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ON THE LOCATION OF CRITICAL POINTS
OF SOME COMPLEX POLYNOMIALS

Abstract. Let P(a,n) be the set of all complex polynomials of degree n which have
all their roots in the closed unit disk and one fixed root at a, 0 < a < 1. In this paper we
show that for n > 3 all critical points of the polynomial f(z) = (2" "1 +1)(z—a) lie outside
the set K(a,n) consisting of all b such that for some ¢ the polynomial p(z) = (z — b)™ — ¢
belongs to P(a,n). Hence we infer that minimal sets satisfying the Sendov property (i.e.
containing at least one critical point of each p € P(a,n)) exist but they are not unique.

1. Introduction

In this paper D(zo;r) will denote the disk {z : |z — 29| < r} and D =
D(0;1) will be the unit disk in the complex plane C.

Over thirty years ago Sendov conjectured that if all the zeros of the
polynomial

p() =[[Gz-2) (n22),
v=1

lie in the unit disk D then for each z, the disk D(z,;1) contains at least
one zero of p’(z). This assertion has not been proved in general so far, but
since it was published in 1967 many partial results have been obtained (for

references see [6, 7, 8]). In particular the following theorem due to Bojanov,
Rahman and Szynal [1] holds.

THEOREM A. If p(z) = [I,_,(z — 2,) has all its zeros in D then each of the
disks D(z,, (1 + |2122 ... 2,|)}/™), v = 1,2,...,n, contains at least one zero

of p'(2).
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So the disk slightly larger then D(z,;1) (and asymptotically tending
to D(z,;1)) has the desired property. This result suggests the following
question.

Find a possibly large set which is contained in the disk D(z,;1) and does
not possess the property mentioned above.

In this paper we describe such a set and we draw some conclusions con-
cerning somewhat more general problem due to Goodman, Rahman and
Ratti [4].

2. Notation and statement of the result

Let P(a,n) be the set of all complex polynomials of degree n which have
all their roots in the closed unit disk D and at least oneroot ata,0 < a < 1.

A set S will be said to have the Sendov property if it contains at least
one critical point of each p € P(a,n). For example, from Theorem A it easily
follows that the disk D(a; (1 + a)'/™) has the Sendov property, and written
in this notation, Sendov Conjecture asserts that the smaller disk D(a; 1) has
it, too.

Let us define K(a,n) as the set which consists of all b € D such that for
some ¢ € C the polynomial p(z) = (z—b)™ — ¢ belongs to the family P(a,n).
We have
1) K(an)= {be D: [b+e

2kni

n (a—b)]GD for k=1,...,n}.

From elementary geometric observations it follows that the set K(a,n) is
closed and contains the ellipse {z : |2] + |2 — a] < 1} (for details we refer to
2]).

It is obvious that X(a,n) is the smallest set (in the sense of inclusion)
which pretends to possess the Sendov property. The main goal of this paper
is to show that this is not true, which is an immediate consequence of the
following result.

PROPOSITION 1. For any 0 < a < 1 and n > 3 all critical points of the
polynomial f(z) = (2"~ + 1)(z — a) lie outside the set K(a,n).

Finally let us remark, that for n = 6,8,10 and 12 Miller [6] has shown
that the disk D(%, 1~ 52‘-), which is larger then X(a,n), does not have the
Sendov property, either.

3. Proof of Proposition 1

Let us fix 0 < a <1 and n > 6. Let 29 be any of the critical points of f
and let |2p| = 6 and arg zp = 8. From the equality f'(29) = 0 we get
14257t

(2) B
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Farther, taking into account real and imaginary parts of f'(z9) = 0, if sin 8 #
0 we obtain by easy calculations

n—1 sin(n—2)8

3) 6= n ° sin(n — 1)
and
n_1 _ Sin(n —2)B

To show that 29 & K(a,n) by (1) it is sufficient to find &k, 1 < k < n,
such that
2kwi

(5) le™=" (a — 2z0) + 20| > 1.

We start from the case of real critical points. For odd n the polynomial
f does not have ones at all, so let n be an even number. In this case f’ has

the only negative root. Substituting zg = —6 and k = g to the left hand
side of (5) and using (2) we obtain

i 1__611—1 1_6n—1
m-& >1<:>m+6>1<:‘>
—§n-1 n—2
O TIPS U E SN Ly
(n —1)6m—2 (n—1)6m—2

Hence zp does not belong to K(a,n).
Now we pass to the case of non-real 2y, so we have sinf3 # 0 where
[ = arg zp. For such critical points the following inequality holds

- -1
on 1, where a = [lnz] =2 2.2144337.
1) 2

T m
- <
or | ﬂ|_2n-—3

(6) 6 = |20| <

Indeed, if |B] < T , then | sin(n—1)8| > |sin(n—
2)B|, and using (3) we get

n—-1 an-1
< .

n an

If B does not satisfy the above inequalities, then |sin 3| > sin 7 T 3 and
n f—

taking into account (4) we obtain

5= 2 sm(n.— 2)8 < na 1 < mea] — 1 < om—l.
nsin 3 n|sin G| nsinz— ~ on

The last inequality holds because it is equivalent to the following one

l—-n
an — 1 < msin T
on = 2n -3’
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which in turn is true since the sequence

(=)0

. . T . .
is increasing and tends to e!/* = 5 while the sequence n sin 5

is de-

creasing and has the same limit. So we have proved (6).

Now we can back to the inequality (5). To make the left hand side of it as
big as possible we choose & in such a way that |arg e (a—z)—argzo| < Z.
Hence

i 1 -1
¢ (a - 20) + z0|> cos —a — zo] + [z0] = cos = [ —2L_| | |z] >
n n|(n—1)z;
1— 671—1
> )
=8y (n—1)é7—2 +
- . an —1
So to prove that zg € K(a,n) it is sufficient to show that for § < ,
an

-1
where o = [ln g] , the following inequality holds

T _ (n-1)1-66"%  (n—1)"?2
(7) osn 1-6n-1 S l4+64 .. 6T
(n —1)6"~2

Since G(n,6) is increasing with re-

Denote G(n,é6) = T —-

spect to 4, the above ineqlié,fity reduces to the following one

cos = >G(n,an_1>.
n

an

an—1

The sequence G (n, ) is decreasing and tends to [a(e!/* — 1)]7! ~

an
0.791145. On the other hand cos% increases and tends to 1. Moreover

G(ﬁ, 6aG_—1) ~ 0.8499243 while cos% ~ 0.8660254, so the inequality (7)

Ie%
holds for n > 6.
This, together with (6), completes the proof of Proposition 1 for n > 6.

The case n = 3,4 and 5 can be proved similarly (however it needs some
technicalities) or by means of numerical calculations, so we omit the proof.
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4. Corollaries

In connection with the Sendov Conjecture Goodman, Rahman and Ratti
[4] stated the problem of finding a minimal region with the Sendov property.
Saff and Twomey [9] (and independently Goodman [3]) have specified this
problem in the following way.

Describe a set S(a,n) such that

i) S(a,n) contains at least one critical point of each p € P(a,n),
ii) no proper subset of S(a,n) has property (i).

This problem seems to be rather difficult. To date, the only partial so-
lution to it was given (in the case of n = 3) by Saff and Twomey [9].
Now, using Proposition 1, we can prove the following result.

THEOREM 1. For any n > 2 and 0 < a < 1 there exists a minimal set
S(a,n). For each a and n > 3 it is not unique.

First let us formulate without a proof the following two lemmas (for
detailes we refer to [2]).

LEMMA 1. If X C D has the Sendov property (i) then there exists a minimal
set S(a,n) C X.

LEMMA 2. If 29 & K(a,n) then there exist e > 0 and a minimal set S(a,n) C
D such that S(a,n) N D(zg,€) = 0.

Let us only mention that the first lemma is an immediate consequence
of the Zorn’s Lemma while the other follows from the Hurwitz Theorem [5]
and some topological observations.

Now we can sketch the proof of Theorem 1.

The existence of the set S(a,n) follows simply from Lemma 1 and the
fact that the unit disk D has the Sendov property.

To prove the second part of the statement let us fix ¢, 0 < a < 1, and
n, n > 3. Consider the polynomial f(z) = (2"7! + 1)(z — a). We have
f € P(a,n) and from Proposition 1 it follows that all its critical points
&1,...,&n—1 lie outside the set K(a,n). If S(a,n) were the unique one then,
in view of Lemma 2, each of &1,...,£,-1 would not belong to S(a,n) and
S(a,n) would not be minimal. In the case a = 0 the reasoning is similar.
Thus, for n > 3, there must be at least two minimal sets, which ends the
proof.

Finally let us mention that even if in the definition of S(a,n) we take
into account closed and connected sets satisfying (i) the above reasoning
remains valid and Theorem 1 is true.
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