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TENSOR P R O D U C T S IN C O N C R E T E CATEGORIES 

A b s t r a c t . In this paper we consider the notion of tensor multiplication in the concrete 
categories (by the concrete category 21 we mean the category 21 with fixed covariant fai thful 
functor U : 21 —> Ens) . The reason of this choice is the observation of the constructions of 
tensor product in the categories of abelian groups, vector spaces or more generally in any 
variety (which axe of course concrete). We modify this constructions to give the universal 
method of introduction the tensor multiplication in any concrete category. Moreover we are 
not restricted because many impor tant categories are concrete. Our aim was the general 
overview on the tensor multiplication in order to apply it to objects in any category which 
fulfill suficient conditions. In order to do this we use the construction of tensor product 
via Freyd's representability theorem ([4], [1]). This allowed us to formulate the problem 
in the language of theory of category. The main result of this work is theorem 2 which 
gives the conditions sufficient to existence the tensor product in the concrete category. As 
an example of the nontrivial aplication of this theorem we give the proof of the existence 
of the tensor product in the category of compact spaces. 

1. Tensor products 
In all the text the symbol 21 denotes a fixed concrete category and 21° -

the class of objects of 21. 

DEFINITION 1. L e t A i , . . . , An, B e 21°. T h e m a p <p : U(Ai) x . . . x U(An) —> 
U(B) is called the n-morphism in the category 21 iff for each map 

ŜíL..,̂  :
 U U ( A i ) x • • • x U « i ^ ( a i , • • • , Oi, • • • . On) 

there exists a morphism 
Ai \/ 1 

such that 
7 „ * n : Ai->B 

r ai,...,a¿,...,an v 'ai,...,Oi,...,an> 

PROPOSITION 1. Let A i , . . . , An, B,C e 21°. If £ : B —• C is an embedding 
and d : U{A\) x . . . x U(An) —> U(B) is such a morphism that U(£)-d is an 
n-morphism, then a? is an n-morphism. 
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Proo f . Let be an n-morphism. Than for each an there ex-

ists r„Ai - „ : At C such that UiftfapW „ = U(t^ - „ ). 
Therefore from the fact that £ is an embedding it follows that there exists 

a a - A i ^ B such that a n ) = tfvrf(Ai)- n . -
PROPOSITION 2. Let Ax,. . . ,An,X,Y e 21°. If : Z7(Ai) x . . . x U{An) -> 
U(X) is an n-morphism and 77 : X —> Y is a morphism, then U(r))<p is an 
n-morphism. 

DEFINITION 2. L e t 
An E 21°. By the tensor product of this sequence 

of objects we call any pair (T, r ) such that T € 21°, r : U(Ai) x . . . x U( An) —• 
C/(T) is an n-morphism and the following condition is fullfiled: for each 
X G 21° and each n-morphism <p : U(A\) x . . . x U(An) —» t/(X) there exists 
exactly one morphism C : T —» X such that U(C)r = tp. 

Straight from the definition of the tensor product we have 

T H E O R E M 1. Let Ai,..., An E 21°. Assume that ( T , T) and ( T T ' ) are tensor 
products of this sequence of objects. Then there exists exactly one isomor-
phism L : T —>T', such that the diagram 

U(A{) x . . . x U{An) 

( 1 ) 

comutes. • 

DEFINITION 3. Let A\,..., An £ 2t°. One can define the covariant functor 
C n : 21 —• Ens as follows: 

For each X e 21° C n (X) is the set of all n-morphisms from U{A\) x . . . x 
U(An) to U(X). If 77: X -» Y is a morphism of 21 then 

Cn(rj) : Cn(X) -> C„(y) , Cn(vH = ^ foK for £ € Cn(X) 
(we use the notation Cn(r)).£ for (Cn(r))) (£)). From the proposition (2) we 
obtain that C n is well defined. 

LEMMA 1. Let 21 be a concrete category and let U be the faithfull functor 
from the definition of a concrete category. If U preserves inputs, then C n 
preserves inputs. 

P r o o f . Let V be any diagram in 21 with the scheme D and let 

(rD:P-> T(D))d&° 

be the input of this diagram. We show that the family 
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(2) (Cn(rD) : CN(P) CNT(D))DE^ 

is the input of C n r in Ens. Obviously (2) is the family compatible with C n I \ 
Let (££> : Z —• CnT(D))DeQ° be another family compatible with C n I \ Then 
for each z 6 Z the family of n-morphisms 

: U(AI) x . . . x U(AN) - UT{D))D^° 

is compatible with UT. Functor U preserves inputs thus 

(U(TD) : U(P) - UR(D))DE%O 

is the input of UT in Ens, therefore there exists exactly one map DZ : U(A\) x 
. . . x U(AN) U(P) such that for each D € 21° U{Td)-&z = ZD{Z). We show 
that i?z is an n-morphism. Let us take any an- For each D E D° 
there exists ©¿ f l l i . . .A ttn : A{ - T(D) such that V(e£ai>...A>... | t tB) = 
to(z)ir"{Ai\, . Moreover, the family a4i...i0n) : -
C/r(D))£,e£)o is compatible with £/T\ Thus for each 5 £ Mor (21) 

U(E£\AI A ^ M ) = MD\AU...,AI,...,ANMT (£)) = 

= t^(@£)*)ai a„) 

and 

From this it follows that the family (©¿ i
a i ¿. Qn : At —> r(.D))De£)° is 

compatible with I\ Than there exists exactly one morphism * a : 
AI—Y P such that, for each D €D° 

U(TD)U AIT...,AN) = J = 

= A „ =U(TD)DZIR* - „ . "»i/v / aj,...,on \ u/ z ai,...,an 

From this and the fact, that each input is the monomorphic family we have 
= „ = - „ ). So is an n-morphism. Let us define the 

map •& : Z —• C n ( P ) , z i—> It is easy to check that Cn(r£>)i? = In 
addition i? is defined uniquely. This follows from the fact that U(TD) is an 
input. 
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U(Ai) 

D 

6 

U(A{) x . . . x U{An} 
io{z) 

UT(D') D' 

Let us now assume that (T, r ) is a universal pair of the functor C n . Then 
for each X 6 21° and each n-morphism ip £ Cn (X^) there exists exactly one 
morphism i? such that Cn(i?).r = tp thust U{"d)r = ip. This means that 
(T, r ) is the tensor product of A\,..., An. From this it is obvious that in 
order to proof the existence of a tensor product in a given concrete cate-
gory it is enought to proof the existence of universal pair of the suitable 
functor C n . This observation allows us to formulate the following theo-
rem. 

THEOREM 2. If the category 21 satisfies the following conditions: 

(i) 21 is complete with respect to inputs, 
(ii) every pair of morphisms has coequalizer, 

(iii) functor U has the left adjoint, 
(iv) functor U preserves epimorphisms, 
(v) every injection is an embedding, 

(vi) for each X € 21° {Y € 21° : U(Y) = U{X)} forms a set, 

then for each A\,..., An 6 21° there exists the tensor product of this sequence 
of objects. 

P r o o f . Let us fix Ai,..., An e 21. For the proof we must show that the 
functor C n has the universal pair. It is well known that the functor has a 
universal pair iff it is representable. In order to proof this we use the Freyd's 
theorem. From (i) 21 is complete with respect to inputs. 

From (iii) U has the left adjoint so U preserves the inputs. Thus from 
lemma 1 C n preserves the inputs. To use Freyd's theorem we must show 
that the functor C n has the dominating set eq., there exists a set 6 C 21° 
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such that the following condition is true 

(3) V(X e 21°) V(<p e Cn(X)) G S ) 3(rv € C n ( i ^ ) ) , 

(4) 3(&€(Rv,X))Cn(^)-r<P = <P-

Let X € 21° and 

<p : U(Ai) x . . . x U{An) -» C/(X) 

be any n-morphism. From (mi) we can take F the left adjoint to U. There 
exists a mapping (the first canonical transformation) 

r,: U{AX) x . . . x U(An) - UF(U{A!) x . . . x 

such that there exists exactly one morphism 

4 : F ( U ( A 1 ) x . . . x U ( A n ) ) - * X 

such that U(-&)r] = <p. Let us take a kernell pair (j\, j2) of the morphism r/ 
and then a coequalizator coeq(jii, j'2) of the pair ( j i , J2)• Then there exists 
exactly one morphism £ : C —* X such that 77 = £ o coeq^'i,^). 

V 

<P 

U(X) 
U(0 

UF(S) ^ U{Y) 

U(coeq(j1,j2)) 

U(C) 

Where S = U(Ai) x . . . x U(An) It is easy to check that (j i , J2) is the kernell 
pair of coeq(ji,^2)- Since U is input preserving then U(ji,j2) is a kernell 
pair of i/(coeq(ji, j2). 

We show that f/(C) is an injection. Indeed if ci,c2 € U(C) and c\ ^ c2 

then there exist elements f i , f 2 € UF(U(A\) x . . . x U{An)),f\ ± f2 such 
that 

U (coeq(ji , j 2 ) ) . f i = ci U (coeq(ji , j 2 ) ) . f 2 = c2. 

We obtain this from the fact that all coequalizers are epimorphisms and 
epimorphisms are surjections in Ens. (U(ji),U(j2)) is the input in Ens so 
from the general form of inputs in Ens (/1, f2) / U(Y). Since ( U ( j i ) , U(j2)) 

is the kernell pair of U(rj) then U(ti).fi ^ U{ti).f2. Hence 

U( C).ci = (l7(C)l7(coeq0i,j2)))./i = U(V).f1 + 

± U(V).f2 = (tf(C)tf(coeq(ji, j2)))./2 = U(C).c2 
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from this we have that U(Q is an injection. Therefore from (v) ( is an 
embedding.From this and proposition 1 it follows that l/(coeq(ji, j2))v is 
an n-morphism. Thus we have shown that for each n-morphism ip there 
exist R^ = U(C), rv = rj o U(coeq(ji, j'2)) and = U(Q such that the 
condition 3 comes true. 

For each X e 210 and any n-morphism <p there exists the object C E 01° 
and an n-morphism U(coeq(ji,j2))r/ such that 

mOU(coeq(j1J2))T} = U(lp). 

Let us now take 6as the class of all C obtained form applying the above 
construction for diffrent n-morphisms d. We show that in fact 6is a set. 
First, the class UY of all UY from the diagram (1) is the set (of course 
we identify isomorphic object). Indeed, the cardinal number of each UY is 
limited by the cardinal number of the set 2U F ( 5 ) x C / F ( s ) . Thust the cardinal 
number of all UY (where Y is like in the diagram ) is also limited and forms 
the set. From (vi ) it follows that the class of all Y € 21 is the set. Now the 
Freyd's theorem ends the proof. • 

It is easy to check that the vector spaces, abelian grups and more generaly 
any variety satisfy the sufficient conditions for existence of tensor product. 
More interesting example is given in section 2. 

Similary, like in the category of vector spaces, one can prove that the 
tensor product is commutative. We can define the functor of tensor mul-
tiplication as follows. Let A\,..., An, B\,..., Bn € 21°, where 21 satysfies 
conditions of Theorem (2) and let /j : Ai —> Bi, i = 1, . . . , n be any family 
of morphisms in 21. Than there exists exactly one morphism /1 x .. . x fn : 
Ai x ... x An Bi x ... x Bn such that TrBi(fi x ... x /n) = fiitAi (where 
•KAi^Bi are the elements of the product families of n?=i Ai, IliLi Bi respec-
tively) . It can be shown that f\ x ... x fn induces exactly one morphism 
h ® • • • ® fn • M <g>... (8) A„, Bi <g>... <g> Bn such that ®U{f1x...x fn) = 
U(fi <g>... <g> /n)®- Now we can define 

(g ) : Mor{21 x ... x 21) Mor{21) (/1, ...,/„)•-» /1 ® ... ® /n. 

It is easy to check that 0 is in fact a functor. 

2. Tensor products of compact spaces 
Let Comp denote the category of compact spaces (we assume that they 

are Hausdorff). In this section we will prove that for any A\,..., An 6 
Comp0 there exists the tensor product of this sequence of compact spaces. 
Category Comp is complete with respect to products (this follows from 
the Tichonow theorem) and equalizers ([3],[4]). So Comp is complete with 
respect to inputs. The form of equalizers and products (Tichonow theorem) 
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in Comp and Ens yields the forgetful functor U : Comp —> Ens to be input 
preserving. 

LEMMA 2. Comp is complete with respect to coequalizers. 

P r o o f . Let £1,^2 : X —> Y be any morphism in Comp. We define the 
relation ~ as the least equivalence relation such that V(x € X) : ~ 
£2(2;). We'll show that /3(Y/~) (where (3 : Top -> Comp is the Cech-Stone 
functor [3],[4]) with the morphism (3 o con, where con : Y —> Y/ ~ and 
/3 : Y/ * (3(Y/ is the coequalizator of (^1,^2)- It is easy to see that 
f3 o con is continuous and /3 o con o £1 = /3 o con o If V • Y —;• Z is another 
morphism such that 770^ = 77 than 77/ Y/ > Z, [y] 1—> r](y) is unique 
morphism for which (77/ o con = 77. Prom the fact that (3 is Comp-reflect 
we obtain that there exists exactly one morphism such that i9/3 = 77/ • 

LEMMA 3. The interval [0,1] is the separator in Comp. 

P r o o f . £1,^2 : A —y B be any morphisms in Comp, such that ^ (2- Then 
there exists an element a € A for which £i(a) / £2(a)- Let 

/ : { 6 ( a ) , 6 ( a ) } - [0,1] / ( f r ( a ) ) = 0 , / (&(«)) = 1. 

From Titze lemma it follows that / prolonges to the continuous map F : 
B [0,1]. Of course + F&. m 

LEMMA 4. Category Comp is localy small. 

P r o o f . In Comp monomorphisms covers injections. For each A £ Comp° 
let 

HA = {idx • X C A A X = cl(X) A Xwith subspace topology} 

card(HA) < 2cavd(A) so Ha is a set. Moreover for each X € Comp° and any 
injection / : X —> A f ( X ) is compact and card(F(X)) < card(A). Thus 
i d f ( x ) £ HA and for continuous bijection / : X —• f ( X ) id^X)f = /• • 

LEMMA 5. Functor U : Comp —> Ens has the left adjoint. 

P r o o f . The proof follows from lemmas 3,4 and special Freyd's theorem 
([4])- • 

It is obvious that Comp satisfies the conditions (iv) and (vi) of theorem 
2. From the above results we have the following theorem 

THEOREM 3. Let A\,..., An G Comp° be any objects. Then there exists the 
tensor product in Comp of this sequence of objects. 
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