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REMARKS ON APPLICATIONS OF RANK FUNCTIONS
TO ALGEBRAIC SETS OF MATRICES

0. Introduction
A function r : N — N is called a rank function if it is weakly decreasing
and satisfies convexity condition

r(f)+r(i+2)>2r(j+1), jeN

The set of all rank functions will be denoted by R. It is partially ordered
by the natural relation <, namely

r1 <y iff ri(5) <r2(j) forall j €N,

where 1,73 € R.

Let M, stand for the set of all (n X n)-matrices whose terms are elements
of an algebraically closed field F of characteristic zero (n is a non-negative
integer). We denote by I,, the unit matrix of M,, and by O,, its zero matrix.
A non-empty set £ C M, is called a cone if FE C €.

For a matrix A € M,, we define

74 :N 3 jo rank(47) e N

(in particular 74(0) = rank(A°) = rank(I,) = n). The integer r4(n) is
called the stable rank of A. One can prove that a function f : N — Nis a
rank function if and only if there is a matrix B € Mgy such that f = rp
(see [6, Theorem 2 and Theorem 3]).

Given a set £ C M,,, we shall consider
R(E)={ra|Ac &}
which is a finite set and for some £’s can be described in a very easy way

(in virtue of the above characterization of rank functions). For example, if
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T, € M, is the set of all upper triangular matrices, then
R(T,) ={reR|r(0) =n}

in turn, if S¥ = {4 € M,, | A¥ = O,}, where k € N is such that k < n,
then
R(S¥) = {r e R|r(0) = n, (k) = 0}.

Gerstenhaber’s classical theorem on closures of conjugacy classes of nil-
potent matrices (see {2] and [3, Theorem 3.10]) implies that if £ C M, is
a GL,-invariant algebraic set of nilpotent matrices, then there is a bijective
correspondence between the irreducible components of £ and the maximal
elements of R(£) (throughout the text, GL, C M, is the group of all
invertible matrices, to be a GL,-invariant set means to be a set invariant
under the action of G£,, on M, by the conjugation, and the maximality of
a rank function is the maximality in the sense of the ordering < in the set
R; when dealing with notions and facts of the algebraic geometry, we always
use the terminology and notations of [8]).

The purpose of this note is to generalize the above corollary of Gersten-
haber’s theorem as far as it is possible in a direct way, and to indicate other
basic applications of rank functions to investigations of the topological and
geometric structure of algebraic sets of matrices.

1. A modification of Gerstenhaber’s theorem
We shall denote by O(A) the conjugacy class of a matrix A € M,, and
write F* instead of F \ {0}.

PRrROPOSITION 1.1. Let A,B € M, be such that max{rs(n),rg(n)} < 1.
Then the following conditions are equivalent:
(.) TA =TB,
(e0) F*O(A) = F*O(B).

Proof. Implication (ee) = () is obvious (under no assumption on A, B).
Let condition (e) be satisfied. If r4(n) = rg(n) = 0, then A and B both are
nilpotent and by [6, Proposition 4], O(A4) = O(B). Condition (ee) follows.
If r4(n) = rp(n) = 1, then by [6, Theorem 1], there are A B e My,
and A\, up € F* such that r3 =r4 —1, r5 =75 -1, A® X € O(4), and
B®p € O(B). Since A and B both are nilpotent, O(4) = O(B) (by
condition (e)). In consequence,

2(Bep) € O(4)

(because of the invariancy of conjugacy classes of nilpotent matrices un-
der the multiplication by scalars different from zero) which yields condi-
tion (ee). m
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We shall use bars for denoting closures of subsets of M, in the Zariski
topology on M, = F*’. Given p € R such that p(p(0)) < 1 we define
M(p) € Moy to be the matrix in the Jordan canonical form such that
Tum(p) = pand tr(M(p)) € {0, 1} (we assume the nilpotent blocks of a matrix
in the Jordan canonical form to be ordered with respect to their sizes, with
the biggest one in the upper left corner of the matrix). Let us note that M(p)
contains p(j—1)+p(j+1)—2p(5) nilpotent blocks of size j for all j € N\ {0}
(see [6, Remark 2]). By the Jordan partition of a nilpotent matriz A € M,
we mean a finite sequence (gx)p_, of non-negative integers with gz equal to
the size of kth block of the Jordan canonical form of A, whenever k is not
greater that the number of blocks, and to 0, whenever k is greater than the
number of blocks. The conjugate of a partition (qx)i_,; € N™ is defined to
be the finite sequence (p;)7.; € N™ with p; = #{k € N | ¢x > j}.

THEOREM 1.2. Let A € M, be such that ra(n) <1 and let B € M,. Then
the following conditions are equivalent:

(*) rp < Ta,

(#x) B €V :=FO(A).

Proof. It is obvious that condition (**) implies condition (*) (under no
assumption on A, B € M,,).

We assume that condition (*) is satisfied.

If r4(n) = 0, then condition (**) immediately follows, by Gerstenhaber’s
theorem on closures of conjugacy classes. In turn, let r4(n) = rg(n) =
1. Then by [6, Theorem 1], there are A,B € Mu_1 and A\, u € F* such
that A®@ A € O(A), Bouec OB), r; =ra—1,and rz = rg — 1. By
Gerstenhaber’s theorem, we obtain B € O(A). This yields

Be §0(A) c FO(A)

(because conjugacy classes of nilpotent matrices are invariant under the
multiplication by scalars different from zero). Finally, let r4(n) = 1 and let
rg(n) = 0. Then by Gerstenhaber’s theorem, B € O(M(s)), where

s=max{r e R |r <r4, r(n) =0}
Thus, to complete the proof it suffices to show that
{B' €V | B' is nilpotent} = O(M(s)).
Let us observe that
{B' € V| B' is nilpotent} = {B’ € V | tr(B’) = 0}.
In consequence,
(o) dim{B’ € V | B’ is nilpotent} = dimV - 1.
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We set ¥ = r4 — 1 and observe that by Proposition 1.1,
F*O(A)={A" e M, |rar =14}

Applying [1, Lemma 1.1] to F*O(A), we obtain

(00) dimV = n? — codimpy, _, O(T(F))

(because {A"” € M,_; | ran =7} = O(M(F))). By [5, 1.3], we get

(o00) codimpy,_, O(M(F)) = pra

as well as

(00) dim O(M(s)) = n? —1—ij,

Where (pj ! is the conJugate of the Jordan partition of M (7). Concluding

), (00), (o , and (00), we obtain
dlm{B' € V | B’ is nilpotent} = dim O(M (s)).

Since {B’ € V| B’ is nilpotent} C O(M(s)), the desired equality holds. The
proof is complete. =

2. Consequences of the modification of Gerstenhaber’s theorem
We set

={€ C M, | € is GL,-invariant, F*E C €, rilg.gcr,q(n) <1}

and

={reR|r(0)=mn, r(n) <1}
Let us recall that a set £€ C M, is constructible if it is the set-theorical sum
of a finite family of sets which all are locally closed in the Zariski topology
on M,,.

As an immediate consequence of Proposition 1.1 we obtain
PROPOSITION 1.2. The maps
Clag-R(E)CRE
and
Ry 22~ |JFOW(r)ec)
reQ
are mutually inverse bijections which preserve inclusions and which are com-

patible with set-theorical operations. Moreover, all the elements of C} are
constructible sets.
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Now, by Proposition 2.1 and Theorem 1.2, we directly obtain

THEOREM 2.2. For £ € C} the following conditions are equivalent:

(¥) € is an algebraic set,
(%%) if 7 € R is such that r(0) = n and there is ¥ € R(E) such that
T < F, then T € R(£).

In particular, R(E) = {r € R} | there is ¥ € R(E) such that r < 7}.

For £ C M,, we define Z(£) to be the set of all maximal elements of
R(€) and F(€) to be the family of all irreducible components of £.

As a simple consequence of the irreducibility of conjugacy classes of
matrices, Theorem 1.2, and the fact that for each r € R(£) there is an
ro € Z(£) such that r < o (£ C M, is an arbitrary set), we obtain the
announced generalization of the corollary of Gerstenhaber’s theorem. In a
possibly detailed and computationally effective way, it may be formulated
as follows.

THEOREM 2.3. If £ € CL, then the formulae
Z(€)>r—FO(M(r)) € F(E)
and
F(€) >W - maxR(W) € Z(€)

correctly define mutually inverse bijective maps.

COROLLARY 2.4. For £ € C} the following conditions are equivalent :

(*) € is an irreducible set,
(%) there is the greatest element in R(E).

Moreover, if (%) is satisfied, then € = FO(M(s)), where s = max R(€).

One should notice that in the case where stable ranks do not exceed one,
each GL,-invariant irreducible algebraic cone (i.e. the closure of the cone
over a single conjugacy class) is a normal set (see [1], [7, Corollary 3.15],
and Theorem 1.2).

The above considered family C! may seems to be not a quite natural
object of studying, but it is the simplest and actually the largest (as we
shall see in the sequel) family of GL,-invariant sets £ C M, satisfying
condition F*£ C & which contains all the GL,-invariant sets of nilpotent
matrices and such that rank functions suffice to characterize the geometry
and the topology of its elements.
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3. Some applications

Applying rank functions one can give quite nice proofs of some results
on the irreducibility of GL,-invariant algebraic cones.

The first one of such results is rather known but nowhere stated in an
explicit way (see [4] for the orbits degeneration diagrams; the result can be
also deduced from these diagrams).

THEOREM 3.1. (i) Let X C M, be a GL,-invariant algebraic set of nilpotent
matrices. Then X 1is irreducible whenever n < 5.

(ii) If n > 6, then there is a reducible GL,-invariant algebraic subset of
M., which consists of nilpotent matrices.

Proof. It is very easy to see that the ordering < is linear in the set
{reR|r(0)=mn, r(n) =0}

whenever n < 5 (it suffices to draw an appropriate picture). Assertion (i)
immediately follows from Corollary 2.4 and from the fact that all the GL,,-
invariant algebraic sets of nilpotent matrices are cones.

If n > 6, then rank functions r;,72 : N — N defined by the formulae

. n, if7=0,

n, i =0, 2 ifj‘:l
r(j)=4¢3, ifj=1, and r(j) = 1’ ifj=2’
0, ifj=2, 0, ifj>3,

are not comparable. In consequence, O(M(r1))UO(M(rz)) C M,, is a two-
components GL,-invariant algebraic set of nilpotent matrices (see Theorem
23). m

The second result on the irreducibility of GL,-invariant cones is the
following.

PROPOSITION 3.2. Let A,B € M, be such that max{ra(n),rg(n)} < 1.
Then W = FO(A) NFO(B) is an irreducible algebraic set.

Proof. By Theorem 1.2,
RW)={reRL|r<rs, r<rp}.

Let

s(j) = max{r(j)ir e RW)}, j €N.
The above defined function s : N — N is a rank function (see [6, Proposition
5]). Moreover, it evidently is the supremum of R(W) (with respect to the

ordering < in the set R). By definition, s € R(W). The assertion follows by
Corollary 2.4. m
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4. On sets of matrices whose stable ranks may exceed one

Unfortunately, if a GL,-invariant algebraic cone contains matrices of sta-
ble ranks greater than one, then in general there are no so direct connections
between its topology and geometry and the associated set of rank functions.
Let us see some irregularities which appear in this case.

For A € M,, and k € N\ {0} such that k < n we define s;x(A) to be the
sum of all the size k principal minors of A. It is obvious that s, : M, — F
is a GL,-invariant and homogeneous polynomial in n? variables.

THEOREM 4.1. Let n,k € N be such thatn >k > 2 andletv : N — N be a
rank function satisfying conditions r(0) = n and r(n) = k. Then there are

Ay, As € M, such thatry4, =14, =7, A} € FO(A3), and A; ¢ FO(A1).
Proof. We define

Aj =M(r—k)oIr1 07,
where j = 1,2. By definition, A; € M, and r4; =T.
Let ¢; : M, — F be defined by the formula
0;i(A) = j(tr(A)* — (k+j — 1)*si(4), AcM,, j=1,2.

It is obvious that ; and @2 both are GL,,~-invariant and homogeneous poly-
nomials in n? variables. Furthermore,

p;i(4;)=0,j=1,2,
while
p2(A1) = 2K — (R +1)* #£0
and
©1(Az) = (k + 1)* — 2k*.

Thus A; € FO(A3) and Ay ¢ FO(A;). The proof is complete. m

COROLLARY 4.2. Letn, k € N, andr € R satisfy the assumptions of Theorem
4.1. Then there is a reducible GL,, -invariant algebraic cone S C M, such
that r is the greatest element of R(S).

One should notice that in the case where stable ranks do not exceed one
each irreducible G£,-invariant algebraic cone is the closure of the cone over
a single conjugacy class while if n > k > 2, then the determinantal variety

HE = {A € M, | rank(4) < k}

which is an irreducible GL,,-invariant algebraic cone fails to be the closure
of the cone over a single conjugacy class.
To end the section let us consider
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ExXAMPLE 4.3. We set
E=FOK;0102)UFO(0, 010 1)UFO(K3 & 1) C My,

where K; € M, is the nilpotent Jordan block of size j = 2, 3. By Theo-
rem 1.2,

RE)={reR|r(0)=4, r<2+rgk,},
but £ is not an algebraic set because O, @192 € FO(K; ®1®2)\ €.
On the other hand, the straight line £ = FI,, C M,, is a GL,-invariant

algebraic cone but if n > 2, then R(L) = {ro,,n} does not satisfy condi-
tion (*x) of Theorem 2.2.

Unless, the above examples do not imply that rank functions cannot be
helpful in studying arbitrary sets of square matrices.

5. A general inequality
Even if £ C M,, satisfies no special geometric or rank conditions there
is a connection between F(£) and Z(£), namely

THEOREM 5.1. If £ C M,,, then
#Z(E) < #F(E).
Proof. We assume Z(£) # 0 and set
E=EN{AeM,|ra<rT}

for an r € Z(€). Then all the £,’s are non-empty algebraic sets.
Since for each p € R(£) there is an r € Z(€) such that p < r, we have

U{é’r lre Z(€)}=E.
The incomparability of the elements of Z(£) yields
Ero & | J{Er |7 € Z(E), T #1710}, 10 € Z(E).
Thus for an arbitrary ro € Z(€) there is W € F(€) such that W C £, and
W | & |7 € Z(€), r #ro}.
The assertion follows. =

COROLLARY 5.2. If £ C M, is such that € is an irreducible set, then there
is the greatest element in R(E).

The above simple observations seem to be quite useful in studying the
geometry of sets of square matrices.
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