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REMARKS ON APPLICATIONS OF RANK FUNCTIONS 
TO ALGEBRAIC SETS OF MATRICES 

0. Introduction 
A function r : N —> N is called a rank function if it is weakly decreasing 

and satisfies convexity condition 

r(j) + r(j + 2) > 2r{j + 1), j e N. 
The set of all rank functions will be denoted by 1Z. It is partially ordered 
by the natural relation <, namely 

T\ < 7*2 iif Ti{j) < 7"2(j) for all j 6 N, 

where r\, 7*2 € 11. 
Let M n stand for the set of all (n x n)-matrices whose terms are elements 

of an algebraically closed field F of characteristic zero (n is a non-negative 
integer). We denote by I n the unit matrix of M.n and by On its zero matrix. 
A non-empty set S C M.n is called a cone if F£ C £. 

For a matrix A € M.n we define 
r A : N 9 j H> rank (A7) € N 

(in particular ryi(O) = rank(A°) = rank(/n) = n). The integer r-yi(n) is 
called the stable rank of A. One can prove that a function / : N —> N is a 
rank function if and only if there is a matrix B G A/i/(o) such that / = tb 
(see [6, Theorem 2 and Theorem 3]). 

Given a set £ C M.n, we shall consider 

Tl(£) = {rA\A<E£} 
which is a finite set and for some £'s can be described in a very easy way 
(in virtue of the above characterization of rank functions). For example, if 
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Tn C A4n is the set of all upper triangular matrices, then 

W n ) = {re 71 I r( 0) - n}; 
in turn, if = {A € Mn \ Ak = On}, where k 6 N is such that k < n, 
then 

K{S*) = {r £ K | r(0) = n, r(ife) - 0}. 
Gerstenhaber's classical theorem on closures of conjugacy classes of nil-

potent matrices (see [2] and [3, Theorem 3.10]) implies that if £ C M.n is 
a ££n-invariant algebraic set of nilpotent matrices, then there is a bijective 
correspondence between the irreducible components of £ and the maximal 
elements of 1Z(£) (throughout the text, QCn C M.n is the group of all 
invertible matrices, to be a C7£n-invariant set means to be a set invariant 
under the action of QCn on Mn by the conjugation, and the maximality of 
a rank function is the maximality in the sense of the ordering < in the set 
7Z\ when dealing with notions and facts of the algebraic geometry, we always 
use the terminology and notations of [8]). 

The purpose of this note is to generalize the above corollary of Gersten-
haber's theorem as far as it is possible in a direct way, and to indicate other 
basic applications of rank functions to investigations of the topological and 
geometric structure of algebraic sets of matrices. 

1. A modification of Gerstenhaber's theorem 
We shall denote by 0(A) the conjugacy class of a matrix A € M.n and 

write F* instead of F \ {0}. 
PROPOSITION 1.1. Let A,BG MN be such that MAX{rA(n),rB(n)} < 1. 
Then the following conditions are equivalent: 

(•) rA = rB, 
(••) ¥*0{A) = ¥*0{B). 

P r o o f . Implication (••) (•) is obvious (under no assumption on A,B). 
Let condition (•) be satisfied. If r^(n) = r s (n ) = 0, then A and B both are 
nilpotent and by [6, Proposition 4], O(A) = 0{B). Condition (••) follows. 
If TA{U) = RSIN) = 1, then by [6, Theorem 1], there are A,BE M.N-1 
and \,n € F* such that r^ = ta - 1, r^ — - 1, A © A € O(A), and 
B © ft e O(B). Since A and B both are nilpotent, 0{A) = 0{B) (by 
condition (•)). In consequence, 

A ( 5 © / Z ) £ 0 ( A ) 

(because of the invariancy of conjugacy classes of nilpotent matrices un-
der the multiplication by scalars different from zero) which yields condi-
tion (••). • 
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We shall use bars for denoting closures of subsets of A4n in the Zariski 
topology on Mn = F™ . Given p £ 1Z such that p(p(0)) < 1 we define 
M(p) £ Mp(o) to be the matrix in the Jordan canonical form such that 
rM{p) — P a n d tr(M(p)) £ { 0 , 1 } (we assume the nilpotent blocks of a matrix 
in the Jordan canonical form to be ordered with respect to their sizes, with 
the biggest one in the upper left corner of the matrix). Let us note that M(p) 
contains p(j— l ) + p ( j + 1)— 2p(j) nilpotent blocks of size j for all j £ N\{0} 
(see [6, Remark 2]). By the Jordan partition of a nilpotent matrix A £ A4n 

we mean a finite sequence (<7fc)fc=i °f non-negative integers with qk equal to 
the size of kth block of the Jordan canonical form of A, whenever k is not 
greater that the number of blocks, and to 0, whenever k is greater than the 
number of blocks. The conjugate of a partition (qk)k=i £ N n is defined to 
be the finite sequence (pj)™=1 £ N n with pj = #{k £ N | qk > j}-

T h e o r e m 1 . 2 . Let A £ Mn be such that m ( w ) < 1 and let B £ Mn• Then 

the following conditions are equivalent: 

(*) rB < r A , 

(**) B £ V : = F O ( A ) . 

P r o o f . It is obvious that condition (**) implies condition (*) (under no 
assumption on A, B £ Mn). 

We assume that condition (*) is satisfied. 
If 7\4(n) = 0, then condition (**) immediately follows, by Gerstenhaber's 

theorem on closures of conjugacy classes. In turn, let r^(n) = r s (n) = 
1. Then by [6, Theorem 1], there are A , B e M n - 1 and A,/x £ F* such 
that A 8 A £ 0(A), B ® p, € 0(B), rA = rA - 1, and = rB - 1. By 

Gerstenhaber's theorem, we obtain B £ O(A). This yields 

B £ ^ 0 { A ) C ¥ 0 { A ) 
A 

(because conjugacy classes of nilpotent matrices are invariant under the 
multiplication by scalars different from zero). Finally, let ^ ( n ) = 1 and let 
r-s(n) = 0. Then by Gerstenhaber's theorem, B £ 0(M(s)), where 

s = max{r £ 1Z | r < rA, r{n) = 0}. 

Thus, to complete the proof it suffices to show that 

{B' £ V | B' is nilpotent} = 0(M(s)). 

Let us observe that 

{B' £ V | B' is nilpotent} = {B' £ V | tr(B') - 0}. 

In consequence, 

(o) dim{B' £ V | B' is nilpotent} = dim V - 1. 
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We set r — ta — 1 and observe that by Proposition 1.1, 
F*0(A) = {A' 6 Mn | ta' = TA}-

Applying [1, Lemma 1.1] to F*0(A), we obtain 
(oo) dimV = n2 - codimMn-iO(M(f)) 

(because {A" e Mn-x \ rA„ = r} = C(M(f))). By [5, 1.3], we get 
n—1 

(ooo) codimJvtn_1 <D{M{f)) = J^Pj' 
3=1 

as well as 
71 —1 

(oo) dim 0(M(s)) = n2 - 1 - ^ p2, 
j=l 

where (Pj)?=i is the conjugate of the Jordan partition of M(r). Concluding 
(o), (oo), (ooo), and (oo) , we obtain 

dim{£' € V | B' is nilpotent} = dimO(M(s)). 

Since {B' e V \ B' is nilpotent} C 0(M(s)), the desired equality holds. The 
proof is complete. • 

2. Consequences of the modification of Gerstenhaber's theorem 
We set 

= {£ C M.n | £ is <7£n-invariant, ¥*£ C £, maxrA{n) < 1} 
Ae£ 

and 
n\ = {r E n | r(0) = n, r(n) < 1}. 

Let us recall that a set £ C M.n is constructible if it is the set-theorical sum 
of a finite family of sets which all are locally closed in the Zariski topology 
on Mn-

As an immediate consequence of Proposition 1.1 we obtain 

PROPOSITION 1.2. The maps 
K{£) C n\ 

and 
K D Q ~ U VO(M(r)) € Ck 

reQ 
are mutually inverse bijections which preserve inclusions and which are com-
patible with set-theorical operations. Moreover, all the elements of C* are 
constructible sets. 
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Now, by Proposition 2.1 and Theorem 1.2, we directly obtain 

T H E O R E M 2 . 2 . For £ G the following conditions are equivalent: 

(*) £ is an algebraic set, 
(**) if r E TZ is such that r(0) = n and there is f E 1Z{£) such that 

r < f , then r E TZ(£). 

In particular, V,{£) = {r G | there is r € H(£) such that r < f } . 

For £ C M.n we define Z(£) to be the set of all maximal elements of 
TZ(£) and F{£) to be the family of all irreducible components of £. 

As a simple consequence of the irreducibility of conjugacy classes of 
matrices, Theorem 1.2, and the fact that for each r E 7l{£) there is an 
ro G Z{£) such that r < ro (£ C. M.n is an arbitrary set), we obtain the 
announced generalization of the corollary of Gerstenhaber's theorem. In a 
possibly detailed and computationally effective way, it may be formulated 
as follows. 

T H E O R E M 2 . 3 . If £ E C\, then the formulae 

Z{£) 3 r n FO(M(r)) G F{£) 

and 
F{£) maxf t (W) G Z{£) 

correctly define mutually inverse bijective maps. 

COROLLARY 2 . 4 . For £ G Cn the following conditions are equivalent : 

(*) £ is an irreducible set, 
(**) there is the greatest element in TZ(£). 

Moreover, if(**) is satisfied, then £ = FC?(M(s)), where s = maxTZ(£). 

One should notice that in the case where stable ranks do not exceed one, 
each £/£„-invariant irreducible algebraic cone (i.e. the closure of the cone 
over a single conjugacy class) is a normal set (see [1], [7, Corollary 3.15], 
and Theorem 1.2). 

The above considered family may seems to be not a quite natural 
object of studying, but it is the simplest and actually the largest (as we 
shall see in the sequel) family of (?£„-invariant sets £ C M.n satisfying 
condition F*£ C £ which contains all the i/£n-invariant sets of nilpotent 
matrices and such that rank functions suffice to characterize the geometry 
and the topology of its elements. 
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3. Some applications 
Applying rank functions one can give quite nice proofs of some results 

on the irreducibility of £/£n-invariant algebraic cones. 
The first one of such results is rather known but nowhere stated in an 

explicit way (see [4] for the orbits degeneration diagrams; the result can be 
also deduced from these diagrams). 

T H E O R E M 3.1. (i) Let X C M.n be a QCn-invariant algebraic set of nilpotent 
matrices. Then X is irreducible whenever n < 5. 

(ii) If n > 6, then there is a reducible QCn-invariant algebraic subset of 
M.n which consists of nilpotent matrices. 

P r o o f . It is very easy to see that the ordering < is linear in the set 

whenever n < 5 (it suffices to draw an appropriate picture). Assertion (i) 
immediately follows from Corollary 2.4 and from the fact that all the QCn-
invariant algebraic sets of nilpotent matrices are cones. 

If n > 6, then rank functions r i , r2 : N —> N defined by the formulae 

are not comparable. In consequence, O(M(r\)) Li O(M(r2)) C M.n is a two-
components i/£n-invariant algebraic set of nilpotent matrices (see Theorem 
2.3). • 

The second result on the irreducibility of £/£n-invariant cones is the 
following. 

P R O P O S I T I O N 3.2. Let A, B € Mn be such that max{r j 4(n), r s ( n ) } < 1. 
Then W = FO(A) D FO(B) is an irreducible algebraic set. 

P r o o f . By Theorem 1.2, 

The above defined function s : N —> N is a rank function (see [6, Proposition 
5]). Moreover, it evidently is the supremum of 1Z{W) (with respect to the 
ordering < in the set 1Z). By definition, s G 1Z(W). The assertion follows by 
Corollary 2.4. • 

{ren\ r(0) = n, r(n) = 0} 

Tl(W) = {r e1l1
Tl\r <rA,r < rB}. 

Let 

s{j) = max{r( j ) | r € 7£(W)}, j G N. 
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4. On sets of matrices whose stable ranks may exceed one 
Unfortunately, if a (?£n-invariant algebraic cone contains matrices of sta-

ble ranks greater than one, then in general there are no so direct connections 
between its topology and geometry and the associated set of rank functions. 
Let us see some irregularities which appear in this case. 

For A G Mn and k 6 N \ {0 } such that k < n we define Sfc(A) to be the 
sum of all the size k principal minors of A. It is obvious that s/. : Mn —> F 
is a ££n-invariant and homogeneous polynomial in n2 variables. 

THEOREM 4.1. Let n,k 6 N be such that n>k> 2 and let r : N —> N be a 
rank function satisfying conditions r(0) = n and r(n) = k. Then there are 
Ai,A2 € Mn such that rAl = rA2 = r, A\ £ FO(A2), and A2 0 FO(Ai). 

P r o o f . We define 

Aj = M(r - k) © Jfc_i © j, 

where j = 1,2. By definition, Aj € A4n and rAj = r. 

Let <pj : M . n —» F be defined by the formula 

<Pj(A)= j(tv(A))k-(k + j-l)ksk(A), A € Mn, j = 1 , 2 . 

It is obvious that tpi and ip2 both are (/^„-invariant and homogeneous poly-
nomials in n2 variables. Furthermore, 

<Pj{Aj) = 0, j = 1, 2, 

while 

^(A^ = 2kk - (k + l ) f c / 0 

and 

<p1(A2) = {k + l)k -2kk. 

Thus Ai (£ F 0 ( A 2 ) and A2 £ F O ( A i ) . The proof is complete. • 

COROLLARY 4.2. Let n,k £ N, and r Ell satisfy the assumptions of Theorem 
4.1. Then there is a reducible QCn-invariant algebraic cone S C Mn such 
that r is the greatest element of H(S). 

One should notice that in the case where stable ranks do not exceed one 
each irreducible </£n-invariant algebraic cone is the closure of the cone over 
a single conjugacy class while if n > k > 2, then the determinantal variety 

Hk = {A € Mn | rank(.A) < k} 

which is an irreducible i/£n-mvariant algebraic cone fails to be the closure 
of the cone over a single conjugacy class. 

To end the section let us consider 



270 M. Skrzynski 

EXAMPLE 4 . 3 . W e se t 

£ = F * 0 { K 2 © 1 © 2) U F * 0 ( 0 2 © 1 © 1) U FO(K3 © 1) C M4, 

where Kj G M.j is the nilpotent Jordan block of size j = 2, 3. By Theo-
rem 1.2, 

K(£) = { r e K \ r(0) = 4, 7 -<2 + rK 2}, 
but £ is not an algebraic set because 0 2 © 1 © 2 G FO(K2 © 1 © 2) \ £. 

On the other hand, the straight line C = FIn C M.n is a C/£n-invariant 
algebraic cone but if n > 2, then 7£(£) = {ro„, n} does not satisfy condi-
tion (**) of Theorem 2.2. 

Unless, the above examples do not imply that rank functions cannot be 
helpful in studying arbitrary sets of square matrices. 

5. A general inequality 
Even if £ C M n satisfies no special geometric or rank conditions there 

is a connection between T(£) and Z{£), namely 

THEOREM 5.1. If £ C Mn, then 

#Z{£) < #?{£). 

P r o o f . We assume Z{£) ^ 0 and set 

£r = £ n {A e Mn | rA < r} 

for an r € Z(£). Then all the £ r ' s are non-empty algebraic sets. 

Since for each p € TZ(£) there is an r G Z(£) such that p <r, we have 

\J{£r\ reZ(£)} = £. 

The incomparability of the elements of Z(£) yields 

£r0 t \J{£r | r € Z(£), r ? ro}, r 0 e Z{£). 

Thus for an arbitrary ro G Z(£) there is W € F{£) such that W C £ ro and 

W t \J{Sr | r G Z(£), r ? r0}. 
The assertion follows. • 

COROLLARY 5.2. If £ C M.n is such that £ is an irreducible set, then there 
is the greatest element in TZ(£). 

The above simple observations seem to be quite useful in studying the 
geometry of sets of square matrices. 
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