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TENSOR PRODUCTS IN CONCRETE CATEGORIES

Abstract. In this paper we consider the notion of tensor multiplication in the concrete
categories (by the concrete category 2 we mean the category ¥ with fixed covariant faithful
functor U : 2 — Ens). The reason of this choice is the observation of the constructions of
tensor product in the categories of abelian groups, vector spaces or more generally in any
variety (which are of course concrete). We modify this constructions to give the universal
method of introduction the tensor multiplication in any concrete category. Moreover we are
not restricted because many important categories are concrete. Qur aim was the general
overview on the tensor multiplication in order to apply it to objects in any category which
fulfill suficient conditions. In order to do this we use the construction of tensor product
via Freyd’s representability theorem ([4], [1]). This allowed us to formulate the problem
in the language of theory of category. The main result of this work is theorem 2 which
gives the conditions sufficient to existence the tensor product in the concrete category. As
an example of the nontrivial aplication of this theorem we give the proof of the existence
of the tensor product in the category of compact spaces.

1. Tensor products

In all the text the symbol % denotes a fixed concrete category and 2° -
the class of objects of 2.

DEFINITION 1. Let A;,...,An, B € %°. Themap ¢ : U(A;1) x...xU(4,) —
U(B) is called the n-morphism in the category 2 iff for each map

xU (A TU(A) > U(AD) x ... x U(An), @i+ (a1,-..,0i,.-.,an)

Q1yeeeyBiyeeerln

there exists a morphism
Ai A, — B

’Yal,...,&i,...,an

such that
U(A; A;
Sowal(,...,zii,...,an = U(Fyal,...,di,...,an)'
PROPOSITION 1. Let Ay,...,An, B,C e A°. If £ : B — C is an embedding
and 9 : U(A1) x ... x U(Ap) — U(B) is such a morphism that U(€)9 is an

n-morphism, then 9 is an n-morphism.
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U(Az)

di,..an bhere ex-

Proof. Let U(£)?¥ be an n-morphism. Than for each =,
ists TA : A; — C such that U(£)197rU(A) = U(+A )

y8i 5. +y@n (- TSRO PR S

Therefére froin the fact that £ is an embeddlng it follows that there exists
9 . A; — B such that U(9 U(4s)

[ R FI, a1,...,&,~,...,an) - Q1yeeyBigennyln®

PROPOSITION 2. Let Ay,...,Ap, X, Y € A°. If o : U(41) X ... x U(4,) —
U(X) is an n-morphism and 7 : X — Y is a morphism, then U(n)y is an
n-morphism.
DEFINITION 2. Let A;,..., A, € %°. By the tensor product of this sequence
of objects we call any pair (T, 7) such that T € %°, 7 : U(A1)x...xU(A4n) —
U(T) is an n-morphism and the following condition is fullfiled: for each
X € 2° and each n-morphism ¢ : U(A;) X ... X U(An) — U(X) there exists
exactly one morphism ¢ : T — X such that U({)7 = ¢.

Straight from the definition of the tensor product we have

THEOREM 1. Let Ay, ..., A, € U°. Assume that (T, 7) and (T",7’) are tensor
products of this sequence of objects. Then there exists exactly one isomor-
phism ¢ : T — T, such that the diagram

U(A1) x ... x U(A4,)
(1) o N\¢

comutes. =

DEFINITION 3. Let A;,..., A, € %°. One can define the covariant functor
C, : 24 — Ens as follows:
For each X € %° C,(X) is the set of all n-morphisms from U(A4;) x ... X
U(A,) to U(X).If p: X > Y is a morphism of % then
Cn(n) : Cn(X) — Cu(Y), Cun(n).£ =U(n)¢ for & € Cn(X)
(we use the notation C,(n).£ for (Cn(n)) (£)). From the proposition (2) we
obtain that C,, is well defined.

LEMMA 1. Let % be a concrete category and let U be the faithfull functor
from the definition of a concrete category. If U preserves inputs, then C,
preserves inpuls.

Proof. Let I be any diagram in 2 with the scheme D and let
(7D : P — I(D))pen©
be the input of this diagram. We show that the family
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(2) (Cn(rp) : Cn(P) — CrI'(D))pep©

is the input of C,,I" in Ens. Obviously (2) is the family compatible with C,T'.
Let (ép : Z — CnI'(D)) pepe be another family compatible with C,I". Then
for each z € Z the family of n-morphisms

(€p(2) : U(A1) x ... x U(An) = UL(D))pepe
is compatible with UT'. Functor U preserves inputs thus
(U(rp) : U(P) = UT(D)) pep°

is the input of UT in Ens, therefore there exists exactly one map 9, : U(A1) %
.. x U(Ayn) — U(P) such that for each D € A° U(7p)?, = {p(z). We show

that ¥, is an n-morphism. Let us take any WU(A’L’ a . For each D € D°

there exists ©% a1vdisan - Ai — T(D) such that U(@D oiiiysan) =
U(As) A;

{ (2)m o, @)iyan’ Moreover, the family (U(O5',, 4. ..) @ U(4) —

UT'(D))pepe is compatible with UT'. Thus for each 6 € Mor(2)

U@y 400 LO) =UOF, 4 . U(TE)) =
= U(e4

’,a.l,...,di,...,a.n)
and

(__)A

D,ay,.--,8i,---,0n

r(a) =04

K 5 AR PRSI, P

From this it follows that the family (©% arviisian - Ai = T(D))pepe is
compatible with I'. Than there exists exactly one morphism 192‘

,...,&,-,...,a.,, :
A; — P such that, for each D € D° '
=U© % . )=

D,ay,...,3i)-.-,0n

U(TD)U(19

ai,.- 10'5) +0n )

—ED(Z)"raly yarn +Qn U(TD)ﬁzﬂ-al) ral) wan'

From this and the fact, that each input is the monomorphic family we have
t9z7rfl, ’a” e = U(19A, \ir..an)- S0 U2 is an n-morphism. Let us define the
map ¥ : Z — Cu(P),z — ¥,. It is easy to check that C,(7p)d = {p. In
addition 19 is defined uniquely. This follows from the fact that U(rp) is an

input.
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U(As)

WU(Ai) U (,lgAi

A1 yeeeyBiyennsBn D,ay,...,4iy...,Gn

U(e4 )

D,ay,...,8iy...,Gn

U(A1) x ... x U(Aqg) ™ urp’) p

Let us now assume that (7', 7) is a universal pair of the functor C,,. Then
for each X € 2° and each n-morphism ¢ € C,(X) there exists exactly one
morphism ¥ such that C,(¥).7 = ¢ thust U(J)r = ¢. This means that
(T, 7) is the tensor product of Aj,..., A,. From this it is obvious that in
order to proof the existence of a tensor product in a given concrete cate-
gory it is enought to proof the existence of universal pair of the suitable
functor C,. This observation allows us to formulate the following theo-
rem.

THEOREM 2. If the category A satisfies the following conditions:

(i) A is complete with respect to inputs,
(ii) every pair of morphisms has coequalizer,
(iii) functor U has the left adjoint,
(iv) functor U preserves epimorphisms,
(v) every injection is an embedding,
(vi) for each X € A° {Y e A°: U(Y) = U(X)} forms a set,

then for each Ay, ..., A, € U° there exists the tensor product of this sequence
of objects.

Proof. Let us fix Ay,..., A, € . For the proof we must show that the
functor C,, has the universal pair. It is well known that the functor has a
universal pair iff it is representable. In order to proof this we use the Freyd’s
theorem. From (i) 2 is complete with respect to inputs.

From (iii) U has the left adjoint so U preserves the inputs. Thus from
lemma 1 C,, preserves the inputs. To use Freyd’s theorem we must show
that the functor C,, has the dominating set eq., there exists a set & C 2A°
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such that the following condition is true
(3) V(X €2°) ¥(p € Ca(X)) 3Ry € &) I(ry € CalRy)),
4) 3(és € (Ry, X)) Cn(p)-To = o
Let X € 2° and
p:U(A) x...xU(4,) = U(X)

be any n-morphism. From (ii¢) we can take F' the left adjoint to U. There
exists a mapping (the first canonical transformation)

n:U(A1) X ... x U(Ap) > UF(U(A1) x ... x U(An)),
such that there exists exactly one morphism
9: FU(A) x...xU(Ap)) = X

such that U(d?)n = ¢. Let us take a kernell pair (ji, j2) of the morphism 7
and then a coequalizator coeq(ji, j2) of the pair (j1,72). Then there exists
exactly one morphism ¢ : C — X such that n = ¢ o coeq(j1, j2)-

U(j1)
S UF(S)y=—/——U(Y
( )U(Jz) o)
@ U(9)| U(coeq(j1,52))
U(X)WU(C)

Where S = U(4;) x...xU(Ay) It is easy to check that (51, j2) is the kernell
pair of coeq(j1,72). Since U is input preserving then U(ji, j2) is a kernell
pair of U(coeq(j1,j2).

We show that U(¢) is an injection. Indeed if ¢;,¢c2 € U(C) and ¢; # ¢
then there exist elements fi, fo € UF(U(A1) X ... x U(A4y)), f1 # f2 such
that

U(coeq(j1,72)).-fi=c1  U(coeq(j1,j2)).f2 = ca.

We obtain this from the fact that all coequalizers are epimorphisms and
epimorphisms are surjections in Ens. (U(j1),U(j2)) is the input in Ens so
from the general form of inputs in Ens (fi, f2) # U(Y). Since (U(j1), U(j2))
is the kernell pair of U(n) then U(¥).f1 # U(9).f2. Hence

U(¢)-c1 = (U({)U(coeq(hn, 52)))-fr =U(n).f1 #
# U(n)-f2 = (U({)U(coeq(j1, 52)))- f2 = U({)-c2
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from this we have that U(¢) is an injection. Therefore from (v) ¢ is an
embedding.From this and proposition 1 it follows that U(coeq(j1,72))n is
an n-morphism. Thus we have shown that for each n-morphism ¢ there
exist R, = U(C), r, = n o U(coeq(j1,52)) and & = U(() such that the
condition 3 comes true.

For each X € 2° and any n-morphism ¢ there exists the object C € 2°
and an n-morphism U(coeq(ji, j2))n such that

U(¢)U(coeq(j1, 52))n = U(yp).

Let us now take Gas the class of all C obtained form applying the above
construction for diffrent n-morphisms . We show that in fact Gis a set.
First, the class UY of all UY from the diagram (1) is the set (of course
we identify isomorphic object). Indeed, the cardinal number of each UY is
limited by the cardinal number of the set 2UF(S)XUF(S)  Thust the cardinal
number of all UY (where Y is like in the diagram ) is also limited and forms
the set. From (v?) it follows that the class of all Y € 2 is the set. Now the
Freyd’s theorem ends the proof. m

It is easy to check that the vector spaces, abelian grups and more generaly
any variety satisfy the sufficient conditions for existence of tensor product.
More interesting example is given in section 2.

Similary, like in the category of vector spaces, one can prove that the
tensor product is commutative. We can define the functor of tensor mul-
tiplication as follows. Let Ay,...,A,, B1,...,B, € 2A°, where 2 satysfies
conditions of Theorem (2) and let f; : A; — B;,i = 1,...,n be any family
of morphisms in 2. Than there exists exactly one morphism f; X ... X fn :
A; X ...x Ap = By X ... X By, such that wg,(fi1 X ... x fn) = fima, (where
T4, B, are the elements of the product families of []i—; Ai, [I;~, B: respec-
tively). It can be shown that f; x ... x f, induces exactly one morphism
fi®..®fr:A1Q®...0A, - B1®...® By such that QU(f1 X ... X fp) =
U(f1i®...® fn)®. Now we can define

®:Mor(2lx...xﬁl)—-»Mor(Ql) (fi,.- o fa)m 1®...® fa.

It is easy to check that ) is in fact a functor.

2. Tensor products of compact spaces

Let Comp denote the category of compact spaces (we assume that they
are Hausdorff). In this section we will prove that for any A;,...,A, €
Comp®° there exists the tensor product of this sequence of compact spaces.
Category Comp is complete with respect to products (this follows from
the Tichonow theorem) and equalizers ([3],[4]). So Comp is complete with
respect to inputs. The form of equalizers and products (Tichonow theorem)
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in Comp and Ens yields the forgetful functor U : Comp — Ens to be input
preserving.

LEMMA 2. Comp is complete with respect to coequalizers.

Proof. Let &,& : X — Y be any morphism in Comp. We define the
relation ~ as the least equivalence relation such that V(z € X) : & (z) ~

&2(z). We'll show that B(Y/~) (where 8 : Top — Comp is the Cech—Stone
functor [3],[4]) with the morphism S o con, where con : ¥ — Y/ ~ and
B:Y/~— B(Y/~), is the coequalizator of (£1,£2). It is easy to see that
B ocon is continuous and Boconoé; = foconoés. If n: Y — Z is another
morphism such that noé; = nofy thann/~: Y/ ~— Z,[y] — n(y) is unique
morphism for which (n/~) o con = 7. From the fact that 3 is Comp-reflect
we obtain that there exists exactly one morphism ¥ such that 98 =7n/~. »

LEMMA 3. The interval [0, 1] is the separator in Comp.

Proof. &,£& : A — B be any morphisms in Comp, such that £ # &. Then
there exists an element a € A for which &1(a) # £2(a). Let

f:{&(a),&(a)} = [0,1]  f(&(a)) =0, f(€2(a)) = 1.

From Titze lemma it follows that f prolonges to the continuous map F' :
B — [0,1]. Of course F& # Fé. m

LEMMA 4. Category Comp is localy small.

Proof. In Comp monomorphisms covers injections. For each A € Comp°
let

Hy = {idx : X C AN X = cl(X) A Xwith subspace topology}

card(Hy) < 2¢card(4) g6 H 4 is a set. Moreover for each X € Comp® and any
injection f : X — A f(X) is compact and cand(F (X)) < cand(A). Thus
ids(x) € Ha and for continuous bijection f : X — f(X) idyx)f = f. =

LEMMA 5. Functor U : Comp — Ens has the left adjoint.

Proof. The proof follows from lemmas 3,4 and special Freyd’s theorem

([4]). =

It is obvious that Comp satisfies the conditions (iv) and (vi) of theorem
2. From the above results we have the following theorem

THEOREM 3. Let A;,...,A, € Comp® be any objects. Then there exists the
tensor product in Comp of this sequence of objects.
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