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THE CAUCHY PROBLEM FOR CERTAIN GENERALIZED 
DIFFERENTIAL EQUATIONS OF FIRST ORDER 

WITH SINGULARITY 

The present paper is devoted to a natural generalization of differen-
tial equations for mappings from subset of a Banach space into a Banach 
space.The subject matter refers to studies of generalized differential equa-
tions of the first order introduced in [7]. 

Let X, Y be Banach spaces over the field M and let U and V be open 
subsets of X and Y, respectively. Let h be a mapping from U into X and 
F a mapping from U x V into Y. 

We shall start with defining a derivative of a function / in a direction 
of the mapping h on U, denoted by (V^/)(x) for x € U, and generalizing 
the well known notion of the directional derivative [6]. From a point of view 
of differencial geometry, a directional derivative V^ / means a derivative in 
the direction of a vector field (with a singularity, because h(0) = 0). Then 
we consider the Cauchy problem 

(Vh)f(x) + Af(x) = F(x,f(x)), /(0) = 0 
for mappings from a subset of a Banach space into a Banach space, which 
are defined in C or in C»'1, with the assumption that 0 is a singular point 
(i.e. h(0) = 0). We also study the Cauchy problem 

Df(x)h(x) + Af(x) = F(x,f(x)), /(0) = 0 
for mappings from a subset of a Banach space into a Banach space which 
are defined in C1 class, with the assumption that 0 is a singular point (i.e. 
h(0) = 0). 

1. Introduction 
In lemmas and theorems presented in this paper the real Banach space 

X will be considered with a semi-inner product, defined as follows [3], [4]. 
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Let X* be the dual space of Y and 

T (x ) = {x* G X*-, ||x*|| = 1, x*(x) = ||x||} for x€X 

and XQ a set of nonzero elements with norm equal to 1, chosen one by one 
from each line in X through zero. Let Go be any (fixed in further consid-
erations) mapping from XQ into X* such that $So(y) G T(y) for y G X(,. 
Define by S(Ay) = A9o(j/) for y G XQ, A G R the homogenous extension 9 
of Qo to the whole space X and a semi-inner product by (x,y ) = $s(y)(x) 
for x,y G X, having the following properties: 

(a) it maps X x X into R, 
(b) (x + y, z) =< x, z > + < y, z >, (Ax,y) = A < x,y >, (x,\y) = 

A (x,y) for x, y, z € X, A € R, 
(c) (x,x) = ||x||2 for x 6 X, 

(d) \(x,y)\2 < (x,x)(y,y) for x,y € X. 

Denote by Bp the open ball in X with radius p and centre zero, i. e., 
Bp = {xeX: ||x|| < p}. 

DEFINITION 1. A mapping h : Bp X of the class C1 will be called a 
regular mapping (in zero) if: 

(i) is bounded with its first derivative Dh in Bp, 

(ii) h(0) = 0, 

(iii) there exists such a constant C > 0 that 

(1) y*(Dh(0)y) > C 

for y* G T(y) and for every y G X such that ||y|| = 1. 

It is not difficult to prove the following lemma. 

LEMMA 1. If h, : Bp —> X is a regular mapping (in zero), then for every 
a G (0, C) there exists a constant r G (0, p) such that Cauchy problem 

(2) —v{t,x) = -h{v{t,x)), v(0,x) = x 

has in the domain [0, oo) x Br exactly one continuously differentiable solution 

v = v(t,x), having the properties 

(3) Hf.aOII < e~QtIMI f°r te[0,oo),xeBr, 

(4) v(t,v(r, x)) = v(t + T, x) for t,r G [0, oo),x G Br. 

LEMMA 2. If h : Bp —> X is a regular mapping (in zero) of class C2 then for 
every ft G (0, C) there exists such f G (0, r] (where r denotes the constant 
from Lemma 1), that 

(5) \\D2v(t,x)\\ < e~&t for t G [0,oo),x G B?. 
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P r o o f . Let C denote such positive constant that the inequality (1) is ful-
filled. Then 

(6) (Dh(0)g,g)>C\\g\\2 for every g £ X. 

Since h is a regular mapping of class C 2 , we have 

Dh(y) = Dh(0) + r(y), where lim \\r{y)\\ = 0. y—>0 

Therefore for every ¡3 G (0, C) there exists such r € (0, p), that 

(7 ) \\r(y)\\ < C - ( 3 for y G Bf . 

From (6), (7) and the Schwarz inequality for semi-inner product we obtain 

( 8 ) (Dh(y)g,g)>C\\g\\2-\\r(y)\\\\9\\2>m2 

for y 6 Bf, for every g G X and for ¡3 G (0, C). 
The function v = v(t,x) for t 6 [0, oo) and x 6 Br fulfills the equations 

—v(t, x) = —h(v(t, x)), x) = x. 

Differentiating the above equations with respect to x at the point u £ Br 

and considering Theorem 29 in [8] and Theorem IX.5' in [6] we obtain 

d 
— (D2v(t, x)u) = — Dh(v(t, x))D2v(t, x)u a n d D2v(0,x)u = u 

for t G [0, oo) and x,u € BT. 

Hence the function g(t,x,u) = D2v(t,x)u for x,u € Br is the solution 
of the equations 

—g(t,x,u) = —Dh(v(t,x))g(t,x,u), g(0,x,u) = u for i € [0, oo ) . 
at 

The mapping g(-,x,u) is continuously differentiate on [0,oo). Therefore 
the function ||p(-,s,u)|| is absolutely continuous on every interval [0, r] ([5] 
p. 172) and so almost every differentiable on [0, oo). By Lemma 1.3 in [2] we 
have 

— \\g(t,x,u)\\2 = -2(Dh(v(t,x))g(t,x,u),g(t,x,u)) 

for almost every t G [0, oo). 
Fix now /3 e (0, C) and denote r = min{r, f ) . By Lemma 1, v(t, x) € Br 

if x € Br. It follows from the inequality (8) that particular for g = g(t, x, u) 
we have 

(Dh(v(t, x))g(t, x,u), g(t,x,u)) > (3\\g(t,x,u)\\2 

for almost every t G [0, oo) and x,u G Bf. Therefore we obtain 

jt\\g(t,x,u)\\2<-2f3\\g(t,x,u)\\2 
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for almost every t G [0, oo) and x, u G Bf. Hence 

| ( e 2 ^ ( i , x , u ) | | 2 ) < 0 

for almost every t G [0, oo) and x,u G Bf. 
From the absolute continuity of the function ||<7(i, x,u)| | it follows that 

the function e 2 ^ 4 a : , w)||2 is decreasing on t G [0, oo). Therefore 

\\g{ti,x,u)\\2 >em\\g{t,x,u)\\2 for t e [ 0 , o o ) and x,ueBf. 

Since g(0,x,u) = u, the above inequality takes the form 

\\g(t,x,u)\\ < e'^WuW for £E[0,OO) and x,ueB?. 

Hence we obtain 

\\D2v(t,x)u\\ < e~0t\\u\\ for t e [ 0 , o o ) and x,ueBf. 

Consequently for ¡3 G (0, C) there exists f > 0 such that 

\\D2v(t,x)\\ < e~0t for £E[0,oc) and X,U€B?.M 

A function v satisfying the problem (2) will be called in this paper a 
natural transformation generated by the mapping h. 

EXAMPLE 1. Consider the mapping h : R2 —• R2 defined by h(xi,x2) = 
[8xi - 2X2, - 2 x i + 5X2]. Then 

V ( i , x ) = [ f ( 2 x i - x 2 ) e - 9 t + | ( x i + 2 x 2 ) e - 4 i , - i ( 2 x i - x 2 ) e - 9 t + f ( x i + 2 x 2 ) e - 4 t ] 

is the natural transformation generalized by h. Since the symmetric matrix 

Dh{ 0) = 

has the eigenvalues Ai = 4, A2 = 9, the inequality (1) takes the form 

8 - 2 

- 2 5 

[Wi. 2/2] 
' 8 - 2 " 2/1 
- 2 5 .2/2. 

= 8yl ~ tym + 5y| = 4yf + 9vi > 4||j/|| = 4, 

where y\, y2 are the coordinates of the vector y G M2 in the normed ortogonal 
base composed of the eigenvectors. Consequently C = 4. This is easy to 
verify that 

|H i ,x ) | | 2 - | |x | |2e - 8 t = i e " 1 8 t ( l - e10t)(2xi - x2)2 < 0. 
0 

Therefore ||v(i,x)|| < | |x| |e-4 t < | |x | |e" a t for t G [0,oo), x G R2 , a G (0,4]. 
Moreover, it can be shown that 

\\D2v(t, x)u||2 - | |u | |2e_ 8 t = J e - 1 8 t ( l - e10t)(2Ul - u2f < 0 . 

Then \\D2v(t,x)\\ < e _ 4 t < e_ / 3 t for t G [0,oo), x G R2 , and ¡3 G (0,4). 
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Let ^(BR^Y) be the space of the continuous mappings / : BTO —> Y, 
BTO C X, such that for every mapping / there exists such a constant C* > 0 
that ||/(x)|| < C»||x|| for x € BTQ. Let 

(9) 11/11* = inf{C* > 0; ||/(x)|| < C*||x|| for x G BTo}. 

This is not difficult to verify that this functional is a norm. 
In what follows we shall denote by Bp = C(BTo,Bp) C C(BTo,Y) the 

ball with centre at zero and radius p > 0 considered in the space of the 
continuous functions with sup norm and by B* C C*%1{BTQ,Y) the ball with 
centre at zero and radius p > 0 considered in the space Cy(Bro,Y) with 
the norm || • ||*. 

It is not difficult to prove 

THEOREM 1. The space C * , : l ( . B T o , Y") with the norm defined by ( 9 ) is the 
Banach space. 

2. The Cauchy problem for the generalized differential equations 
of first order with singularity in a point zero, in C and C*'1 

classes 
Let X,Y be a real Banach spaces, U an open subset of X and h\U-^X 

be a function of class C1, bounded together with its first derivative on U. 
From Theorem 10.4.5 and Theorem 10.8.2 in [1] it follows that for any 
x0 e U there exists a constant io > 0 and a neighbourhood UQ C U of a 
point 20 such that the Cauchy problem (2) has in the domain {—to, io) x 
i/o exactly one continuously differentiable solution v = v(t, x). Lemma 1 
specifies the additional properties of the solution of the problem (2) for x in 
a neighbourhood of zero in the case of regular mapping h. 

DEFINITION 2. We say that the mapping f :U -+Y has at a point x 6 U a 
derivative in a direction of the mapping h if there exists a limit 

( V t / ) M := jjm / ( " ( 0 ' X ) ) ~ ^ " C - * » f o r t e K 

where v = v(t, x) is the solution of the problem (2) in a neighbourhood of a 
point (0,x). 

We can use in Definition 2 the natural transformation generated by the 
regular mapping h (for t > 0), since 

( V , ) / ( x ) = -

in a neighbourhood of a point x = 0 
t=0 



308 A. Szadkowska 

COROLLARY 1. If the mapping f : U —*Y is differentiable at a point x E U, 

then there exists a derivative of a function f in a direction of mapping h at 

a point XEU and the following equality is true (VH)f(x) = Df(x)h(x). 

P r o o f . Since / is differentiable, we have 

JtfWt,x)) = - [Df{v(t, x))h(v(t, x ) ) ] t = 0 = —Df(x)h(x) for XEU. 
t=o 

Consequently, by Definition 2, we obtain the thesis. • 

COROLLARY 2. The directional derivative from Definition 2 is equivalent 

to the ordinary derivative in the case of constant h and v having the form 

v(t, x) = x — th for t E {—to, to) and x EU. 

COROLLARY 3. Let h : Bp —> X, with Bp c X, be a regular mapping. 

Moreover, let C > 0, r E (0, p) be such constants that the inequalities (1), 
(3) hold. If there exists a derivative of a function f in a direction of the 

mapping h in Bp then 
Q 

(Vh)f(v(t, x)) = x)) for t E [0, oo), x 6 Br. 

P r o o f . Let v = v(t,x), for t G [0,oo) and x € Br, be a natural transfor-
mation generated by a mapping h. By Lemma 1, we have v(to,v(t,x)) — 

v(to +1, x) for t, to E [0, oo), x E Br\ hence 

Q¡f(v(t,x)) 
t=t0 

- f ( v ( t + to,x)) 
t=0 

ft 
-f(v(t,v(to,x))) 

From Lemma 1 it follows that the inequality ||v(io,x) 
to E [0, oo),x E Br. Consequently, 

t=o 

< e~ato 11x11 holds for 

-f(v(t,v(to,x))) = -(Vhf)(v(t0,x)) for to E[0,oo),x E Br. 
t=o 

DEFINITION 3. Let U and V be open subsets of Banach spaces X and Y, 
respectively. Let h : U —• X be a mapping of class C1, F be any function 
from U x V into Y, and A [A 6 L(Y, Y)) be a linear and continuous operator 
in the Banach space Y. Every function / : U —> V which has a derivative in 
a direction of mapping h in U and fulfills the equation V/j/(x) + Af(x) = 

F(x, f{x)) for x € U will be called its solution. 

We shall introduce the following assumption. 

ASSUMPTION 1. Let h : BPl —> X, with BPl C X, be a regular mapping and 

let C > 0 be a constant such that (1) holds. We assume that a is a fixed 

constant from (0, C), v : [0, oo) x Bri —> X, where r\ E (0, p\), is a natural 

transformation generated by the mapping h and (3) holds for x E Bri. 
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For the mapping F : Bpi x BP2 —• Y, with Bpi x Bp2 c X x Y, and for 
the operator A G L(Y, Y), fulfilling one of the conditions: 

1) A = aly for a > —a, where Iy is the identity operator on Y, 

2) \\A\\ < a, 

we consider the Cauchy problem 

(10) (Vh)f(x) + Af(x) = F(x,f(x)) for x E BPl, /(0) = 0 

under the Assumption 1. 

LEMMA 3. Let F : BPl x BP2 —> Y, with BPl x BP2 c X xY, be a continuous 

mapping such that for certain constants p\ G (0, pi], P2 E (0, P2] and K > 0 
we have 

(11) \\F(x,y)\\<K\\x\\ for (x, y) E BPx x BP2. 

Then for ti := min{r\,p{) (where r\ is a constant from Assumption 1) and 

for any continuous function f : BTl —> BP2 two following conditions are 

equivalent: 

I. / is the solution of the Cauchy problem (10) in the class C!?'1 ( 5 T l , Y") 
(in particular f is differentiable in a direction of the mapping h), 

II. / G C, 0 , 1 (5 T 1 )F) and 

00 

(12) f(x) = \ e-AtF(v(tt x), f(v(t, x)))dt 

0 
for x E BTl, where the above integral is absolutely convergent. If we reduce 

our considerations to the mapping A of the form A = aly, a > 0, two 

following conditions are equivalent in the class of continuous mappings: 

III. / is the solution of Cauchy problem (10), 
IV. / fulfills the integral equation (12). 

P r o o f . Let t\ = min(ri, pi). By (11) and according to the form of the map-
ping A, any function / G BP2 C C(BTl, Y) fulfills the following inequalities 

(13) \\e~AiF(v(t, x), f(v(t, x)))|| < e l W ' ^ H t , * ) ! ! < ^ H s U e " ' " " « ^ , 

or 

(13') \\e-atF(v(t,x),f(v(t,x)))\\ < K\\x\\e-i"+a* 

for t E [0,00), x € BTl. Therefore for both forms of the mapping A we have 

(14) \\e-AtF(v(t,x),f(v(t,x)))\\ < K\\x\\e-M 

for t E [0,oo), x E BTl, where 

1) A = a — ||i4|| from the inequality (13); 
2) A = a + a from the inequality (13'). 
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Let / E C(BTl,Y) be the solution of the problem (10). By Lemma IX.7, 
from [6] and Corollary 3 we get the equality 

—^[e-Atf(v(t,x))) = e-AtF{v(t,x),f(v(t,x))) for t E [0, oo),x e BTl 

which, together with the initial condition v(0, x) = x, is equivalent to 
t 

(15) e~Atf(v(t,x)) - f ( x ) = -\e-ATF(v(T,x),f(v(r,x)))dT 
0 

for t E [0,oo),x 6 BTl. If in addition / 6 C ? ' 1 ^ , / ) , then we have the 
estimate 

| |/(u(i,x))|| < H/IUHt.x)!! < | | / | |»e- a t | |x | | for i e [0 ,oo) , x € BTl 

implying, due to the condition /(0) = 0 and the form of the mapping A, 
that limt-,00 e~Atf(v(t,x)) = 0. By (15), we obtain 

oo 
f(x) = \ e~ATF{v{r, x), f(v(r, x)))dr for x € BTl, 

o 
where the above integral is absolutely convergent, by (14). 

Now we shall show that every solution / E C*'1(Bn,Y) of the above 
integral equation is a solution of the problem (10). By Lemma 1, we have 
v(ti,v(t,x)) = v(ti +t,x) for t,t\ € [0,oo) and x € BTl. Hence 

oo 
f{v(t, x)) = eAt \ e~ArF(V(T, x), f(v{R, x)))dr for t € [0, oo), X€ BTl. 

t 
Differentiating above equation with respect to t, we obtain 

f ) °° -f(v(t,x)) = AeAt | e-ATF(v(r,x)J(v(r,x)))dr-F(v(t,x),f(v(t,x))) 

for t € [0,oo), x € BTl. Therefore, by (12), for t = 0 we have 

V h f ( x ) + Af(x) = F(x,f{x)) for x € BTl. 

Now, it is sufficient to show that /(0) = 0. By Lemma 1, we have v(t, 0) = 
0 for t E [0,oo) and the assumption (11) leads to F(0,y) = 0 for y E Bp2. 
Therefore 

oo 
S e-ATF(v(r,0),f(v(r,0)))dr = 0 
o 

and hence /(0) = 0. Consequently, / 6 C*'x{BTl,Y) is a solution of the 
problem (10). 
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If we only assume that / 6 C(BTl, Y) and the mapping A has the form 
A = aly, a > 0, then 

\\e~atf(v(t,x))\\ < | | / («(t,x)) | | for t € [0,oo),x € BTl. 

Moreover, the left-hand side of the above inequality tends to | |/(0)|| = 0 as 
t —• oo. Therefore, (15) implies (12). Further, the proof runs similarly as for 
feCy(Bri,Y). m 

THEOREM 2. Let F : BP1 x BP2 —> Y, with BPl x BP2 C X x Y, be the 
continuous mapping such that for certain constants p\ G (0, pi],p2 € (0, P2] 
and K,L > 0 the following conditions take places 

(i) | |F(x,y)|| < K\\x\\ for (x,y) € BPl x BP2, 
(ii) \\F(x,yi)-F(x,y2)\\<L\\y1-y2\\\\x\\forx€Bp1 and yuy2 € BP2. 

Then for := min(ri,/5i, (where A = a + a or A = a — ||j4|| and 
a,ri denote the constants from Assumption 1) the problem (10) has exactly 
one solution f in the ball BP2 C C(BT2, Y). This solution belongs to the class 
C°S{BT2,Y). 

P r o o f . Let t2 — min(ri,pi, For every r < t2 we shall prove the 
existence and uniqueness of the solution / € BP2 C C(Br, Y) of the integral 
equation 

00 
f(x) = \ e~AtF{v(t,x),f{v(t,x)))dt for x € Br 

0 
equivalent to the problem (10), by Lemma 3. On this purpose, using the 
Banach fixed point theorem ([6] Theorem VIII. 1), consider a mapping S 
defined on the closed ball BP2 C C(Br, Y) by 

00 
S{f){x) = j e~AtF{v(t,x),f{v(t,x)))dt for x e B r , f e BP2. 

0 
Every solution of the problem (10) is the fixed point of the mapping S. From 
the inequality (14) we obtain 

(16) | | S ( / ) (x ) | | < ]Ke-at\\e-At\\\\x\\dt = ^M for xeBT,feBP2. 
0 

Therefore, from the definition of t2, it follows that 

| | S ( / ) | | < ^ < P 2 for f € B P 2 . 

Hence, S is a well-defined mapping and S : BP2 —• BP2 C BP2. 
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We shall prove that S is a contraction. Let / i , / 2 € Bp2 C C(Br,Y). 
Then from the assumption (ii) we have 

\\S(h)(x)-S(f2)(x)\\<^ sup | | f i ( v ( t , x ) ) - f 2 { v { t , x ) ) \ \ for x € BT. 
A te[ o.oo) 

Hence 

| | S ( / i ) - S ( / 2 ) | | < ^ | | / i - / 2 | | for f i , f2 € Bp2. 

The inequality ^ < 1 is satisfied by definition of T2. Therefore the mapping 
S is a contraction. So, the assumptions of the Banach fixed point theorem 
hold. Therefore, there exists only one mapping fT € Bp2 C C(BT,Y) which 
is a fixed point of the mapping S and so the solution of the problem (10) 
is unique; in addition, fT = S ( f T ) belongs to the open ball Bp2. From the 
uniqueness of the solution we obtain the equality fT = fT> \Bt for r < r <T2. 
The searched solution / E Bp2 C C(BT2,Y) coincide with the function fT 
on every ball BR, i.e., f(x) = fT(x) for x E Bt,T < T2. By (16), the 
following inclusion takes place / 6 C * ' 1 ^ ^ , Y). M 

THEOREM 3. Let F : BPlxBP2 -* Y, with BPl xBP2 C XxY, be the continu-
ous mapping such that for certain constants p\ E (0, p\\,p2 E (0, p2],L > 0 
and Ki,K2,Kf + K% > 0, the conditions 

(i) | |F(x,y)|| < KM+KiWyW for (x,y) E x B-P2, 
(ii) \\F(x,y!)-F(x,y2)\\ < L\\yi-y2\\\\x\\ for x € Bpi and yt,y2 E Bh. 

are fulfilled. In the case of A = aly, a > 0, for Ki ^ 0 let be 

min ( n . p i . i a + a )^ ) i / 0 < ** < 1 - a ± 0, 
min (rupu(a + a ) ^ ) if a / 0 , 
m i n ( n + if ^ > Kl/fr+L> a + 
min (n,pi, Kl/%+L) ifa = 0, 

and for Ky = 0 let be 73 := min(ri,/5i, (a + a )^ ) (where a,r\ denote con-
stants from Assumption 1). The problem (10) has exactly one solution f in 
the ball B-P2 C C(BT3,Y). This solution is in C ? ' 1 ^ , T ) . 

P r o o f . Let us denote t\ = min(ri ,pi) . From (i), (ii) it follows that for 
every function / E Bp2 C C(BTl, Y) the inequalities 

(17) \\e-*F(v(t,x),f(v(t,x)))\\ < ( ^ +L| | / ( V ( i ,x) ) | | )e - ( a + a ) t | | x | | 

hold for t E [0,00), x E BT. 
The analysis similar to that in the proof of Lemma 3 (when (17) replaces 

(14)) shows that the problem (10) in the ball BP2 C C(BT,Y),T < n , is 

T3 := 
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equivalent to the equation 
oo 

/ (x) = j e-atF(v(t,x),f(v(t,x)))dt for x € Br. 
o 

Let r3 be as assumed. For every r < 73 we prove existence and uniqueness 
of the solution / £ BP2 C C(BT, Y) of the equation (see (12)): 

00 

/ (x) = \ e~atF{v(t, x), /(v(i, x)))dt, x € Br, 
0 

equivalent to the problem (10). The condition (i) implies that for every 
function / G BP2 c C(BT, Y) we have 

(18) ||e-at.F(i;(i, x), f(v(t, x)))|| < K^xWe'^1 + K2p2e~at 

for t e [0,00), x € S T . 

Using the Banach fixed point theorem, consider a mapping S on the closed 
ball B-P2 C C(BT,Y) defined by 

00 

S(/)(x) = \ e-atF{v{t,x),f(v(t,x)))dt for x e Br, f E Bh. 
0 

This integral is absolutely convergent. Moreover, by (17), we have 

(19) | | 5 ( / ) ( x ) ] l < ^ + f ) M for xeBr, f e B-P2. a + a 
Every solution of the problem (10) is a fixed point of the mapping S. Just 
as in the proof of Theorem 2, we can show that 

(20) \ \ S ( f 1 ) - S ( f 2 ) \ \ < - ^ r \ \ f 1 - f 2 \ \ for / i , / 2 G Bp2 C C{BT,Y). 
a + a 

In the case of K\ ^ 0 and 0 < ^ < K l ^ 2 + L , with a ^ 0, we have 

• / - / s1 / - K2/a. r3 = mm(ri, pu (a + a)-, (a + 

because the condition ^ > 1 — is equivalent to > and from 
the condition ^ < ^ ^ it follows that < By (18) and 
the condition 73 < (a + a) X~^fl2 > we obtain 

| |5(/)(x)| | < (1 - K2/a)p2 + ^ - p2 for x € Br, f e B-P2. 

The inequality 73 < (a + a )^ is true, hence we conclude from (20) that the 
mapping S is a contraction. 
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Now let ^ > K i /
Lp2 + L for a ± 0 or a = 0 or K1 = 0. Then 

r3 = m i n ( r 1 , p 1 , ( a + a ) ^ / . 1
2 + L ) . 

From (19) and the condition T3 < (a+a) Kl^2+L it follows that | |5( / ) | | < p2 

for f eBp2. Since r3 < K ^ 2 + L < from the inequality (20) it follows 
that S is a contraction. Thus S is a well-defined mapping and S : Bp2 —> 
Bp2 C Bp2. By the Banach theorem, in the same manner as in the proof 
of Theorem 2, we can state that the problem (10) has exactly one solution 
f € Bh C C(BT3,Y). This solution is in C*'l{BT3,Y), by the inequality 
(19). . 

THEOREM 4. Let F : BPl x BP2 —> Y, with BPl x BP2 C 1 x 7 , be a continu-
ous mapping such that for certain constants p\ € (0,/?i],p2 € (0, P2], L > 0 
and KI,K2,K% + > 0, the following conditions take places 

(i) | |F(z,y) | | < Kl\\x\\+K2\\y\\ for (x,y) e B-px x Bh, 
(ii) \\F(x,yi)-F(x,y2)\\<L\\yi-y2\\\\x\\forx£Bp1 and yi,y2 € Bh. 

For Ki / 0, let 74 be defined by 

f i n i n g , ft, ifA>K2(l + -fy:), 
T4' \min(r1,p1,1^r) ifO<A<K2(l + ^ ) , 

and for K\ = 0 by r4 := min(ri, pi, £ ) (where A = a + a or A = a — ||.A|| 
and a,ri denote the constants from Assumption 1). The problem (10) has 
exactly one solution f in the ball B* C (¿¡¿(B^Y), k = In the case 
A < K2(l + J^L) this solution is in the open ball B*. 

P r o o f . Let r4 be as assumed and Note that, if f e B * c C y ( B T 4 , Y ) , 
then for every r < r4 we have 

IL/(V(I,A0)LL < | | / I M K I , X ) | | < ^ H I , X ) | | < ^ < (¡2, t e [0,00), X E BT. T4 r4 

Hence f(v(t,x)) E Bp2 for t E [0,00) and x € BT. In particular, the inequal-
ities (i), (ii) hold for y = f(v(t,x)). Hence, for every r < r4 , by (i), we get 

(21) \\e-AtF(v(t,x),f(v(t,x)))\\ < (K\ + K2—)e~kt\\x\\, 
TA 

and, by (i) and (ii), we obtain 

(22) \\e-AtF(v(t,x),f(v(t,x)))\\ < (K, + Lp2)e~M \\x\\ 

for t €E [0,00), x € Br. The analysis similar to that in the proof of Lemma 3 
(when one of the inequalities (21), (22) replaces (14)) shows that for every 
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r < T4 the problem (10) in the ball B*K C C°^{Bt,Y),K = is equiva-
lent to the searching of the solution / € <B* C C*'1^.,-, F) of the integral 
equation (12). 

In order to prove the existence and uniqueness of the solution of the 
equation (12), using the Banach fixed point theorem, consider the mapping 
S on the closed ball B* C C^{BT,Y), K = defined by 

oo 
S(f)(x) = J e-AtF(v(t,x)J(v(t,x)))dt for x € BT, f e B*K. 

o 
If Kx + 0 and 

Kx (23) A > K2 1 + . r 
V P 2 l , 

then r4 = min(r-i, px, ^ j r , ), because from (23) it follows that 
^ > K^L- T h e condition t-4 < (A~^2)p"2 is equivalent to fa > 
Hence if ir4 .K2P2 < Ap2 • Therefore, from (21) we have 

(24) | |5(/)(s) | | < J ^ e " A t | | x | | d i = k||x|| for x€BT,fe B*K. 
0 T4 

Now let 

(25) 0 < A < K 2 ( ^ l + j j j 

or K\ = 0. Then 74 = min(ri, px, K^f2p2L)• Prom the inequality (25) and the 
condition 7-4 < we have 

00 
(26) \\S(f)(x)\\<\(K1+p2L)e-At\\x\\dt<K\\x\\ for xeBT,feB*K. 

0 
By the inequalities (24) or (26) we obtain ||S(/)||» < K for / <E B*. Therefore 
S is a well-defined mapping and S : B* —• B*. 

If (25) holds then from above considerations it follows, by (26), that 
| |S(/) | | . < « for / 6 B*. Hence 5 : B* -» B*K C B*. 

Next we shall prove that 5 is a contraction. Let fx, f2 € B* C C°'1(BT, Y). 
Then, by the condition (ii), we have the estimate 

00 

| |S(/i)(x) - S(/2)(*) | | < L\\fx - f2\Ur \ e'^WxWdt 
0 

- - T T I I / I - / a lUINI f o r ^ B T , / i , / 2 e B ; a + A 
implying 
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| | 5 ( / I ) - 5 ( / 2 ) | U < - ^ - | | / 1 - / 2 | | , for f i , f 2 G B*, 
a + A 

where, by the inequality K^2
p 2 L < and the assumption on 74, the 

coefficient - ^ r is less than 1. Therefore 5 is a contraction. a+A 
By the Banach fixed point theorem, there exists exactly one mapping 

/T € B* C C*'1(BT, Y) which is a fixed point of the mapping 5 and so is a 
solution of the problem (10); in addition, if the condition (25) is fulfilled then, 
fT = S(fT) belongs to the open ball B*K. From the uniqueness of the solution 
we obtain the equality: fT = fr< |bt for r < r < 74. The searched solution 
/ € B* C C*'1(BTi,Y) coincide with the function /T , i. e., f(x) = /T(x) 
for x G Br, t < 74, on every ball BT and besides the condition ||/||* < k is 
fulfilled. • 

R E M A R K . For K2 = 0 the thesis of Theorem 4 is another version of Theorem 
2 with the theoretically larger domain of the solution. 

EXAMPLE 2. Let us consider the function F of the form 

F(x, y) := G(x, y + y0) for x € Bpi and y € BP2, 

where yo € Y is a certain constant and G € L(X, Y; Y) is a bilinear and 
continuous operator from X x Y into the Banach space Y. The following 
inequalities take place 

( 2 7 ) \\G(x,y + y0)\\ < | | G | | | | x | | ( | | y | | + \\yo\\) < \\G\\(p2 + I M D I M I -

The assumptions of Theorem 2 are fulfilled if K := |[G||(p2 + ||j/o||), L := 
\\G\l 

Therefore the Cauchy problem 

(28) Vhf{x) + Af{x) = G{x,f{x) + y0) for x e Bpi, f{0) = 0 

(i. e., the problem (10), in the case when F(x,y) = G(x,y + yo),G G 
L(X, Y; Y) and yo G Y is a certain constant) has exactly one solution / 
in the ball BP2 C C(BT2,Y), where 

. . A/\\G\\ , 
r2 = min ri, pi, — j — ) 

1 + \\ya\\lP2 
(if A=a+a or A=a—||A|| and a, ri denote the constants from Assumption 1). 

E X A M P L E 3. Let us consider the Cauchy problem (28). Notice, that for every 
A G [0,1] we have 

(28') \\G(x,y + y0)\\ < ||G(x,y)|| + ||G(x,y0)|| 
<A||G||||x||||y|| + (l-A)| |G|| | |x | | |M| + ||G||||x||||y0|| 
< | | G | | ( A A a + | | W ) | | ) I W | + | | G | | ( l - A ) p i | | y | | 
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(compare the inequality (28)). The assumptions of Theorem 4 are fulfilled if 
Kx := ||G||(Ap2 + \\y0\\), K2 := | |G | | (1 - X)pu L := ||G||. The analysis of the 
constant 74 = 74(A) , used in the thesis of Theorem 4, leads to the conclusion 
that maxT6[0 )i] T4(A) = r 4 ( 1) = r 2 . 

3. T h e Cauchy prob lem for the general ized differential equat ions 
of first order w i th singularity in a point zero, in C 1 class 
Let X, Y be real Banach spaces, U be an open subset of X. 
Let ( ^ ( B ^ y ) denotes a space of the mappings / : Br —> Y, with 

B r C X, of the class C 1 on BT, bounded together with its first derivative 
on Br, with the norm 

(29) ll/ | | i = m«(l l / (®)l l , l |0 / (®)l l ) -
xeB T 

The space Cl{BT,Y) is complete ([8], p. 226). 

By Bp C C1 (Bt , Y) we shall denote the ball with centre at zero and 
radius p > 0 considered in the space C1 {Br, Y). 

We shall introduce the following assumption 

ASSUMPTION 2. Let h : Bpi —> X, with Bpi C X, be a regular mapping of 
the class C2 and let C > 0 be a constant such that (1) holds. We assume that 
a, ¡5 are fixed constants from (0, C), v : [0,00) x Br2 —• X, where r2 € (0, p\), 
is a natural transformation generated by the mapping h and (<?), (5) hold 
for x € Br2. 

For the mapping F : BPl x Bp2 —> Y, with Bpi x BP2 C 1 x 7 , and for 
the operator A 6 L(Y,Y) fulfilling one of the conditions: 

1) A = aly for a > —(a + min(o;,/3)), where Iy is the identity operator 
on Y, 

2) \\A\\ < a, 

we consider the Cauchy problem 

(30) Df(x)h(x) + Af(x) = F{x,f(x)) for x € Bpi, / ( 0 ) = 0 

under the Assumption 2. 
We introduce the notation 

A = a — ||A|| or A = a + a. 

L E M M A 4 . Let F : BPl x BP2 —• Y, with BP1 x BP2 C X x Y be a mapping 
of the class C1 such that for certain constants p\ 6 (0,pi],P2 € (0, P2} and 
M > 0 we have 

(i) F(0 ,0) = 0 
(ii) l lDFfoy) ! ! < M| |x | | for (x,y) £ BPl x BP2. 
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Then for 75 = min(r2, Pi) (where rz is a constant from Assumption 2 and for 
any function f G Bx-2 C C1(J3T s ,F) two following conditions are equivalent: 

I. / is the solution of the Cauchy problem (30) 
II. the following equality takes place: 

00 

(31) f{x) = j e~AtF(v(t,x),f(v(t,x)))dt 
0 

for x G BTS , where the above integral is absolutely convergent. 

P r o o f . Let 75 = min(r2,pi). By (i), (ii), we have 

| |F(*,y) - F(0,0)| | < (||*|| + ||y||)sup \\DF(-, -)|| < M(\\x\\ + \\y\\)\\x\\ 

for (x,y)e B-Pl x Bp2. 
Therefore for any function / G B^2 C C1(BT5, Y ) and for both forms of 

the mapping A we obtain 

(32) || e-AtF(v(t,x),f(v(t,x)))\\ < M e " ^ ' ( 1 + p2)||x||2 

for t G [0, 00), x G BTS . 

Let f € B±2 C CX(BTS,Y) be the solution of problem (30). By Lemma 
IX.7, from [6] we get the equality 

-Qt[e-Atf(v(t,x))} = e~AtF(v(t,x),f(v(t,x))) for t G [0,oo), x G Brs 

which, together with initial condition u(0, x) = x, is equivalent to 
t 

(33) e~Atf(v(t, x)) - f(x) = - J e~ATF(v(r, x), f(v(r, x)))dr 
0 

for t G [0,00), x G BTS. 

Now consider the case when A = aIy,o, > —a, or ||j4|| < a. Then A > 0. 
From the assumptions that / G Bla C CL{BTH, Y ) it follows that 

fix) = Df(0)(x) + o(x), where lim = 0. 
IFII 

Therefore, we have the estimate 

(34) \\e~Atf(v(t, x))|| < e " A t ( P / ( 0 ) | | + l l ^ ^ l l ) | | x | | 

for t G [0, 00), x G BT5. 

Since l im t_0 0 v(t, x) = 0 from the inequality (34), due to the condition 
/(0) = 0 and the form of the mapping A, we conclude that 
limt-00 e~Atf(v(t,x)) = 0. By (33) we obtain 
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oo 
f ( x ) = \ e-ATF(v(T,x),f(v{T,x)))dT f o r x E BT5, 

0 
where the above integral is absolutely convergent by (32). 

Now we shall show that every solution / € Bj-2 C C1(BTb, Y) of the 
above integral equation is a solution of the problem (30). By Lemma 1, we 
have v(ti,v(t,x)) = v(ti + i, x) for t\,t € [0, oo) and x € BT5. Hence 

oo 
f(v(t,x)) = eM J e-ATF(v(T,x),f(v(T,x)))d,T for t e [0 ,oo) , i€ BTs. 

t 

Differentiating above equation with respect to t, we obtain 
d_ 
dt 

oo 
^ f ( v ( t , x ) ) = AeAt J e-ATF(v(r,x),f(v(r,x)))dr-F(v(t,x),f(v(t,x))) 

t 

for t € [0,oo), x € BTS. 
Therefore, by (31), we have 

Df(x)h(x) + Af(x) = F(x, f{x)) f o r x € BT5. 

Now, it is sufficient to show that f(0)= 0. By Lemma 1, we have v(t, 0) = 
0 for t € [0, oo) and the assumptions (i), (ii) lead to F(0, y) = 0 for y € Bp2. 
Therefore 

oo 
J e-AtF(v(t,0),f(v(t,0)))dt = 0 
o 

and hence / (0) = 0. Consequently, / € C1(BT5, Y) is a solution of the 
problem (30). 

Let now A = aly for —(a + min(a, (3)) < a < —a. By (i), (ii), we have 
( 3 5 ) \\e-atDxF(v(t,x),f(v(t,x)))\\ < M{\ + p2)e-{^k)t\\x\\ 

for t 6 [0, oo), x 6 BTS. 

Define the function 
oo 

g(x) := j e~arF(V(T,X), f(v(T,x)))dr for t G [0 ,oo) , x € BTS. 
o 

Since a + A > 0 and (3+A > 0, from (32), (33) it follows that g € C 1 (S T 5 ,F ) . 
By Lemma 1, we have v{t\,v{t,x)) = v{t\ + < , i ) for t,t\ 6 [0,oo),x € BT5. 
Hence oo 

g(v(t,x)) = eat \ e~aTF(v(T,x),f(v{T,x)))dT for t € [0,oo), x 6 BTB. 

Differentiating above equation with respect to t, we obtain 
d_ 
dt 
r) 

-g(v(t,x)) = aeat \ e-aTF(v(r,x),f(v(r,x)))dr-F(v(t,x),f(v(t,x))) 
t 
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for t £ [0, oo), x £ BTs . Therefore, by the form of the mapping g, for t — 0 
we have 

Dg(x)h(x) + ag(x) = F(x, f(x)) for x £ BTs. 
Naturally g(0) = 0. Simultaneously the function / is the solution of the 
problem (30) and so the function g(x) := f(x) — g(x) is the solution of the 
equation 

Dg(x)h(x) + ag(x) = 0 with the condition <?(0) = 0. 

For x £ BT5 the function G(t) :— g(v(t, x)) is the solution of the equation 

G' + aG = 0 with the condition lim G(t) = 0. 
t—• oo 

Since for a < 0 the function G = 0 is the unique solution of the above 
equation, from our earlier consideratins and from (34), (35) it follows that 
for —(a + min(a,/3)) < a < —a the function / given by the formula (31) is 
the unique solution of the problem (30). • 

THEOREM 5. Let F : BP1 x BP2 —• Y, with BP1 x BP2 c XxY, be the mapping 
of the class C1 such that for certain constants p\ £ (0,pi],p2 £ (0,P2] and 
M, W > 0 the following conditions take places 

(i) -F(0, y) = 0 for y £ BP2, 
(ii) ||DF(x,y)\\ < M\\x\\ for (x,y) £ BPl x BP2, 

(hi) \\DF{x,y1)-DF(x,y2)\\ < W\\yi-y2\\\\x\\ forx € BPl,yuy2 £ BP2. 

Then for r6 = m i n ^ , ^ , M+&i}+M) i^ere A = 
a + a or A = a — ||i4|| and a, /?, r2 denote the constants from Assumption 2) 
the problem (30) has exactly one solution f in the ball B1-^ C C1(BT6,Y). 

P r o o f . Let 
. (q + A)p2 Q + A (p + A)p2 0 + A \ 

r2'Pl' Mp 1 ' Wpt ' M{1 +p2)'M + W(l +p2)J' 
For every r < TQ we shall prove the existence and uniqueness of the solution 
/ £ B±2 C C1(Bt,Y) of the integral equation 

00 

f{x) = \ e~AtF{v(t,x),f{v(t,x)))dt for x £ BT 

0 
equivalent to the problem (30) by Lemma 4. On this purpose, using the 
Banach fixed point theorem, consider a mapping S defined on the closed 
ball Bp2 C C1 (BT, Y) by 

00 

S(f)(x) = \ e-AtF(v(t,x),f(v(t,x)))dt for x £ Br, f £ B\2. 
0 

T(j - mm 
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Every solution of the problem (30) is a fixed point of the mapping S. 
Notice, that by (i), (ii), we have ||F(x,y)|| - H ^ y ) ~ F(0,y)\\ < 
| |x| |sup||DiF(.,y)| | < M||x||2 for (x,y) £ Bpi x B-p2. 

From the above inequalities for any function / € Bl-2 and for both forms 
of the mapping A we obtain 
(36) \\e-AtF(v(t,x)J(v(t,x)))\\ < M| | e -* | | | | « ( t ) a 0 | | 2 < M e ^ ^ M ? 

for t £ [0, oo), x £ Br. 

Consequently, from the assumption (i) and the inequality (36) we have 
oo 

I W ) ( * ) | | < 5 \\e-AtF(v(t,x)J(v(t,x)))\\dt 
0 

< M ° \ e - ^ \ \ x f d t = ^ l M 

J Q, „ + A 

for x £ Bt. Therefore from the definition TQ we obtain 

f o r 

Notice, that for both forms of the mapping A we have 
(37) | | e ~ A t D x F ( v ( t , x), f ( v ( t , z)))|| < M( 1 + h)e~{0+k)t ||x|| 
for t £ [0, oo), x £ Bt (compare inequality (35)). 

If / € Bl
p2 C C l { B r , Y ) , then ||I>/(x)|| < p2 for x G Br. Consequently, 

by (ii), the inequality (37) and Theorem 135 in [8], we obtain 

i i p s ( / W ) I I < M ( y + i ) I N l * « e B r . 

From the definition of it follows that 

\ \ D S ( f ) \ \ < M ( l l 2 ) T < h for f € B } , . 

Hence S is well-defined mapping and S : Bl-2 —> Bl-2 c B^2. 
We shall prove that 5 is a contraction. Let / i , / 2 € B^2 C C l ( B r , Y ) . 

Then, by (i), (iii), we have 
| | F (x ,y i ) -F (x ,y 2 ) | | < W| | s | | 2 | | y i -y 2 | | for x € Bpi, yx, y2 G BP2. 

Hence 
oo 

\ \ S ( f i ) ( x ) - S(/2)(x)| | < J We'^+^hIMIU/iMi,*)) - f2(v(t,x))\\dt 
o 

for i £ j B t . Therefore 

(38) \\S(h) - 5(/2) | | < ^ " j i l l / i - / 2 I I for f i , f 2 e B l 2 . 
a + A 
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Since \\Dfi(v(t, x))|| < P2 for t € [0, oo) and x € BT, by (ii), (iii), the formula 
(29) and the identity ai&i — a2&2 = (ai — 02)^1 + ( — ¿2)^2, we obtain 

||DxF(v(t, x), h ( v ( t , x))) - DxF(v(t, x ) , f 2 ( v ( t , x)))|| 
< + p 2 ) + M ] | | / i - /2II1 . 

Hence 
00 

||DS(h(x)) - D S ( f 2 ( x ) ) \ \ < \ e - ^ + A ) t [ W ( l + p 2 ) + M ] | | x | | | | / 1 - / 2 | | 1 

0 
for x € Bt. Therefore 

(39) \\DS{h)-DS{h)\\ < [ ^ ( 1 ^ y A
+ M ] T | | / i - / 2 | | i for /1 , / 2 € . 

Consequently, from (38), (39) and the definition of TQ it follows that the 
mapping S is a contraction. 

By the Banach theorem, there exists exactly one mapping fT e Bj-2 C 
C 1 (B T ,F) which is a fixed point of the mapping S and so is a solution 
of the problem (30); in addition fT = S(fT) belongs to an open ball B^2. 
From the uniqueness of the solution we obtain the equality fT = fT> |Bt dla 
r < r < TQ. The searched solution / G B^2 C C1(i?T6, Y) coincide with the 
function fT on every ball BT, i. e., f(x) = fT{x) for x € Bt,T < TQ. M 
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