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A REPRESENTATION OF SYMMETRIC IDEMPOTENT 
AND ENTROPIC GROUPOIDS 

The aim of this paper is to describe the structure of groupoids satisfying 
the following axioms: 

(S) (x • y) • y = x (Symmetry), 
(I) x • x = x (Idempotence), 
(E) (x • y) • (z • t) — (x • z) • (y • t) (Entropicity). 

A groupoid (G, •) satisfying the above identities will be called an SIE-
groupoid. 

SIE-groupoids are modes, i.e. they are idempotent and entropic algebras 
as defined in [RS]. The investigations presented here belong to the recently 
developed theory of groupoid modes. ( See e.g. [JK] and references there, 
[LM], [RS], [RR], [Rl], [R2].) 

On the other hand, the class SIE of all SIE-groupoids is contained in 
the more general class of groupoids satisfying (S), (I) and the right distribu-
tive law. In [PI] and [P2] such groupoids were called symmetric groupoids. 
Motivation for studying these groupoids comes from differential geometry 
and knot theory. The groupoids were investigated in connection with sym-
metric spaces (see e.g. [L] or [Ki]) and with reference to algebraic topology 
(see [E]). They also have been used to characterise knots in [J]. Joyce called 
SIE-groupoid abelian involutary quandle. 

Finally some SIE-groupoids are so-called P-groupoids. The latter have 
been defined in [K] and used to decompose complete undirected graphs into 
disjoint closed paths. An application of such groupoids in graph theory was 
given in [R2] as well. 

This paper investigates the structure of SIE-groupoids by means of some 
decompositions, together with a corresponding construction method for re-
covering the groupoids from their decompositions. SIE- groupoids are closely 
related to abelian groups. To show this relationship, we define on each fibre 
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of the described decomposition an abelian group structure. Then we are con-
cerned with the method of building SIE- groupoids from a family of abelian 
groups indexed by a set with a left zero band structure. The syntactical 
approach used for the structure theorem for these groupoids will be then a 
starting point for description of all subdirectly irreducible SIE-groupoids in 
each nontrivial subvariety of SIE in a next paper. 

In the first section we recall the basic notations and properties of SIE-
groupoids. For more detailed information and for proofs of results we refer 
the reader to [Rl] and [R2], Some technical lemmas are presented in Sec-
tion 2. The Decomposition Theorem is proved in Section 3. The congruence 
relation decomposing an SIE-groupoid into classes forming abelian groups 
is given in this section as well. To examine such decompositions further one 
needs to know more about the way in which abelian groups are put to-
gether. This is the concern of Section 4. In this Section an explicit method 
for constructing SIE-groupoids from abelian groups is given. This is done 
by means of a special construction called the AG-sum. In the last section 
the free SIE-groupoids in subvarieties of the variety of all SIE-groupoids are 
described as AG-sums. 

1. Preliminaries 
In this section we review without proofs some results concerning SIE-

groupoids. For the proofs we refer the reader to [Rl] and [R2]. We use the 
following convention: 

(1.1) xi • • -xn := (xi .. .xn-i) • xn, 
for every n > 2, and 

The product (1.1) is called left associated. 
As was shown in [Rl], each SIE-groupoid satisfies the following identities: 

(N) x -yz = xzyz, 

(A) xyzt = xtzy. 

By (N) each SIE-groupoid word can be represented in a left associated form. 
The following, basic example of SIE-groupoids was given in [Rl]. 

1.2. EXAMPLE. Let (G, + , 0) be an abelian group. We define a binary op-
eration • on the set G by x • y := 2y — x. Then (G, •) is an SIE-groupoid. 

xy • zt := (x • y) • (z • t). 

(Pa) xy • x = x • yx (Partial associative law) 
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We denote this groupoid by Core(G,+). (See [B], where Cores for Moufangs 
loops were defined.) 

The variety of all SIE-groupoids is denoted by SIE. Let Z denote the set 
of integers, and let Qn C Zn be the subset of Zn consisting of all sequences 
( l i , . . . , ln) € Zn such that at most one entry li is an odd natural number. 
It is obvious that ( Q n , •) is a subgroupoid of Core(Zn, +). Moreover, as was 
shown by Joyce [J], the SIE-groupoid (Qn, •) is isomorphic to the free SIE-
groupoid Fs ie (£o , • • •,%n) on the generators XQ,XI, ... ,xn. The free SIE-
groupoid on two generators x, y is isomorphic to the groupoid Core(Z, +). 

For more detailed information concerning free SIE-groupoids we refer the 
reader to [Rl], [R2], [J], [LM]. In [LM], the authors considered an infinite 
sequence of words 

k Ui-2(x,y) = Ui(x,y)uJi-i{x,y) for i < 1. 

It was proved in [LM] that the words Ui(x, y), where i is an arbitrary integer, 
give a standard form for words in FSIE(X, y). 

The following propositions were proved in [Rl], [R2] and [LM]. 

1.4 . PROPOSITION. The following identities are satisfied in the variety SIE 
for all integers k,r,l: 

(1-5) ujk(x, y) = u-k+i(y, x), 
(1.6) uk(x, y)uT(x, y) = u>2r-k(x, y), 
(1.7) UJk(u>r{x,z),UJr{y,t)) = ur(ujk(x, y), uk(z, t)), 
(1-8) ^k(^i(x,y),ur(x,y))^u>kr+{1_k)l(x,y). m 

1.9 . P R O P O S I T I O N . If the identity U)n{x,y) = UQ(x,y) holds in a variety of 
SIE-groupoids, then the identity ujn+i(x,y) = u>i(x,y) holds as well. • 

In what follows we abbreviate u>i(x,y) to u>i if no confusion can arise. 
The following claims, which are easily established using Propositions 1.4 and 
1.9, are to be used several times. 

1 .10 . COROLLARY. [R2] For all integers r and k the following identities hold 
in S I E : 

( 1 . 3 ) 

' v0{x,y) = x, ui(x,y) = y, 
< u>i(x,y) = Ui-.2{x,y)u>i-i{x,y) for i > 2, 

(1.11) 

(1.12) 

( 1 . 1 3 ) 

( 1 . 1 4 ) 

u>-r(x,y) = ur(x,y)u0(x,y), 
U2r{x,y) = u0(x,y)ur(x,y), 
ur(xz,yt) = tjr(x,y)ur(z,t), 
ur(xz,y) = wr(x,y)ur(z,y), 
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(1.15) 
(1 .16) 

yt) = ujr(x, y)u>r(x, t), 
LUk(x,LUr(x,y)) = Ukr(x,y). 

1.17. COROLLARY. [LM] Suppose that the identity u n = luo holds in a variety 
of SIE-groupoids. Then for each integer k, the identity Ukn = ^o a/so holds. 

• 

Let N = (N, <) denote the lattice of all natural numbers with respect 
to the partial order < defined by k < n iff k divides n. We will denote by 
N+ the lattice (N U {oo}, < # ) in which the element oo is greater than all 
elements of N. As was proved in [Rl], the lattice L(SIE) of all subvarieties 
of the variety SIE of all SIE-groupoids is isomorphic to the lattice of N+. 
The variety corresponding to oo is SIE. The variety corresponding to a 
natural number n is just the variety of SIE-groupoids defined by identity 
ion(x, y) = x. We will denote this variety by Vn. 

It was proved in [R2] that if n > 1 is an odd natural number, then 
each SIE-groupoid in Vn is polynomially equivalent to an abelian group 
satisfying the identity nx = 0. Moreover, every groupoid (G, •) from Vn is a 
quasigroup, and is equal to the groupoid Core(G, +) for some abelian group 
(G, + ) satisfying the identity nx = 0. Those subvarieties of the variety SIE 
which contain some quasigroups are described in [R2] as well. It was proved 
there that the varieties Vi* and Vn for s > 0 and an odd natural number 
n > 1, axe independent (see [GLP]). Hence their join V2* V Vn = V2«n is 
equal to the direct product V2» x Vn = V^n-

2. Some technical lemmas 
A standard form of words in the free SIE-groupoid Fsie(^O) • • •, xn) on 

n + 1 generators was described in [Rl]. For each element r = ( 2 r i , . . . , r j , . . . 
. . . , 2 r n ) o f Q n> Xq,..., xn ) was defined as follows 

where corj := ujTj (xo, Xj), for each 1 < j < n. 
In the sequel we will write briefly o>(2ri,... ,rj,..., 2rn ) if no confu-

sion can arise and we will abbreviate u>(2ri,... , r j , . . . , 2rn) to u>L for r = 
(2ri, ...,rj,..., 2 rn) in Qn. As was noted in [Rl], 

U)0UJriCO0 . . . LO0LJrn = • • • 

= UJ2rjUoUJriUJo • • •WoWrj-iU'OWr̂ Wo . . . OJTn 

(2.1) 

{ 
w ( 0 ; x 0 , . . . , x n ) :— x0 = cu0 and 
w(2ri, ...,rj,..., 2 rn; xo,..., xn) 

WrjW0WriW0 . . . LUr^^otOrj+i • • • if Tj ÌS odd, 
u>quTiu)q . . . ujr./2<jJo • • • wowr„ otherwise, 
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for each 1 < j < n. So it follows immediately that for each ( r \ , . . . , r n ) in 
Qn and for every permutation a of the set { 1 , . . . , n}, the identity 

( 2 . 2 ) w ( r i , . . . , r„; Xq, X\, . . . , X n ) — ^ ( ^ " » ( l ) ) • • • ) ^*q(ti)) X0, £ a ( l ) > • • • i - ^ a ( n ) ) 

is satisfied in a variety of SIE-groupoids. Moreover, it is obvious that the 
identity 

(2.3) w(r i , . . . , rn; xo, x i , . . . , x n ) = u>(ri,..., rn , 0; x0 , X i , . . . , xn,xn+i) 

is satisfied in SIE for arbitrary ( r i , . . . , r„) 6 Qn- (See [Rl]) The following 
proposition was also proved in [Rl]. 

2.4 . PROPOSITION. In the free S I E - g r o u p o i d Fsie(x0, Xl> • • • >Xn) on 9en~ 
erators XQ, X\, . . . , xn each further element may be expressed in the standard 
form u>r_ for some r in Qn. Moreover, the identity 

( 2 . 5 ) U>rU>k - V2k-r 

holds in S I E . for all r , k e Q n . m 

Definition (2.1) generalises (1.2). Moreover, as was shown in [Rl], the 
words u>r(xo, • • •, xn), where r is an arbitrary element of Qn, give a stan-
dard form of words in F s i e ( £ o > • • •, xn) . The identity (2.2) shows how this 
expression depends on the order of the generators xo, •. . ,xn. Notice that 
the generator xo plays a special role in Definition 2.1. The next proposition 
allows us to replace xo by any other Xj. 

2.6 . PROPOSITION. The identity 

(2.7) u>(fci,... ,kn;xo, • • • ,x n ) 
n 

= ui^fci,..., kj—i, 1 — ^ ^ k j , fci+i,..., kn; X{, Xi,..., Xj_i, xo, Xj+i, • • • > ^nj 
j=1 

holds in the variety S I E for arbitrary ( f c i , . . . , kn) in Qn and i = 1 , . . . , n. 

P r o o f . By Definition (2.1) and (2.2), it is sufficient to prove (2.7) in the 
case that i = 1 and that all kj for j = 2 , . . . , n are even. The proof of this is 
by induction on n, the case n = 1 just being (1.5). First, it should be shown 
that (2.7) holds for n = 2 and fci = 0. In this case the identity (2.7) has the 
following form 

( 2 . 8 ) u;(0, k2; x0, x i , X2) = w ( l - k2, k2\x\,xo, x2). 

The identity (2.8) holds in SIE for every integer k2. The easy proof of this, 
by induction on k2 using (1.3), (2.3) and (2.5), will be omitted. 
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Assuming (2.7) to hold for n, we shall prove it for n + 1. Let ( k l t . . . , kn, 

2kn+i) be in Qn+1- Prom (2.1), (2.3) and (2.5) we deduce that 

= uj(kx,..., kn\x0, x i , . . . , xn)uQujkji+j (x0, x„ + i ) 

= u { k i , . . . , k n ; x 0 , X i , . . . ,xn)ujouj(0, kn+1-,xo,x1}xn+i). 

Next, applying the induction hypothesis, (1.5), (2.8) and (2.5), one obtains 

u>{k\,..., kn, 2kn+i] xo, x i , . . . , xn, xn+i) 

n 

= u ( l . . . , kn\x\,xq,X2, • • • ,xn^jui(xi,xo) 

i=i 

• ^(1 - k n + i , kn+i \ Xi, xo, x n + i ) 

71 

= ^ ( l - Y^kj - 2kn+1, . . . , kn,2kn+i\ Xi, xo,... 

which ends the proof. • 

3. Decomposit ion of SIE-groupoids into unions of orbits 
In this section we describe how an SIE-groupoid breaks up into smaller 

pieces that are indexed by a left zero band i.e. a semigroup satisfying the 
identity xy = x. Moreover, on each such piece an abelian group structure is 
defined. Let (G, •) be an SIE-groupoid. Let us define a relation ir on the set 
G as follows: 

(3.1) a 7r b if and only if a = bb\... bk for some elements bi,..., bk in G. 

It is easy to check that it is an equivalence relation. Moreover, the following 
lemma is true. 

3 . 2 . L E M M A . The relation it is a congruence relation of an SIE-groupoid 

( G , •). The equivalence classes are subgroupoids of ( G , - ) and the quotient 

(G/TT, •) is a left zero band. 

P r o o f . Let a, b, c, d be elements of G such that a = bb\.. .bk and c = 
dd\...dr for some b\,... ,bk,d\,... ,dT from G. By idempotence we can 
assume that r = k. Then by entropicity, 

ac = bb\... bk • dd\ ... dk = bd • b\di • ... • bkdk-

So 7T is a congruence relation of the SIE-groupoid (G, •). The classes are 
subgroupoids of (G, •), because congruence classes of any idempotent algebra 
are subalgebras. Moreover, for any a, b from G, a 7r ab, so the quotient 
(G/7r, •) is a left zero band. • 
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3.3. LEMMA. The congruence relation IT is the least congruence relation on 
an S I E - g r o u p o i d (G, •) such that the quotient (G/n, •) is a left zero band. 

P r o o f . For $ G Con (G, •), assume that the quotient (G/&, •) is a left zero 
semigroup. Then, for any x,y in G, x $ xy. Suppose now that a n b. This 
means that a = bbi... bk, for some bi,...,bk from G. Since b $ bb\ bb\b2 $ 
... $ bbi... bk = a, a $ b and i r C • 

For an arbitrary element g from the set G, the 7r-class containing g will 
be called the q-orbit and denoted by Gg. By the definition of n we obtain 
Gg := {gai...ak | ai,...,ak G G}. It follows from Lemma 3.2, that the 
congruence relation IT decomposes an SIE-groupoid (G, •) into a disjoint sum 
of orbits, and that the quotient (G/it, •) is a left zero band. Let {gi | i G 1} be 
a set of generators of the SIE-groupoid (G, •). There is at least one generator 
gi from the set {gi | z G 1} in each orbit Gg. Indeed, if g = gi1gi2... giv for 
some ¿ i , . . . , ip from I, then ggipgip_1 . • .gi2 = <7ix so g¿1 belongs to the orbit 
Gg. Thus, by Lemma 3.2, Gg — Ggi =: Gi. Let J be the set of indices of 
the chosen generators. The groupoid (G, •) decomposes into a disjoint sum 
of orbits Gi, for i G J. Moreover, each (Gi,-) is a subgroupoid of (G, •). 
Throughout this section Gi will denote the orbit of gi. 

The following lemma describes a standard form for elements belonging 
to one orbit. 

3.4. LEMMA. Pick an arbitrary generator gi0 from the set of generators {gi | 
i El}. Then 

Gi0 = {g G G | g = w ( 2 r i , . . . ,2rk\gio,gh,.. ,,gik, for i u ... ,ik G I - { j o } , 

and r i , . . . ,rk G Z}. 

P r o o f . If an element g from the set G has the required form, then by 
Definition (2.1), 

9 = Sto^riiSio.SiJflio • • •9i0Vrk(9i0,gili), 

so that g belongs to Gi0. Now let g G Gi0. It means that g = gi0a\... ap for 
some o i , . . . , a p G G. Since (2.1) describes a standard form of elements in 
the free SIE-groupoid, there exists a finite subset { ¿ i , . . . , ifc} of I such that 
ai = u(ritl,... ,riX,gio,gh,... ,gik) for some integers riti,.. .,ritk of which 
at most one is odd, and for i = 1 , . . . , p . Hence, gi0 = u>o(9i0»9h, • • •, 9ik) s o 

by (2.5), g = w ( 2 r i , . . . , 2rk; gio, gh,.. ,,gik) for some integers n , . . . ,rk. m 

Now we can define an abelian group structure on each orbit. Let a, b be 
elements of an orbit Gi, i G I. By Lemma (3.4) and Definition (2.1), 

a = ^ ( 2 7 - 1 , . . . , 2 r f c j ^ i , ^ ! , . . .,gik) = 9iU)ri{gi, 9h)gi • • • 9iVrk(gi, gik) 
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and 

b = u(2pi,... ,2 Pk-,gi,9h,- • •,9ik) = 91^(91,9^)9% • • • 9iUPk(9i, 9ik) 

for some ¿1,. . . , ik € I — {¿} and integers r i , . . . ,rk,pi,. ..,pk. 
Let us define a + b as follows: 

(3.5) a + b := W(2RI + 2plt...,2rk + 2Pk; 9i, 9h, • • •, 9ik) 

= <7tWri+pi(<?i>5ii)<?i • • • <7i^rfc+pfc (9 i ,9 i k )• 

We should prove that the definition of a + b does not depend on the presen-
tation of the elements a and b in the standard form. We use the following 
lemma. 

3.6. LEMMA. For arbitrary elements ao,ai,... ,an in (G,-) and arbitrary 
integers r\,..., rn,pi,... ,pn, the equation uj(2r\,..., 2r^; 00,01,..., on) = 
u>(2p1,..., 2pn\ai,..., an) holds if and only if a>(2ri - 2pi,..., 2rk - 2pk\ 
a0,ai,... ,an) = u0 = a0. 
P r o o f . This follows, by easy computation, from the axioms of SIE-group-
oids and (2.5). • 

3.7. PROPOSITION. The result of the operation + on elements a and b from 
the orbit Gi does not depend on the presentation of a and b in the standard 
form. 

P r o o f . Let us suppose that 

a = u>(2ri , . . . , 2rk; gu gh,..., pf J = u{2r[,..., 2r'k; gu gh,..., g{ J 

and 

b = u(2px,... ,2Pk-,gi,gh,- ..,gik) = w(2pi,.. •, . . . ,gik). 
By Lemma 3.6, 

u(2r1-2r'1,...,2rk-2r'k,gi,gil,...,gik) 
= 9i = w(2pi -2p1,...,2p'k- 2 pk;gi, gh,..., gik). 

Applying Lemma 3.6 once more, we obtain 
u(2ri - 2 r[ - 2p[ + 2pi}... ,2rk - 2r'k - 2p'k + 2pk; g{, gh,.. .,gik) = gi 

Consequently 

u{2n + 2pi,..., 2rk + 2pk\gi,9i1,...,9ik) 
= w(2ri + 2 p i , . . . , 2r'k + 2p'k; gi,gh,..., gik) 

Therefore the operation + is well defined. • 

3.8. REMARK. The identity 

(3.9) a + b = agiUPl (g^gh ... giU>Pk (g{, gik) 
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holds in the orbit Gi, for a = u)(2r\,... , 2rjt; &, ,... ,gik) and b = 
w(2pi,... ,2pk;gi,gh,.. .,gik). 

P r o o f . It follows easily from (2.3) and (2.5). • 

3 . 1 0 . T H E O R E M . On each orbit Gi in an SIE-groupoid (G, •) the operation + 
defines the structure of an abelian group. Moreover, (Gi,-) = Core(Gi,+). 

P r o o f. It easy to see that the operation + is associative and commutative. 
Let 

a = w ( 2 n , . . . ,2rfc jpi .Si j , . . . ,gik). 
Since gi = u>(0,.. . , 0; gi, g^,..., gik), the relation (3.5) yields a + gi = a. 
Thus the element gi plays the role of the identity element in (Gi, +) . More-
over, if we put 

( 3 . 1 1 ) -a •.= u(-2ri,...,-2rk-,gi,gil,...,gik) 

then a + (—a) = gi. Therefore (Gi,+,gi) is an abelian group. Since ab = 
2b — a, for a, b € Gi, it is obvious that (Gi, •) = Core(Gi, +). • 

The groupoid Core(G, + ) and the abelian group (G, + ) are closely re-
lated. By induction it is easy to prove that the identity u>k(x,y) = ky — 
(k — l)x is satisfied in every groupoid Core(G, +) , for each natural number 
k (see [R2]). Therefore, if Gi is an orbit in an SIE-groupoid (G, •), then the 
identity 

( 3 . 1 2 ) u>k(gi,y) = ky 

holds in the groupoid Core(Gi,+), for an each natural number k. Recall 
that each (G, •) in Vn for an odd natural number n > 1 is a quasigroup 
[R2], So for arbitrary elements a, b in G there exists an element c in G 
such that a = be. This means that the congruence 7r is trivial on (G, •) and 
"decomposes" (G, •) into just one class consisting of all elements of G. The 
groupoid (G, •) is equal to Core(G,+) and the group (G, + ) satisfies the 
identity nx = 0 (see [R2]). More generally, one obtains the following: 

3 . 1 3 . COROLLARY. If an SIE-groupoid (G, •) with orbits (Gi, •) belongs to the 
variety V^n then each abelian group (Gi, + ) satisfies the identity nx — 0. 

P r o o f . At first we will show that the groupoid (Gi,-) satisfies the iden-
tity ojn(x,y) = x. Let a and b be elements of the orbit Gi. Then a = 
bb\...bk, for some b\,...,bk from G. Hence, by ( 1 . 1 5 ) , idempotence and 
( 1 . 1 2 ) un(b, a) = un(b, bb\ ... bk) = un(b, b)ujn(b, bi)... un(b, bk) = b. Thus 
the groupoid (Gi,-) satisfies the identity un(x,y) = x. Since (Gi,-) = 
Core(Gi, + ) , it follows by ( 3 . 1 2 ) that the group (Gi, + ) satisfies the identity 
nx = 0. • 
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3.14. REMARK. Each SIE-groupoid (G, •) in the variety V2*k for s > 0, but 
not in the variety Vp for p < 2 s k , is decomposed into at least two classes. 

P r o o f . Since (G, •) is not in V^-i*;, there are elements So,Si in G such that 
u2a~1k(9o,9i) / So- We will prove that the orbits Go and G\ are disjoint. 
Let us suppose the contrary. Then s i 6 Go- There is Q := {si \ i G I}, a set 
of generators of the SIE-groupoid (G, •) such that so, Si G Q- By Lemma 3.4 
Si = w ( 2 n , . • . , 2 rn-,gi,gh,...,gin) for some integers rx,..., rn and some 
¿1 , . . . , in from I. Hence 

From (1.16) it follows that 

On the other hand, one may deduce using (2.1), (1.16), (1.15), (1.12) and 
Corollary 1.17 that 

i(so,^fc(5o,w(2n,... ,2rn;gi,gh,.. .,gin))) 

= w2.-i(3o,^fc(5o»5o^ri(flo,5ii)so • • (30,5i„))) 

= (go,9oUkri(90,9^)90 • • • 9oUkrn(go,9in)) 

= 50^2»-! (50) wfcrx (50,Pii ))0O • • •50^2»-1(S'0,^fcrn(50)5itl)) 

= 5oW2"-ifcn(5o,5i i )5o • • -S0W2—ifcrn(0O,0i„) = So-

Whence G0 n Gi = 0. • 

3.15. EXAMPLE. Let us consider the SIE-groupoid (G, •) given by the table: 

a b c d e f 
a a c a c b d 
b d b d b a c 
c c a c a d b 
d b d b d c a 
e f f f f e e 
f e e e e f f 

It is easy to check that the groupoid (G, •) belongs to the variety Vs- The 
congruence relation n decomposes (G, •) into two orbits: Ga = {a,b,c,d} 
and Ge = {e , / } . Moreover, the group (Ga, +, a) is isomorphic to Z4, the 
cyclic group of order 4 and the group (Ge,+,e) is isomorphic to Z2, the 
cyclic group of order 2. Consequently, the groupoid (Ga, •) is isomorphic to 
the groupoid Core(Z4, + ) and belongs to V4. Likewise, the groupoid (Ge, •) 
is isomorphic to the groupoid Core(Z2,+) and belongs to V2, which is the 
variety LZ of left zero bands. • 
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4. The structure t h e o r e m 
In this section we will show that every SIE-groupoid (G, •) may be rep-

resented by means of a certain construction from reducts of abelian groups 
and left zero band. 

4 . 1 . DEFINITION . Let I be a nonempty set. For each i in I let an abelian 
group (G{,+,gi) be given. For each pair (i,j) in I2 let h* : Gi —> G j be a 
mapping satisfying 

(i) h\(a) = 2a = a + o, for a G Gi, 

(ii) K(-a + h{(b)) = 2hi (b) - Wn(a), for a G Git b G Gj. 

We can define a groupoid structure on the disjoint union G of Gi, i G I, by 

(4.2) a • b := -a + h{(b), where a G Gi, b G Gj. 

Then evidently each (Gi,-) is a subgroupoid of (G, •). Moreover, if a,b 
are in Gi, then ab = —a + 2b. Whence (Gi, •) = Core(Gi, +) . It is obvious 
that if a € Gi, b E Gj, then ab € Gi. Thus if we define • on the set I by 
i • j := i, then (I, •) is a left zero semigroup and the mapping 

/ : G —> I, a —• i, for a G Gi, 

is a homomorphism. The groupoid (G, •) is said to be the sum, of the abelian 
groups (Gi,+,gi) over the left zero semigroup (I,-) by the mappings h%j, or 
more briefly the AG-sum of the (Gi,+,gi). • 

4 .3 . T H E O R E M . A groupoid (G, •) is an SIE-groupoid if and only if it is a sum 
of abelian groups (Gi, + , gi) over a left-zero band (I, •) by some mappings hXj. 

P r o o f . /=>/ Let us suppose that a set {gi | i G J } generates an SIE-
groupoid (G, •). Then there is a subset I of J such that G is the disjoint sum 
of orbits Gi, where i G I. Theorem 3.10 shows that on each orbit Gi we have 
an abelian group structure (Gi,+,gi) defined by (3.5). Moreover (Gi,-) = 
Core(Gi, +) . Let us define the mappings Kj : Gi —> Gj, for arbitrary i,j G I, 
as follows: 

(4.4) hj(a) := gja for a G Gi. 

Then by (1.4) and (3.12), h\(a) = gia = uj2(gi,a) = 2a, which gives (i). In 
order to prove (ii), let a € Gi and b G Gj for some i,j G I. By Lemma 3.4, 
(2.2) and (2.3), 

a = u(2ri,... ,2rk;gi,gj,gn,gh, • • -,9ik-2) 
and 

b = u(2pi,..., 2pkj gj, gi, gn, gi^, • . . ,gik_2) 



258 B. R o s z k o w s k a - L e c h 

for s o m e i\,..., ik_2 € J — {i,j, ra} a n d integers r\,..., r k , p i , . . . , pk• T h e n 

^ ( - a + Ä j ( 6 ) ) = /by ( 4 . 4 ) / 

Kl(~a + giuj(2p1,...,2pk;gj,gi,gn,gi1,...,gik_2)) = /by ( 2 . 5 ) / 

hln{-a + w ( 4 p i - l , 4 p 2 , . . . , 4 p i k ; s i J - > ^ i , s n , g i 1 > . . . , ö i f c _ 2 ) ) = /by ( 2 . 7 ) / 
k 

h n ( ~ a + U J ( 2 - y £ 2 4 P 2 , • • •, 4 P k ] 9 i , 9 j , 9 n , 9 h 9 i k - 2 ) ) = 
s = l 

/by ( 3 . 5 ) , ( 3 . 1 1 ) a n d ( 4 . 4 ) / 
k 

gn u (2 - 2 n - 4 p s , 4f>2 - 2 r 2 , . . . , 4pk - 2 rk;gu gj, gn, g h g i k _ 2 ^ j = 

/by ( 2 . 5 ) / 
k 

u j ( i - 4 r i - ^ 8 p s , 8 p 2 - 4 r 2 - 1 , . . . ,8p f c - 4 r k \ 9 i , g j , • • • , 0 ¿ * _ 2 ) = 

/by ( 2 . 7 ) / 
fc fc 

w ( 4 - 4 r i - ^ 8 p s , ^ 4 r s + 8 p i - 2 , 8 p 3 - 4 r 3 ) . . . , 8pfc - 4r f c ; 
S = 1 3 = 1 

Sn> 5¿) 5¿1 J • • • ) 9ik-2^j • 

O n t h e o t h e r h a n d , 

2 h { ( b ) - hi(a) = /by ( 4 . 4 ) / 

2 g n b - g n a = /by ( 2 . 5 ) / 

2 w ( 4 p i , 4p2 - 1 , 4 p 3 , . . . , 4 p * ; g , - , f t , , . . . , g i k _ 2 ) 

- w ( 4 r i , 4 r 2 - l , 4 p 3 , . . . , 4 r f c ; ^ , , . . . ,gik_2) = /by ( 2 . 7 ) / 
k 

2 u > 2 - ^ 4 p a , 4 p 3 , . . . , 4pk; gj,gix,..., 
3=1 

k 
- w ^ 4 r i , 2 - ^ 4 r s , . . . , 4 r f c ; 5 n , p J - , f f i , 5 ¿ 1 , . . . , 5 ¿ f c _ 2 ) = /by ( 3 . 5 ) / 

S = 1 
k 

u 4 - ^ 8ps,8p3,..., 8pk\gn, git gj.g^,..., ff¿fc_2) 
3=1 

k 
- a ) ^ 4 r i , 2 - ^ 4 r s , . . . , 4 r f c ; 5 n , 5 i , 5 i , f f i l , . . . , 5 i f c _ 2 ) = /by ( 2 . 7 ) / 

3=1 
k 

- ] P 8 p s , 8 p i , 8 p 3 , . . • , 8 p k - , g n , 9 j , 9 i , 9 h , - • • > 0 i f c - 2 ) 
3=1 
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k 

-u>(4r 1 , 2 -^24r . , . . . , 4rk]g n , 9 j ,g i , 9 i 1 , - - - , 9 i k - i ) = /by (3.5) and (3.11)/ 
s=1 

k k 

u (4 - 4ri - 8P" 4 r s + 8 p i - 2, 8p3 - 4 r 3 , . . . , 8pk - 4rfe; 
S=1 3 = 1 

9ni 9 j i 9ii 9h 1 • • • > 9ik-2^j • 

Therefore, h \ ( - a + h i ( b ) ) = 2 h { { b ) - h ^ a ) for a e G i , b e G j , which is the 
desired conclusion. It remains to show that the binary operation • on the 
SIE-groupoid (G, •) can be defined by (4.2). Let a e Gi, b € Gj. By Lemma 
3.4 we can assume that 

a = u { 2 r u . . . , 2 r k \ g t , g j t g i l t . . . . f f i ^ J 

and 
b = w(2pi , . . . , 2 p k \ g j , g i , g i x , . . . , g i k _ x ) . 

From (4.4) and (2.7) it follows that 

- a + h l ( b ) = - a + gib 

k 

= u ( 2 - 2ri - ^ 4 p s , 4 p 2 - 2r 2 ) . . . APk ~ 1rk\gi,gj,gix,...,5ifc_i)-
3 = 1 

Similarly, by (2.7) and (2.5) we have 

ab = w(2ri , . . . ,2 r ^ g ^ g ^ g ^ , . - . . , g i k _ x ) 

k 

S = 1 
k 

= u ( 2 - 2ri - ^ 4 ^ , 4 ^ 2 - 2r 2 , . . . ,4pfc - 2 r k - , g i , g j , g i l , . . . , g i k _ ^ 

3 = 1 

which gives a& = — a + h\ (b), and the proof of /=>/ is complete. 
/<=/ Assume that a groupoid (G, •) is an AG-sum of abelian groups 

( G i , + , g i ) , i € I , by some mappings h\. The groupoid (G, •) is easily seen to 
be idempotent and symmetric. In order to get entropicity we take a E Gi, 
b € G j , c e Gfc, d € G r for i , j , k , r € I . Now entropicity of the groupoid 
(G, •) follows easily by (4.2) and (4.1(h)). Indeed, applying (4.2) and (4.1(ii)), 
one obtains 

a b - c d = ( - a + h { ( b ) ) • ( - c + h r
k ( d ) ) = - { - a + h { ( b ) ) + h ^ - c + h r

k ( d ) ) = 

= a - h{(b) - h f ( c ) + 2 h ? ( d ) = ac • bd, 

and the proof is complete. • 
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Note that condition (ii) in Definition 4.1 means that hl
n{ab) = ^4(a)/i£(6) 

for a G Gi, b G Gj. In particular, the mapping hl- : G{ —> Gj is a homo-
morphism of SIE-groupoids. In general, the mapping ft*- is not a group ho-
momorphism. Let a set {gi | i G 1} be a subset of a set {gi | i G J} of 
generators of an SIE-groupoid (G, •). Assume that the SIE-groupoid (G, •) 
is the AG-sum of orbits (Gi,+,gi), i G I by the mappings hlj defined by 
(4 .4) . Then we have the following proposition. 

4.5 . PROPOSITION. The equality 

(4.6) h) (a-b + c) = h) (a) - h) (6) + h) (b) 

holds for arbitrary i,jEl and a,b,c G Gi. 

P r o o f . The proof follows easily by applying (3 .4) , the definitions of + and 
h), ( (3 .5 ) and ( 4 .4 ) ) , and using (2 .5) , (2 .7) and (3 .11) . • 

Our next concern will be the structure of SIE-groupoids in the nontrivial 
subvarieties of the variety SIE. Before stating the result to be proved, let us 
note that the structure of SIE-groupoids in V^fc for an odd natural number 
k > 1, is especially simple, and was described in [R2], SIE-groupoids in 14 
are exactly the groupoids Core(G, +) for abelian groups (G, +) satisfying 
the identity kx = 0. The SIE-groupoids in V 2 w h e r e s > 0 and k > 1, 
are the direct products of groupoids from V2» and Vfe. Accordingly, we are 
left with the task of describing the structure of SIE-groupoids in V2». The 
following proposition yields information about SIE-groupoids which are AG-
sums of abelian groups satisfying certain identities. 

4.7 . PROPOSITION. Let an SIE-groupoid (G,-) be an AG-sum of abelian 
groups (Gi,+,gi) satisfying the identity nx = 0 for a natural number n. 
Then (G, •) is in the variety V2n. 

P r o o f . Prom (3 .12) , it follows that each SIE-groupoid (Gi, •) = Core(Gi, +) 
belongs to the variety Vn. Let a,b G G. Since the elements a and ab are in 
the same orbit Gi, ujn(a,ab) = a. According to (1 .16) , we have u>2n(a, b) = 
un(a, ab) = a, which is just the statement of the proposition. • 

Combining Proposition 4.7 with Corollary 3.13 we obtain the following 
theorem. 

4.8. THEOREM. An SIE-groupoid (G, •) belongs to the variety Vm if and 
only if (G, •) is an AG-sum of abelian groups (Gi,+,gi), i G I, satisfying 
the identity nx = 0. 

Theorem 4.8 generalises the structure theorems for groupoids in V4 given 
in [PI] and [RR]. 
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5. An application 
The construction given in Theorem 4.8 enables us to describe the free 

SIE-groupoid F2n{X) on the set X = {xi | i G 1} of free generators in 
the variety V2n- Note that in [R2] it was proved that if k is an odd natural 
number then in the variety Vk the free SIE-groupoid Fk(X) is isomorphic 
to the groupoid Core(FAk(X), +), where (FAk(X), +) denotes the free 
abelian group satisfying the identity kx = 0, generated by X — {xo} for 
arbitrary xo € X. From Lemma 3.4, (2.2) and (1.12) one can conclude that 
each element in the orbit F2n(X)i of Xj in F2n(X) is equal to 

x juv^x i .x j jx i . . .XiLJr k ( x i , x i k ) for ii,... ,ik E I and 0 < r\,... ,rk < n. 
Each element of the free abelian group FAn(X) satisfying the identity nx = 
0 and generated by X — {x} is equal to 

V i , + . . . + TkXik for ii,..., ik € / - {¿} and 0 < n , . . . , r^ < n. 
It is easy to see that the mapping / : F2n(X)i —> FAn(X) defined by 

Xi i—• 0 

X{UJri Xi1)Xj . . . XiiOTk (x^ j Xik ) I • 7*1 Xij -(- . . . -f- TkXik 

is a group isomorphism. Since for arbitrary generators X i y CC j 1X1 X one has 
u n (x i ,x j ) yi Xi, it may be proved in much the same way as Remark 3.14 
that the orbits F2n(X)i and F2n(X)j are disjoint. Summing up, we have 
thus proved the following theorem. 

5.1. THEOREM. Let n be a natural number. The free SIE-groupoid F2n{X) 
on the set X in the variety V2„ is the AG-sum of |X| copies of free abelian 
groups satisfying the identity nx — 0 on — 1 generators. 

The Structure Theorem proved in this paper will be a starting point 
for describing all subdirectly irreducible SIE-groupoids in each nontrivial 
subvariety of the variety SIE. 
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