DEMONSTRATIO MATHEMATICA
Vol. XXXII No 2 1999

Barbara Roszkowska-Lech

A REPRESENTATION OF SYMMETRIC IDEMPOTENT
AND ENTROPIC GROUPOIDS

The aim of this paper is to describe the structure of groupoids satisfying
the following axioms:

(S) (z-y) -y =z (Symmetry),

(I) z-z =z (Idempotence),

(E)(z-y) - (z-t)=(z-2) (y-t) (Entropicity).

A groupoid (G, ) satisfying the above identities will be called an SIE-
groupoid.

SIE-groupoids are modes, i.e. they are idempotent and entropic algebras
as defined in [RS]. The investigations presented here belong to the recently
developed theory of groupoid modes. ( See e.g. [JK] and references there,
[LM], [RS], [RR], [R1], [R2].

On the other hand, the class SIE of all SIE-groupoids is contained in
the more general class of groupoids satisfying (S), (I) and the right distribu-
tive law. In [P1] and [P2] such groupoids were called symmetric groupoids.
Motivation for studying these groupoids comes from differential geometry
and knot theory. The groupoids were investigated in connection with sym-
metric spaces (see e.g. [L] or [Ki]) and with reference to algebraic topology
(see [E]). They also have been used to characterise knots in [J]. Joyce called
SIE-groupoid abelian involutary quandle.

Finally some SIE-groupoids are so-called P-groupoids. The latter have
been defined in [K] and used to decompose complete undirected graphs into
disjoint closed paths. An application of such groupoids in graph theory was
given in [R2] as well.

This paper investigates the structure of SIE-groupoids by means of some
decompositions, together with a corresponding construction method for re-
covering the groupoids from their decompositions. SIE- groupoids are closely
related to abelian groups. To show this relationship, we define on each fibre
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of the described decomposition an abelian group structure. Then we are con-
cerned with the method of building SIE- groupoids from a family of abelian
groups indexed by a set with a left zero band structure. The syntactical
approach used for the structure theorem for these groupoids will be then a
starting point for description of all subdirectly irreducible SIE-groupoids in
each nontrivial subvariety of SIE in a next paper.

In the first section we recall the basic notations and properties of SIE-
groupoids. For more detailed information and for proofs of results we refer
the reader to [R1] and [R2]. Some technical lemmas are presented in Sec-
tion 2. The Decomposition Theorem is proved in Section 3. The congruence
relation decomposing an SIE-groupoid into classes forming abelian groups
is given in this section as well. To examine such decompositions further one
needs to know more about the way in which abelian groups are put to-
gether. This is the concern of Section 4. In this Section an explicit method
for constructing SIE-groupoids from abelian groups is given. This is done
by means of a special construction called the AG-sum. In the last section
the free SIE-groupoids in subvarieties of the variety of all SIE-groupoids are
described as AG-sums.

1. Preliminaries

In this section we review without proofs some results concerning SIE-
groupoids. For the proofs we refer the reader to [R1] and [R2]. We use the
following convention:

(1.1) ZTy...Tp:=(Z1...Tpn_1)" ZTn,
for every n > 2, and
zy -2t :=(z-y)- (z-t).
The product (1.1) is called left associated.
As was shown in [R1], each SIE-groupoid satisfies the following identities:
D) z-yz=zy-z2

(Distributive laws),
D)) zy-z=2zz-yz

(
(
(Pa)zy-z=2-yz (Partial associative law),
(N) z-yz=zzyz,

(A) zyzt = ztzy.

By (N) each SIE-groupoid word can be represented in a left associated form.
The following, basic example of SIE-groupoids was given in [R1].

1.2. ExAMPLE. Let (G, +,0) be an abelian group. We define a binary op-
eration - on the set G by z -y := 2y — z. Then (G, ") is an SIE-groupoid.
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We denote this groupoid by Core(G,+). (See [B], where Cores for Moufangs
loops were defined.)

The variety of all SIE-groupoids is denoted by SIE. Let Z denote the set
of integers, and let ¢},, C Z™ be the subset of Z™ consisting of all sequences
(l1,...,ln) € Z™ such that at most one entry /; is an odd natural number.
It is obvious that (Qn, ) is a subgroupoid of Core(Z™,+). Moreover, as was
shown by Joyce [J], the SIE-groupoid (@, -) is isomorphic to the free SIE-
groupoid Fsig(zo,...,Z,) on the generators zg,z1,...,Zn. The free SIE-
groupoid on two generators z, y is isomorphic to the groupoid Core(Z,+).
For more detailed information concerning free SIE-groupoids we refer the
reader to [R1], [R2], [J], [LM]. In [LM], the authors considered an infinite
sequence of words

wo(z,y) = =, wi(z,y) = v,
(1.3) wi(z,y) = wi-o(z,y)wi—1(z,y) fori> 2,
wi-2(,y) = wi(z,Y)wi-1(z,y) fori <1

It was proved in [LM] that the words w;(z, y), where ¢ is an arbitrary integer,
give a standard form for words in Fgig(z,y).
The following propositions were proved in [R1], [R2] and [LM].

1.4. PROPOSITION. The following identities are satisfied in the variety SIE
for all integers k,r,1:

(1.5) wi(Z,Y) = w-k41(y, T),

(1.6) wi(Z, y)wr(2,y) = w2r—k(2,y),

(1'7) wk(wr(m’ z),wr(y,t)) = wr(wk(w’ y)’wk(z’t))’

(1.8) wr(wi(z,y),wr(z,9)) = wkr+(1—k)l($,y)- =

1.9. PROPOSITION. If the identity w,(z,y) = wo(z,y) holds in a variety of
SIE-groupoids, then the identity wnyi(z,y) = wi(z,y) holds as well. ]

In what follows we abbreviate w;(z,y) to w; if no confusion can arise.
The following claims, which are easily established using Propositions 1.4 and
1.9, are to be used several times.

1.10. COROLLARY. [R2] For all integers v and k the following identities hold
in SIE:

(111) w—r(may) = w,-(SC, y)WO(may))

(112) w2r(xay) = wO(x’y)wr(m’y)a

(1.13) wr(zz,yt) = wr(z, y)wr(z,t),

(1.14) wr(22,y) = wr(z,y)wr(2,9),
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(1.15) wr(z,yt) = we(z, y)wr(z, 1),
(1.16) wi (2, wr(z,Y)) = wir(z,y)- »

1.17. COROLLARY. [LM)] Suppose that the identity w, = wo holds in a variety
of SIE-groupoids. Then for each integer k, the identity wg, = wo also holds.
]

Let N = (N, <) denote the lattice of all natural numbers with respect
to the partial order < defined by k < n iff k£ divides n. We will denote by
Nt the lattice (N U {00}, <x) in which the element co is greater than all
elements of N. As was proved in [R1], the lattice L(SIE) of all subvarieties
of the variety SIE of all SIE-groupoids is isomorphic to the lattice of N*.
The variety corresponding to oo is SIE. The variety corresponding to a
natural number n is just the variety of SIE-groupoids defined by identity
wn(z,y) = z. We will denote this variety by V,,.

It was proved in [R2] that if n > 1 is an odd natural number, then
each SIE-groupoid in V,, is polynomially equivalent to an abelian group
satisfying the identity nz = 0. Moreover, every groupoid (G, ) from V,, is a
quasigroup, and is equal to the groupoid Core(G, +) for some abelian group
(G, +) satisfying the identity nz = 0. Those subvarieties of the variety SIE
which contain some quasigroups are described in [R2] as well. It was proved
there that the varieties Vs and V,, for s > 0 and an odd natural number
n > 1, are independent (see [GLP]). Hence their join Vos V V, = Vasp is
equal to the direct product Vos x V,, = Vasy,.

2. Some technical lemmas

A standard form of words in the free SIE-groupoid Fgig(zo,...,Zn) on
n+ 1 generators was described in [R1]. For each element r = (2ry,...,7;,...
ey 2ry) of Qn, w(r; zg, - .., T,) was defined as follows

w(0; zg,...,Tn) :==Zo =wp and
(2.1) w(2ry, ..., ..., 2Tn; To, ..., Tn)
| wrwowr, wo - - Wy, WoWr; 4 - - wowr, if 75 is odd,
T | Wowr,Wo - - - Wy 2Wo - - - WoWr, otherwise,
where w,, = wy;(z0,z;), for each 1 < j < n.

In the sequel we will write briefly w(2ry,...,r;,...,2r,) if no confu-

sion can arise and we will abbreviate w(2ry,...,7;,...,2r,) to w, for r =

(2r1,...,7j,...,2rn) in Q. As was noted in [R1],

WoWp, Wo « + - WoWr, = Wap, Wg - . . WoWr,

= wzrijwrlwo ‘e .wow,.j_lwowrj+1wo ce W
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for each 1 < j < n. So it follows immediately that for each (ry,...,7r,) in
Q. and for every permutation ¢ of the set {1,...,n}, the identity

(2.2) w(ry,..., 0320, T1,. ., Zn) = W(Ta(1)s- - > Ta(n); T0s Ta(l) - - s Ta(n))
is satisfied in a variety of SIE-groupoids. Moreover, it is obvious that the
identity

(2.3) w(ry, .. ,Tn;%0, T1y -y Zn) =w(r1,.. -, T, 0;20,Z1,. .., Ty Tnt1)

is satisfied in SIE for arbitrary (rq,...,7,) € Q.. (See [R1]) The following
proposition was also proved in [R1].

2.4. PROPOSITION. In the free SIE-groupoid Fsig(zo,Z1,. .. ,Zs) on the gen-
erators xo,Z1,. .., Ty each further element may be expressed in the standard
Jorm w, for somer in Q. Moreover, the identity

(2.5) WrWk = Wak—r
holds in SIE, for all 7,k € Q... n

Definition (2.1) generalises (1.2). Moreover, as was shown in [R1], the
words wy(Zo, . ..,Zn), where r is an arbitrary element of Q,, give a stan-
dard form of words in Fsig(zo,...,Z,). The identity (2.2) shows how this
expression depends on the order of the generators zo,...,z,. Notice that
the generator zo plays a special role in Definition 2.1. The next proposition
allows us to replace zg by any other ;.

2.6. PROPOSITION. The identily
(2.7 w(ky,...,kn;o,...,Zn)

n
= w(k1,---,ki—1,1 - E kj,ki+1,---,kn;fvi,wh---,$i—1,w0,$i+1,---,wn)
Jj=1

holds in the variety SIE for arbitrary (k1,...,kn) inQ, andi=1,...,n.

Proof. By Definition (2.1) and (2.2), it is sufficient to prove (2.7) in the
case that ¢ = 1 and that all k; for j = 2,...,n are even. The proof of this is
by induction on n, the case n = 1 just being (1.5). First, it should be shown
that (2.7) holds for n = 2 and k; = 0. In this case the identity (2.7) has the
following form

(2.8) w(0, k2; o, z1, T2) = w(l — k2, k2; T1, To, T2).

The identity (2.8) holds in SIE for every integer ko. The easy proof of this,
by induction on k3 using (1.3), (2.3) and (2.5), will be omitted.
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Assuming (2.7) to hold for n, we shall prove it for n+ 1. Let (ky, ..., kn,
2kn41) bein Qn41. From (2.1), (2.3) and (2.5) we deduce that

UJ(kl, s )kn) 2kn+1; Zo;L1y...,Tn, m‘n,+l)
=w(ky, ..., kn; T, T1,. .., Tn)WoWk,,, (Zo, Tnt1)
= L(J(kl, ey k‘na Ty L1y - ,xn)WOW(O, kn+l; Zo, T1, m’n-‘-l)'

Next, applying the induction hypothesis, (1.5), (2.8) and (2.5), one obtains

w(kl, ey kn, 2kn+1;$0,$1, e ,zn,:z:n+1)

n
= w(l - E kjakZa . "kn;xlamo,m‘Z) . .,Cl)n)(.U1(fL'1,$0)
=1
~w(l = knt1, knt1; 21, To, Tng1)

- w(l — ST ki = 2kns1 ko, hny 2Kng1; 21, o, a:n)
i=1

which ends the proof. u

3. Decomposition of SIE-groupoids into unions of orbits

In this section we describe how an SIE-groupoid breaks up into smaller
pieces that are indexed by a left zero band i.e. a semigroup satisfying the
identity zy = . Moreover, on each such piece an abelian group structure is
defined. Let (G, -) be an SIE-groupoid. Let us define a relation m on the set
G as follows:

(3.1) ambif and only if a = bb; ... by for some elements by, ..., b in G.

It is easy to check that 7 is an equivalence relation. Moreover, the following
lemma is true.

3.2. LEMMA. The relation 7 is a congruence relation of an SIE-groupoid
(G,-). The equivalence classes are subgroupoids of (G,-) and the quotient
(G/x,") is a left zero band.

Proof. Let a,b,¢,d be elements of G such that ¢ = bb;...by and ¢ =
ddy...d, for some by,...,bs,d;,...,d, from G. By idempotence we can
assume that r = k. Then by entropicity,

ac=bb1...bk~dd1...dk=bd'b1d1-...-bkdk.

So m is a congruence relation of the SIE-groupoid (G,-). The classes are
subgroupoids of (G, -), because congruence classes of any idempotent algebra
are subalgebras. Moreover, for any a,b from G, a 7w ab, so the quotient
(G/=,-) is a left zero band. ]
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3.3. LEMMA. The congruence relation 7 is the least congruence relation on
an SIE-groupoid (G, -) such that the quotient (G/7,-) is a left zero band.

Proof. For & € Con(G,-), assume that the quotient (G/®, ) is a left zero
semigroup. Then, for any z,y in G, ¢ ¢ zy. Suppose now that a 7 b. This
means that a = bb; ... by, for some by,...,bi from G. Since b & bb; @ bb1by &
. Pbby...bpy=a,aPband 7CP. n

For an arbitrary element g from the set G, the w-class containing g will
be called the g-orbit and denoted by G4. By the definition of m we obtain
Gy == {ga1...ax | a1,...,ar € G}. It follows from Lemma 3.2, that the
congruence relation 7 decomposes an SIE-groupoid (G, -) into a disjoint sum
of orbits, and that the quotient (G/, -) is a left zero band. Let {g; | i € I} be
a set of generators of the SIE-groupoid (G, -). There is at least one generator
gi from the set {g; | i € I'} in each orbit Gy. Indeed, if g = g:,9s, ... gi, for
some 71, ...,1p from I, then gg;,gi,_, ... gi, = gi, 50 gi; belongs to the orbit
Gg4. Thus, by Lemma 3.2, Gy = Gy, =: G;. Let J be the set of indices of
the chosen generators. The groupoid (G, -) decomposes into a disjoint sum
of orbits G;, for ¢ € J. Moreover, each (G;,-) is a subgroupoid of (G, -).
Throughout this section G; will denote the orbit of g;.

The following lemma describes a standard form for elements belonging
to one orbit.

3.4. LEMMA. Pick an arbitrary generator g;, from the set of generators {g; |
i € I}. Then

Gi,={9€G|g=w(2r1,...,2rk; 9ig, Gir»- - - » Jir, 0T 11,...,%k € I — {Jo},
and rq,...,7x € Z}.

Proof. If an element g from the set G has the required form, then by
Definition (2.1),

g = Gigwr, (gioa giy )gio oo GigWry, (gio’ Giy, )’

so that g belongs to G;,. Now let g € G;,. It means that g = g;,a; ...a, for
some aj,...,ap € G. Since (2.1) describes a standard form of elements in
the free SIE-groupoid, there exists a finite subset {i1,...,4x} of I such that
a; = W(Ti1,. -, Tik; Gigs Jir» - - - » 9i, ) fOr sOme integers r; 1,...,7; , of which
at most one is odd, and for i = 1,...,p. Hence, gi; = wo(gips Jiys-- - Gir) SO
by (2.5), g = w(2r1,...,27k; giyy Giy» - - - » Gi\, ) fOr sOme integers r1,...,7%. =

Now we can define an abelian group structure on each orbit. Let a,b be
elements of an orbit G;, ¢ € I. By Lemma (3.4) and Definition (2.1),

a=w(2ry,...,2rk; 9y Giyy - - - > i) = GiWry (9i) 9i1)Gi - - - Giwr, (is 9ir)
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and

b=w(2p1,...,2Dk;9is Gizs - - -+ 9ir) = 9iWp, (i1 951 )i - - - Giwp, (9i> Gix)

for some 43,...,4 € I — {i} and integers r1,...,7Tk,D1,---, Pk-
Let us define a + b as follows:
(35) a+ b:= UJ(27‘1 + 2P1,- .. 727'k + 2pk§gia9i1a . 'agik)

= GiWri+py (9i,9:,)Gi - - - Giwr, +pk (9i) 9ir )-

We should prove that the definition of a + b does not depend on the presen-
tation of the elements a and b in the standard form. We use the following
lemma.

3.6. LEMMA. For arbitrary elements ag,a1,...,a, in (G,-) and arbitrary
integers r1,...,Tn,P1,---,Pn, the equation w(2ry,...,2rk;a0,01,...,0,) =
w(2p1,...,2pn;a1,...,a,) holds if and only if w(2r; — 2py,...,2rk — 2pg;
ap,a1,...,0,) = Wy = ag-

Proof. This follows, by easy computation, from the axioms of SIE-group-
oids and (2.5). L]

3.7. PROPOSITION. The result of the operation + on elements a and b from
the orbit G; does not depend on the presentation of a and b in the standard
form.

Proof. Let us suppose that
a=w(2r1,. ., 2Tk iy Giys - -5 Gix) = W(2T1, o, 2705 Giy Gins - - -+ G )
and
b=w(2p1,-..,2Dk; iy Giys - -» i) = W(2D7, . -, 2Dk Giy Gigs - - - » Gir)-
By Lemma 3.6,
w(2ry — 27, .. 27k — 2705 Giy Gigy - - - 5 G )
= g; = w(2p] — 2p1,- -, 2Dk — 2Dk; Gir Gins- - -1 Gix)-
Applying Lemma 3.6 once more, we obtain
w(2ry — 2r] — 2p1 +2p1, ..., 21k — 27%, — 2D% + 2Dk} Gi»r Gigs - - -5 Gix) = Gi
Consequently
w(2ry +2p1, ..., 27k + 2Dk; G, Gins - - - Gix)
= w(2r] +2p1, -+ 27% + 2D%; Gi» Gins - - - » Qi)
Therefore the operation + is well defined. n

3.8. REMARK. The identity
(3.9) a+b=agiwp,(9i,9i,)9i - - - 9iwp, (9i> 9iy.)
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holds in the orbit G;, for a = w(2r1,...,27%;9i,Giy,---,9i,) and b =
w(2p1a e )2pk;gi,gi1’ e ;gik)~
Proof. It follows easily from (2.3) and (2.5). .

3.10. THEOREM. On each orbit G; in an SIE-groupoid (G, -) the operation +
defines the structure of an abelian group. Moreover, (G;, ) = Core(Gi, +).

Proof. It easy to see that the operation + is associative and commutative.
Let

a=w(2ry,...,2Tk; Gi, Giys -+ i )-
Since ¢; = w(0,...,0;9i,8i,,---,9i. ), the relation (3.5) yields a + ¢g; = a.
Thus the element g; plays the role of the identity element in (G;, +). More-
over, if we put

(311) —a = w(—27‘1,...,—27‘k;gi,gi1,...,g,~k)

then a + (—a) = g;. Therefore (G;,+, ¢:) is an abelian group. Since ab =
2b — a, for a,b € Gy, it is obvious that (G;, ) = Core(Gi,+). ]

The groupoid Core(G,+) and the abelian group (G, +) are closely re-
lated. By induction it is easy to prove that the identity wy(z,y) = ky —
(k — 1)z is satisfied in every groupoid Core(G, +), for each natural number
k (see [R2]). Therefore, if G; is an orbit in an SIE-groupoid (G, -), then the
identity

(3.12) wi(9:,y) = ky

holds in the groupoid Core(G;,+), for an each natural number k. Recall
that each (G,-) in V, for an odd natural number n > 1 is a quasigroup
[R2]. So for arbitrary elements a,b in G there exists an element ¢ in G
such that a = be. This means that the congruence = is trivial on (G, -) and
“decomposes” (G, ) into just one class consisting of all elements of G. The
groupoid (G,-) is equal to Core(G,+) and the group (G, +) satisfies the
identity nz = 0 (see [R2]). More generally, one obtains the following:

3.13. COROLLARY. If an SIE-groupoid (G, -) with orbits (G;,-) belongs to the
variety Va, then each abelian group (Gi,+) satisfies the identity nz = 0.

Proof. At first we will show that the groupoid (G;,-) satisfies the iden-
tity wn(z,y) = z. Let a and b be elements of the orbit G;. Then a =
bb; ...b, for some by,...,b; from G. Hence, by (1.15), idempotence and
(1.12) wp(b,a) = wn(b,bby ...bx) = wn(b,b)wn(b,b1)...wn(b,bx) = b. Thus
the groupoid (Gi,-) satisfies the identity wn(z,y) = z. Since (Gi,-) =
Core(G;, +), it follows by (3.12) that the group (G;, +) satisfies the identity
nzx =0. ]
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3.14. REMARK. FEach SIE-groupoid (G, -) in the variety Vasy for s > 0, but
not in the variety V,, for p < 2°k, is decomposed into at least two classes.

Proof. Since (G, -) is not in V5.-1;, there are elements gp, g1 in G such that
wos-1,(g0,91) # go- We will prove that the orbits Gy and G; are disjoint.
Let us suppose the contrary. Then g € Gg. Thereis G := {g; | ¢ € I}, a set
of generators of the SIE-groupoid (G, -) such that gg,g; € G. By Lemma 3.4
g1 = w(2r,...,2r0; 9, 9iy, - - -, i, ) for some integers r1,...,7, and some
%1,...,1, from I. Hence

Was—1 (901wk(90) gl)) = W3s-1 (g(Ja wk(g()a LL)(27'1, sy 27‘n; 9iy Givy - - - )gin)))‘

From (1.16) it follows that

was—1(g0, wk(go, 91)) = was-1x(g0, 91) # Yo-

On the other hand, one may deduce using (2.1}, (1.16), (1.15), (1.12) and
Corollary 1.17 that

was-1(g0, Wk (90, w(271, - -+, 2703 Giy Giys - - - Gin)))
= wae-1(go, wk (9o, Jowr, (90, Gi, )90 - - - Gowr, (9o, 9i.,)))
= was-1(g0, GoWkr, (90, 9i1 )90 - - - Jowkr, (90, Gi,.))
= gowas—1(go, Wkry (90, 9i1))90 - - - Jowas~1(go, Wkr, (90, 9i..))

= JoWwWas—1ky, (goa iy )90 < gowWos—1ky,, (QOa gin) = go.

Whence Go NGy = 0. "
3.15. EXAMPLE. Let us consider the SIE-groupoid (G, -) given by the table:

a b cdef

al|lacac b d

b d bdbac

c c a c a d b

d bdbdc a

e ff f [ ece

fleeee f f

It is easy to check that the groupoid (G, -) belongs to the variety Vg. The
congruence relation m decomposes (G, ) into two orbits: G, = {a,b,c,d}
and G. = {e, f}. Moreover, the group (G,, +, a) is isomorphic to Zg, the
cyclic group of order 4 and the group (G, +, €) is isomorphic to Zs, the
cyclic group of order 2. Consequently, the groupoid (G,, -) is isomorphic to
the groupoid Core(Zy4, +) and belongs to V4. Likewise, the groupoid (Ge, -)
is isomorphic to the groupoid Core(Z2,+) and belongs to V2, which is the
variety LZ of left zero bands. [
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4. The structure theorem

In this section we will show that every SIE-groupoid (G, -) may be rep-
resented by means of a certain construction from reducts of abelian groups
and left zero band.

4.1. DEFINITION. Let I be a nonempty set. For each 7 in I let an abelian
group (Gj, +, g;) be given. For each pair (i, ;) in I? let h; : G; — G be a
mapping satisfying

(1) hi(a)=2a=a+a, foracG,

(i) R:(—a+ hI(b)) = 2RI (b) — hi(a), forac€ G;, be Gy

We can define a groupoid structure on the disjoint union G of G;, ¢ € I, by
(4.2) a-b:=—a+hi(b), whereacG; beG;.

Then evidently each (Gj,-) is a subgroupoid of (G, ). Moreover, if a,b
are in G;, then ab = —a + 2b. Whence (G;, ) = Core(G;, +). It is obvious
that if a € G;, b € G}, then ab € G;. Thus if we define - on the set I by
i-j:=1, then (I,-) is a left zero semigroup and the mapping

f:G—I, a-—1, forace€QG;,

is a homomorphism. The groupoid (G, -) is said to be the sum of the abelian
groups (Gi, +, gi) over the left zero semigroup (I,-) by the mappings h;, or
more briefly the AG-sum of the (G, +, gi). u

4.3. THEOREM. A groupoid (G, -) is an SIE-groupoid if and only if it is a sum
of abelian groups (G, +, g;) over a left-zero band (I,-) by some mappings h;

Proof. /=/ Let us suppose that a set {g; | ¢ € J} generates an SIE-
groupoid (G, -). Then there is a subset I of J such that G is the disjoint sum
of orbits G;, where i € I. Theorem 3.10 shows that on each orbit G; we have
an abelian group structure (G;,+, g;) defined by (3.5). Moreover (G;,-) =
Core(G;,+). Let us define the mappings h; : G; — Gy, for arbitrary 4, j € I,
as follows:

(4.4) hj-(a) :=gja forac€Gi.

Then by (1.4) and (3.12), hi(a) = g;a = w2(g:,a) = 2a, which gives (i). In
order to prove (ii), let a € G; and b € G, for some ¢,j € I. By Lemma 3.4,
(2.2) and (2.3),

a = UJ(27'1, v >2rk;gi’gj)gn)gi17- . ’gik_g)
and
b = w(2p17 M ,2pk;gj7gijgn)gi1) ... ,g’ik_g)
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for some 4;,...,ik—2 € J — {i,7,n} and integers r1,...,7k,P1,...,Pk. Then

hu(—a+hi(b)) = /by (4.4)/
h:z(_a‘ + giw(zph SRR 2pk;gj;gi’gn’gi1’ RN g‘ik_—z)) = /by (25)/
hn(—a+w(4p1 — 1,4p2, ..., 4Pk} 95, 9ir 9n» Givs - - -+ Gir_s)) = /by (2.7)/

k
h;(_a+w(2 - 24173,4172,---,4pk;gi,9j,gmgiu- "’gik_z)) =
s=1

/by (3.5), (3.11) and (4.4)/

k
900 (2= 2r1 = Y 4p0,4p2 — 210, 4Pk — 243 G5, 95 9y Gins -+ Gina ) =
s=1
/by (2.5)/
k
w(4— 4ry — 28p3,8p2 —d4ry—1,...,8pk — 47k 9i, 95, 9ny Gis» - - - ,giM) =
s=1
/by (2.7)/
k k
w(4 —4r; — 2281733,2247‘s + 8p1 — 2,8p3z —4rs,...,8pr — 4ry;
s=1 s=1

9n,95,9i,9i15 -+ gik—z)'
On the other hand,

2R%,(b) — hi(a) = /by (4.4)/
2gnb — gna = /by (2.5)/
2w(4p1,4p2 — 1,43, .. ., 4Pk; G5, Gir In> Girs - -+ » Gin—s)

—LU(4T‘1,47‘2 - 174p3, v )4Tk;gi’ 9i>89n, iy - - - ’gik—z) = /by (27)/
k

2‘-0(4?1,2— 24173,41737---,4Pk;9n,9i;gj,9i1,---1gik_z)
s=1
k
—w<41‘1,2— Z4Tsa---,4rk;gn,gjagiagi1>"-agik_z) = /by (35)/
s=1
k
w(8p1,4—28:03,81’3,-.-,8;Dk;gn,gi,gj,g¢1,--.,gik_z)
s=1
k
—w(4r1,2 - 24”‘3" e a4rk;g‘n7gjagi)giu- . _’gik—z) = /by (27)/
s=1

k
w<4 - Z8p8a8p1’ 8P3, LR ;8pk;gn,gj’gi’gi1’ v ’gik—z)

s=1
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k
—Ww (4T11 2_Z4Ts; s ,47'k; 9ny95,9i,Giyy- - - ’gik_z) = /by (35) and (311)/
s=1

k k
w(4=4r1 =Y 8p, Y 4r, +8p1 — 2,805 — drs,..., 8k — dri;

s=1 s=1
9ny,95,9i,Giys - - - ’gik_z)-
Therefore, hi (—a+ kI (b)) = 2hi (b) — ki (a) for a € G;, b € G, which is the
desired conclusion. It remains to show that the binary operation - on the
SIE-groupoid (G, -) can be defined by (4.2). Let a € G;, b € G;. By Lemma
3.4 we can assume that
a = W(2T1, O ’zrk;gi’gj)giu e 7gik—1)
and
b = w(zply ey 2pk;gjvgi,gi1) G )gik_1)~
From (4.4) and (2.7) it follows that
—a+hi(b) = —a+gib

k
=w(2 —2r1 — Z4p3,4p2 —2r9,...,4pr — 2rk;gi,gj,gi1,...,gik_l).

s=1

Similarly, by (2.7) and (2.5) we have
ab=w(2ry,...,2rk; 9i, 95, Girs -~ > Gir—1)

k
-w(l — > 2ps,2p2, .., 2Dk; i1 95> Gin» - ,gik_l)
s=1

k
= w(2 —2ry =) 4p.,4p2 — 272, ..., 4Dk — 27k; 9i) G5 Gins - :gik_1)
s=1
which gives ab = —a + hI(b), and the proof of /=>/ is complete.

/</ Assume that a groupoid (G,-) is an AG-sum of abelian groups
(Gi,+,9i), © € I, by some mappings h]. The groupoid (G, -) is easily seen to
be idempotent and symmetric. In order to get entropicity we take a € G;,
b€ Gj,ce Gk, d e G, fori,j,k,v € I. Now entropicity of the groupoid
(G, -) follows easily by (4.2) and (4.1(ii)). Indeed, applying (4.2) and (4.1(ii)),
one obtains
ab-cd = (—a + ki) - (—c + hi(d)) = —(—a + ki (b)) + h¥(—c + AL (d)) =

= a — hl(b) — h¥(c) + 2h](d) = ac - bd,

and the proof is complete. u
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Note that condition (ii) in Definition 4.1 means that h (ab) = h: (a)hi (b)
for a € G;, b € G;. In particular, the mapping h;'. : G; — Gj is a homo-
morphism of SIE-groupoids. In general, the mapping h; is not a group ho-
momorphism. Let a set {g; | ¢ € I} be a subset of a set {g; | ¢ € J} of
generators of an SIE-groupoid (G, -). Assume that the SIE-groupoid (G, -)
is the AG-sum of orbits (Gj,+,9:), 2 € I by the mappings h} defined by
(4.4). Then we have the following proposition.

4.5. PROPOSITION. The equality
(4.6) hi(a— b+ c) = hi(a) — h%(b) + h%(b)
holds for arbitrary i, € I and a,b,c € G;.

Proof. The proof follows easily by applying (3.4), the definitions of + and
h%, ((3.5) and (4.4)), and using (2.5), (2.7) and (3.11). n

Our next concern will be the structure of SIE-groupoids in the nontrivial
subvarieties of the variety SIE. Before stating the result to be proved, let us
note that the structure of SIE-groupoids in V5. for an odd natural number
k > 1, is especially simple, and was described in [R2]. SIE-groupoids in Vj
are exactly the groupoids Core(G, +) for abelian groups (G, +) satisfying
the identity kxz = 0. The SIE-groupoids in Vasi, where s > 0 and k£ > 1,
are the direct products of groupoids from V. and Vj. Accordingly, we are
left with the task of describing the structure of SIE-groupoids in V3.. The
following proposition yields information about SIE-groupoids which are AG-
sums of abelian groups satisfying certain identities.

4.7. PROPOSITION. Let an SIE-groupoid (G,-) be an AG-sum of abelian
groups (Gi, +, gi) satisfying the identity nz = 0 for a natural number n.
Then (G,-) is in the variety Va,.

Proof. From (3.12), it follows that each SIE-groupoid (G;, -) = Core(G;, +)
belongs to the variety V. Let a,b € G. Since the elements a and ab are in
the same orbit G;, wn(a,ab) = a. According to (1.16), we have won(a,b) =
wn(a, ab) = a, which is just the statement of the proposition. ]

Combining Proposition 4.7 with Corollary 3.13 we obtain the following
theorem.

4.8. THEOREM. An SIE-groupoid (G,-) belongs to the variety Va, if and
only if (G,-) is an AG-sum of abelian groups (Gi,+, 9:), ¢ € I, satisfying
the identity nxz = 0.

Theorem 4.8 generalises the structure theorems for groupoids in V4 given
in [P}] and [RR].
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5. An application

The construction given in Theorem 4.8 enables us to describe the free
SIE-groupoid F3,(X) on the set X = {z; | ¢ € I} of free generators in
the variety Va,. Note that in [R2] it was proved that if k is an odd natural
number then in the variety Vi the free SIE-groupoid Fi(X) is isomorphic
to the groupoid Core(FAr(X),+), where (FAg(X),+) denotes the free
abelian group satisfying the identity kz = 0, generated by X — {z¢} for
arbitrary zo € X. From Lemma 3.4, (2.2) and (1.12) one can conclude that
each element in the orbit Fy,(X); of z; in Fo,(X) is equal to

Tiwr, (Ti, iy )Ts - . . Tiwp, (T4, 24,) foriy,...,ix € land 0< ry,..., 7 < 7.

Each element of the free abelian group F A, (X) satisfying the identity nz =
0 and generated by X — {z} is equal to

T, +...+71kxs,  foriq,...,ix €l —{i}and 0<m,...,7x < m.
It is easy to see that the mapping f : Fon(X); — FA,(X) defined by
Ir; — 0

ZTiwWr, (Tiy Tiy )Ti .« o Tiwp, (T4, Tiy ) > T1T4y + ... + TET4,

is a group isomorphism. Since for arbitrary generators z;,z; in X one has
wn(zi, ;) # x;, it may be proved in much the same way as Remark 3.14
that the orbits F5,(X); and F3,(X); are disjoint. Summing up, we have
thus proved the following theorem.

5.1. THEOREM. Let n be a natural number. The free SIE-groupoid Fa,(X)
on the set X in the variety Vo, is the AG-sum of | X| copies of free abelian
groups satisfying the identity nx = 0 on |X| — 1 generators.

The Structure Theorem proved in this paper will be a starting point
for describing all subdirectly irreducible SIE-groupoids in each nontrivial
subvariety of the variety SIE.
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