Therefore, (15) implies (12). Further, the proof runs similarly as for
feC¥(B,,Y). u

THEOREM 2. Let F : B,, x B,, —» Y, with B,, x B,, C X xY, be the
continuous mapping such that for certain constants gy € (0, p1], 52 € (0, p2)
and K,L > 0 the following conditions take places

() |1F(z,9)|l < K||z|| for (z,y) € Bs, x Bg,,

(ii) |F(z, 1) ~ F(z,92)ll £ Lilya — v2llllz|| for = € B;, and y1,y2 € Bj,.

Then for 1o := min(ry, f1, é};—’,% (where A=a+a or A =a— ||A] aend

a,r denote the constants from Assumption 1) the problem (10) has exactly
one solution f in the ball B;, C C(By,,Y). This solution belongs to the class

>Y(B,,,Y).
Proof. Let 75 = min(ry, p, ﬁﬁ—’, %) For every 7 < 7, we shall prove the

existence and uniqueness of the solution f € B;, C C(B,,Y) of the integral
equation

f@) = | e *F(v(t,z), f(v(t,z)))dt for z € B,
0

equivalent to the problem (10), by Lemma 3. On this purpose, using the
Banach fixed point theorem ([6] Theorem VIIL.1), consider a mapping S
defined on the closed ball B;, ¢ C(B;,Y) by

[= ]

S(f)(z) = S e~ A F(v(t, ), f(v(t,z)))dt for z € B,,f € B;,.
0

Every solution of the problem (10) is the fixed point of the mapping S. From
the inequality (14) we obtain

T —atll  — K|z _
(1) IS()E) < | Kele*latdt = 0 tor o e B, 7€ B,
0

Therefore, from the definition of 73, it follows that
Kr . _
ISOIS =~ < B2 for feBs

Hence, S is a well-defined mapping and S : Bz, — B;, C B;,.
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We shall prove that S is a contraction. Let fi, fo € B,;z c C(B:;,Y).
Then from the assumption (ii) we have

1S()()-S(h) (=) < L2 22 1RG0~ LO6] fors e B,

Hence
IS¢~ SN < Zlip— £l for fu, o€ By,

The mequahty T < 1 is satisfied by definition of 7. Therefore the mapping
Sisa contractlon So, the assumptions of the Banach fixed point theorem
hold. Therefore, there exists only one mapping f, € Bz, C C(B,,Y) which
is a fixed point of the mapping S and so the solution of the problem (10)
is unique; in addition, fr = S(fr) belongs to the open ball B;,. From the
uniqueness of the solution we obtain the equality f; = f |p, for 7 <71 <™.
The searched solution f € Bs, C C(B,,,Y) coincide with the function f,
on every ball B,, i.e., f(z) = f.(z) for z € B;,7 < 72. By (16), the
following inclusion takes place f € c? ’I(B.,z, Y) m

THEOREM 3. Let F' : B, xB,, — Y, with B, xB,, C X xY, be the continu-
ous mapping such that for certain constants py € (0,p1],p2 € (0,p2],L >0
and K1, K2, K% + K2 > 0, the conditions

(1) |1F(z, )|l < Killz|| + Kallyl| for (z,y) € Bs, x Bg,,

(ii) [|1F(z,y1) — F(z,y2)ll < Lllyr — yallllzl| for z € Bs, and y1,y2 € B, .
are fulfilled. In the case of A =aly,a > 0, for K1 # 0 let be

min (r1, 51, (c + a) ) fo< K <1 _Klba g9
. K/ . K
- min (rq, 1, (@ + a) Kl/:za) if 1 — 1/”2_<_—;1§K1/p +1» a#0,
min (r1, p1, (@ + &) 7577 if %2 2 gyfrr 0 #0,
min(rl,,ol,—7—1,<1 Fre s ) ifa=0,

and for K; = 0 let be 73 := min(ry, p1, (@ + a) ) (where o, denote con-
stants from Assumption 1). The problem (10) has ezactly one solution f in
the ball B, C C(B,,,Y). This solution is in CYY(B.,,Y).

Proof. Let us denote 71 = min(ry, p1). From (i), (ii) it follows that for
every function f € B;, C C(B,,,Y) the inequalities
(17 lle ™ F,2), f(ut ) < (K + LI f (ot 2) ez

hold for ¢ € [0,00),z € B;.
The analysis similar to that in the proof of Lemma 3 (when (17) replaces
(14)) shows that the problem (10) in the ball B;, ¢ C(B,,Y),7 < 71, is
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equivalent to the equation

o0

f@) = | e **F(v(t,z), f(v(t,2)))dt for =z € B;.
0

Let 73 be as assumed. For every 7 < 73 we prove existence and uniqueness
of the solution f € Bz, C C(B;,Y) of the equation (see (12)):

[e o]

flz) = S e F(v(t,z), f(v(t,z)))dt, =z € By,

0
equivalent to the problem (10). The condition (i) implies that for every
function f € B;, C C(B;,Y) we have
(18)  [le™*F(v(t, ), f(v(t, )| < Killzl|le™ ¥ + Kppoe™
for t € [0,00), z € B;.
Using the Banach fixed point theorem, consider a mapping S on the closed
ball B;, C C(B,,Y) defined by

o0

S(f)(z) = | e F(v(t,z), f(v(t,z)))dt for z € B,, f€Bs,.
0

This integral is absolutely convergent. Moreover, by (17), we have

(K, + L) =]
19 IS(@) < S

Every solution of the problem (10) is a fixed point of the mapping S. Just
as in the proof of Theorem 2, we can show that

(20) 1IS(f1) = S(F2)l < — . =lfi=fll for fi,f2€B; CC(BY).

In the case of K1 # 0 and 0 < %2

for z € B;, f € B;,.

with a # 0, we have

= ma
1- K.
s = min(ry, i, (o @) -+ 0) 200,
because the condition Kl >1- % / £2 is equlvalent to + 2> —K—/:E and from

the condition £2 < m it follows that z- /p -z < IKK/;/ =. By (18) and

the condition 73 < (o + a) 152/

Ri/%, > We obtain

K _
2p2=ﬁg for z€ B,, f€B;,.

IS (@)l < (1 — Kz/a)p2 +

The inequality 73 < (e + a)$ is true, hence we conclude from (20) that the
mapping S is a contraction.
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Nowleti{&lz fora#0ora=0o0r K; =0. Then

L
Ki/p2+L

Ki/p2+ L) '

From (19_) and the condition 73 < (a—i—a)m it follows that ||S(f)|| < 52
for f € B;,. Since 13 < K_ﬁ%:ﬁ < &2 from the inequality (20) it f(_)llows
that S is a contraction. Thus S is a well-defined mapping and S : B;, —
B;, C B;,. By the Banach theorem, in the same manner as in the proof
of Theorem 2, we can state that the problem (10) has exactly one solution
f € Bs, C C(By,,Y). This solution is in Co'(B,,,Y), by the inequality
(19). =

THEOREM 4. Let F : B,, x B,, =Y, with B,, xB,, C X XY, be a continu-
ous mapping such that for certain constants p1 € (0, p1],p2 € (0,p2),L >0
and K1, K2, K? + K2 > 0, the following conditions take places

) |1E(z,9)l| < Killz]l + Kally|| for (z,y) € Bp, x Bg,,
(ii) |F(z, y1) — F(z, y2)l| £ Lllyr — y2lll|z]| for z € Bs, and y1,y2 € Bp,.
For K1 # 0, let 74 be defined by

o {min(n,ﬁl, ath (Afolln) if A > Kp(1+ &),

73 = min (rl,ﬁl, (a+a)

L
: ~ Ap .
min(r1, 51, 7r45T) if0 <A< K1+ ),

and for Ky = 0 by 74 := min(ry, 51, %) (where A=a+a or A=a— |4
and a,r1 denote the constants from Assumption 1). The problem (10) has
ezactly one solution f in the ball B* c CPY(B,,,Y), & = £2. In the case

A<K,(1+ %}:) this solution is in the open ball B.

Proof. Let 74 be as assumed and nzf—:. Note that, if fGB—;CC,?’l(Bn,Y),
then for every 7 < 74 we have

p P27 .
If(w(t, @) < (| Fllllv(t, 2)]| < ;fllv(t,ac)ll < ™ P t€[0,00), z € B;.

Hence f(v(t,z)) € Bj, for t € [0,00) and € B;. In particular, the inequal-
ities (i), (ii) hold for y = f(v(t, z)). Hence, for every 7 < 74, by (i), we get

(21) le™4* F(v(¢, ), f(o(t,2)))I| < (K1 + Kzi—:)e—Mllmll,
and, by (i) and (ii), we obtain

(22) le™ 4 F(u(t, ), f(u(t, 2))I| < (K1 + Lp2)e™™ izl

for t € [0,00), z € B,. The analysis similar to that in the proof of Lemma 3
(when one of the inequalities (21), (22) replaces (14)) shows that for every
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7 < 74 the problem (10) in the ball B C Cg’l(BT,Y),n = 'f—:, is equiva-
lent to the searching of the solution f € B* ¢ C>!(B,,Y) of the integral
equation (12).

In order to prove the existence and uniqueness of the solution of the

equation (12), using the Banach fixed point theorem, consider the mapping
S on the closed ball B* ¢ C2(B,,Y), k = L defined by

S(f)(z) = | e A F(v(t,z), f(v(t,z)))dt for z € B,, f € B
0
If K; #0 and
(23) A > K, (1 + ﬁ)
o2 L
then 7y = min(rl,[)l,&A M) because from (23) it follows that
A-K; > The condition 74 < Mﬁ is equivalent to & >z £

K, - K1+p L- -K3°
Hence K174 + Kops < Aps. Therefore, from (21) we have

e IS < | 22eHald=rlal for € B, f B
0 4

Now let
(25) 0<A<K(1+K)
< K3 7
or K; = 0. Then 74 = min(ry, p1, K_ﬁ%)' From the inequality (25) and the

. . ~2
condition 14 < —ALKI 2L Ve have

(26) IS(f) (@)l < { (K1 + poL)e™™||z||dt < sliz| for z € B,, f € B;.
0

By the inequalities (24) or (26) we obtain ||S(f)||« < & for f € B:. Therefore
S is a well-defined mapping and S : B; — Bz.

If (25) holds then from above considerations it follows, by (26), that
IS(F)ll« < & for f € B:. Hence S : BX — B C B=.

Next we shall prove that S is a contraction. Let f1, f, € B: ¢ C0'(B,,Y).
Then, by the condition (ii), we have the estimate

I1S(f1)(2) = S(f2)(@)| < Llifi = folla7 § e (+2*||z|jdt

0

Ifr = fellllzll  for x € Br, fi,f2 € B;

a + A
implying
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Lt
a+ A

where, by the inequality Kff;z T
coefficient aL+T + is less than 1. Therefore S is a contraction.

By the Banach fixed point theorem, there exists exactly one mapping
freBC c? ’l(BT, Y') which is a fixed point of the mapping S and so is a
solution of the problem (10); in addition, if the condition (25) is fulfilled then,
fr = S(f:) belongs to the open ball B%. From the uniqueness of the solution
we obtain the equality: f, = f,+ |p, for 7 < 7 < 4. The searched solution
f e Bt c CO(B,,,Y) coincide with the function f, i. e., f(z) = f,(z)
for x € B;, 7 < 74, on every ball B, and besides the condition || f|j« < & is
fulfilled. =

REMARK. For K3 = 0 the thesis of Theorem 4 is another version of Theorem
2 with the theoretically larger domain of the solution.

15(1) = S(f2)ll+ < If1 = falls for  f1,f2 € By,

< "‘JLVA and the assumption on 74, the

EXAMPLE 2. Let us consider the function F of the form
F(z,y) :=G(z,y+yo) for z€B, and y€B,,

where yp € Y is a certain constant and G € L(X,Y;Y) is a bilinear and
continuous operator from X x Y into the Banach space Y. The following
inequalities take place

(27) 1G(z,y + yo)ll < IGHzl|(llyll + lwoll) < IGII(B2 + llyolDl]l-

The assumptions of Theorem 2 are fulfilled if K := ||G||(p2 + ||lvoll), L :==
IGII.

Therefore the Cauchy problem
(28) Vinf(z) + Af(z) = G(z, f(z) +yo) for =z € B,, f(0)=0

(i. e., the problem (10), in the case when F(z,y) = G(z,y + v0),G €
L(X,Y;Y) and yp € Y is a certain constant) has exactly one solution f
in the ball B;, C C(B,,Y), where

A/|IG]
1+ {lyoll /52
(if A=a+a or A=a—||A]| and a, r; denote the constants from Assumption 1).

To = min(rl, ﬁl)

ExAMPLE 3. Let us consider the Cauchy problem (28). Notice, that for every
A € [0,1] we have

(28") IG(z, y + o) Il < IG(z, 9)|| + |G (2, o)
< AlGIIzlyl + (1 = MGyl + |Gzl vl
<G (A2 + llwolDllzll + IGNI(L = Mally]
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(compare the inequality (28)). The assumptions of Theorem 4 are fulfilled if
Ky = ||Gl|(Ap2 + |lwoll), K2 := ||G||(1 = A\)p1, L := ||G||. The analysis of the
constant 74 = 74(\), used in the thesis of Theorem 4, leads to the conclusion
that maxre[o,1] T4()\) = T4(1) = To.

3. The Cauchy problem for the generalized differential equations

of first order with singularity in a point zero, in C* class

Let X,Y be real Banach spaces, U be an open subset of X.

Let CY(B,,Y) denotes a space of the mappings f : B, — Y, with
B, C X, of the class C! on B,, bounded together with its first derivative
on B, with the norm

(29) 1£1ls = max (Lf(2)Il, | Df ()II)-

The space C!(B,,Y) is complete ([8], p. 226).

By B,l, C CY(B,,Y) we shall denote the ball with centre at zero and
radius p > 0 considered in the space C'(B,,Y).

We shall introduce the following assumption

ASSUMPTION 2. Let h : B,, — X, with B,, C X, be a regular mapping of
the class C? and let C > 0 be a constant such that (1) holds. We assume that
a, B are fized constants from (0,C), v : [0,00) X B,, — X, wherers € (0, p1),
is a natural transformation generated by the mapping h and (8), (5) hold
forz € B,,.

For the mapping F : B,, x B,, — Y, with B, x B,, C X xY, and for
the operator A € L(Y,Y) fulfilling one of the conditions:

1) A =aly for a > —(a + min(e, 3)), where Iy is the identity operator
onY,

2) [All <o,
we consider the Cauchy problem
(30) Df(z)h(z)+ Af(z) = F(z, f(z)) for ze€B,, f(0)=0
under the Assumption 2.

We introduce the notation

A=a—-||A]|] or A=a+a.

LEMMA 4. Let F : B, x B,, =Y, with B,, x B,, C X xY be a mapping
of the class C' such that for certain constants p1 € (0, p1], p2 € (0, p2] and
M > 0 we have

(i) F(0,0)=0

(i) |DF(z,y)l| < M|z|| for (z,y) € B;, x Bj,.
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Then for 15 = min(re, §1) (where ry is a constant from Assumption 2 and for
any function f € B},z C CY(By,,Y) two following conditions are equivalent:
I. f is the solution of the Cauchy problem (30)
II. the following equality takes place:

oo

(31) f(@) = § e #F(u(t, ), f(v(t, 2)))dt

0
for x € B;,, where the above integral is absolutely convergent.

Proof. Let 75 = min(rg, p1). By (i), (ii), we have
1F(z,y) — F(0,0)| < (l|ll + llyll) sup | DF(-, )| < M(||]| + llyl}) Il
for (z,y) € Bs, x Bp,.
Therefore for any function f € 3;132 C CY(By,,Y) and for both forms of
the mapping A we obtain
(32)  lle M F(u(t, ), f(o(t, )l < Me™ (1 + 3y)||z)®
for t € [0,00),z € By,.

Let f € B}, C C'(Br,Y) be the solution of problem (30). By Lemma
IX.7, from [6] we get the equality

—a[e"“f('v(t,:c))] = e F(v(t,x), f(v(t,z))) for te€[0,00), z € By,

which, together with initial condition v(0, z) = z, is equivalent to
t
(33) e ¥f(v(t, )~ f(a) = — [e A" F(v(r, ), f(v(r, 2)))dr
0
for te0,00), = € By,.

Now consider the case when A = aly,a > —a, or ||A|| < a. Then A > 0.
From the assumptions that f € B}, C C'(B,,Y) it follows that

lo(@)

= 0.
ll]

f(z) = Df(0)(z) + o(x), where lin})
Therefore, we have the estimate

(38) e~ fo(t, )| < eM(IDFO)] + ﬂ‘-,’,%’éf’—;)'f—”)uzn

for te[0,00), z € By.
Since lim¢—, o v(t,z) = 0 from the inequality (34), due to the condition

f(0) = 0 and the form of the mapping A, we conclude that
lim;_,0 e~ 4t f(v(¢,z)) = 0. By (33) we obtain
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flz) = ge AT B(v(r,x), f(v(r,z)))dT for =z € By,

where the above 1ntegral is absolutely convergent by (32).

Now we shall show that every solution f € B};z C CY(By,Y) of the
above integral equation is a solution of the problem (30). By Lemma 1, we
have v(t1,v(t,z)) = v(t1 + ¢, z) for ¢,t € [0,00) and z € B,,. Hence

f(v(t, z)) = e S e AT F(v(r,z), f(v(r,z)))dr for t€[0,00),z € By,.
t
Differentiating above equation with respect to ¢, we obtain

562 (v(t,2)) = Ae** | e 47 F(u(r, ), f (v(r, )))dr — F(v(t, 2), f(v(t, )
t
for t € [0,00), z € B.,.
Therefore, by (31), we have
Df(z)h(z) + Af(z) = F(z, f(z)) for z € B,.
Now, it is sufficient to show that f(0)= 0. By Lemma 1, we have v(¢,0) =
0 for t € [0, 00) and the assumptions (i), (ii) lead to F(0,y) = 0 for y € Bj,.

Therefore
[0 o]

| e~ F(v(t,0), f(v(t,0)))dt = 0
0
and hence f(0) = 0. Consequently, f € C'(B,,Y) is a solution of the
problem (30).
Let now A = aly for —(a + min(e, 8)) < a < —a. By (i), (ii), we have
(35)  lle”™* Do F(u(t, ), f(v(t,2)))I| < M(L+ po)e™P+AY |||
for te€[0,00),z € By.

Define the function
oo

g(z) := S e~ F(v(r,z), f(v(r,z)))dr for te€[0,00), z € B,.
0
Since a+A > 0 and 8+A > 0, from (32), (33) it follows that g € C*(By,,Y).
By Lemma 1, we have v(¢1,v(t,z)) = v(t1 +t,z) for ¢,¢; € [0,00),z € B,.

Hence
o0

g(v(t,z)) = e S e *"F(v(r,z), f(v(r,z)))dr for te€[0,00), z € B,

Differentiating above equation with respect to ¢, we obtain
o0

% (v(t,2)) = ae® | e F(uv(, ), f(v(r, 2)))dr — F(v(t, z), f(v(t, 2)))

t
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for te€[0,00), z € B,,. Therefore, by the form of the mapping g, for t =0
we have

Dg(z)h(z) + ag(z) = F(z, f(z)) for z € B.
Naturally g(0) = 0. Simultaneously the function f is the solution of the
problem (30) and so the function §(z) := f(z) — g(z) is the solution of the
equation

Dg(z)h(z)+ ag(z) =0 with the condition g(0) = 0.
For z € B, the function G(t) := g(v(t,z)) is the solution of the equation
G’ +aG =0 with the condition Jim G(t) = 0.

Since for a < 0 the function G = 0 is the unique solution of the above
equation, from our earlier consideratins and from (34), (35) it follows that
for —(a + min(«, 8)) < a < —a the function f given by the formula (31) is
the unique solution of the problem (30). =

THEOREM 5. Let F' : B, xB,, — Y, with B,, x B,, C X XY, be the mapping
of the class C! such that for certain constants p; € (0, p1], p2 € (0, p2] and
M, W > 0 the following conditions take places

(1) F(O)y) =0 fOT'y € Bﬁz’
(i) IDF(z, )]l < Mljall for (5,9) € Bs, x B,
(ili) | DF(z,y1)—DF(z, y2)l} < Wly1—w2lllz|l for z € Bp,, y1,y2 € Bj,.

. A)p A)p A
Then for 76 = min(ry, p1, (iﬂ%l, gwj;.,—‘?, 1(\5(";_‘_)5:), M+5V-*E1+ﬁ2)) (where A =

a+a or A=a—-||A| and a, 3,72 denote the constants from Assumption 2)
the problem (30) has ezactly one solution f in the ball B},z C CY(Bx, Y).

Proof. Let

(a+A)pr a+A (B+A)p B+A >
Mpr " Wp MO+ M+W(QA+5))

For every 7 < 7¢ we shall prove the existence and uniqueness of the solution

f € B;, C CY(B;,Y) of the integral equation

T¢ = min (rz,ﬁl,

f@) = | e **F(v(t,z), f(v(t,z)))dt for z € B,
0
equivalent to the problem (30) by Lemma 4. On this purpose, using the
Banach fixed point theorem, consider a mapping S defined on the closed
ball B}z c CYB;,Y) by
S(f)(z) = | e F(v(t,z), f(v(t,z)))dt for =z € B, f € B},
0
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Every solution of the problem (30) is a fixed point of the mapping S.
Notice, that by (i), (ii), we have ||F(z,y)| = [|F(z,y) — F(0,y)|| <
izl sup [|D1F (-, y)|| < M|z||? for (z,y) € Bz, x B,

From the above inequalities for any function f € 3;132 and for both forms
of the mapping A we obtain

(36) lle™*F(v(t, ), f(u(t, e))ll < Mlle™*llv(t, 2)]> < Me~(+W! g2

for te[0,00), z € B;.
Consequently, from the assumption (i) and the inequality (36) we have

oo

IS @) < § lle™* F(o(t, ), £(u(t, 2)))lat
0

< M | em (=t )ig)2dt =
0
for x € B,. Therefore from the definition 74 we obtain
M ,51 T
S <
IS¢l < 2
Notice, that for both forms of the mapping A we have

(37) le=#*DoF(v(t, ), £ (v(t, 2)))| < M(1+ p2)e”FHA%jz|

for t€(0,00),z € B, (compare inequality (35)).
If f € B}, C C}(B,,Y), then ||Df(z)|| < p; for z € B,. Consequently,
by (ii), the inequality (37) and Theorem 135 in [8], we obtain

M(1 + p2)lj=l|

Mpi|z|
a+ A

< pz for f 63_,132.

NDS(f(z)I < B+ A for z € B,.
From the definition of 7¢ it follows that
MQA+p)T . =1
IDS(H)Il < ,B-i——A <p for fe€B;.

Hence S is well-defined mapping and S : B}, — B}, C B},

We shall prove that S is a contraction. Let fi, fo € 3},2 c CYB,,Y).
Then, by (i), (iii), we have

|F(z,v1) — F(z,y2)|| < Wlz|*lys — vl for z € Bs,,y1,¥2 € Bg,.

Hence

IS(f1)(2) = S(f2)(@)I| < | We™ N 51 lz]||| fu (v (2, ) — fa(v(t, z))dt
0
for £ € B,. Therefore
(68) IS - Sl < 2

If1— foll for f1, f2 € B,
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Since || D fi(v(t, z))|| < p2 for t € [0,00) and z € B,, by (ii), (iii), the formula
(29) and the identity a;1b; — asby = (a1 — a3)by + (by — b2)as, we obtain
| D F(v(t, z), f(v(t, z))) — DaF(v(t, 2), f2(v(¢, 2)))
< e O 2| (W (L + f2) + Ml f1 — Falls.

Hence
IDS(fi(x)) — DS(f2(x)Il < | e CHAW (1 + ) + M|l ||| 2 — fallu
0

for z € B,. Therefore
@9) 105()-s(ra)l < LEEEM oy for o € B,

Consequently, from (38), (39) and the definition of 76 it follows that the
mapping S is a contraction.

By the Banach theorem, there exists exactly one mapping f, € 3},2 C
CY(B,,Y) which is a fixed point of the mapping S and so is a solution
of the problem (30); in addition f. = S(f-) belongs to an open ball B, .
From the uniqueness of the solution we obtain the equality f, = f.+ |p, dla
T <7 < 76. The searched solution f € B}, C C*(Bx,Y) coincide with the
function f; on every ball B, i. e., f(z) = f-(z) for z€ B;,7<75. m
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