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ON REPRESENTATIONS OF COMMUTATIVE
BCK-ALGEBRAS

Abstract. We introduce the relative cancellation property for commutative BCK-
algebras and we study the problem of embedding of commutative BCK-algebras into
Abelian lattice ordered groups. We show that if a BCK-algebra is not directed upwards,
then we cannot use the method of Wyler and Baer. Anyway, supposing either union
property or unitary extendibility, we can present the embedding of such a BCK-algebra
into the positive cone of an Abelian lattice ordered group with universal property. Finally,
some interesting examples are presented.

1. Introduction

BCK-algebras were introduced by Imai and Iséki [Imls], [Ise], and they
have been intensively studied by several authors ([MeJu] is an interesting
monograph about BCK-algebras). A very important class of BCK-algebras
is the class of commutative BCK-algebras [RoTr], and in particular, of
bounded commutative BCK-algebras which are categorically equivalent to
MV-algebras [Mun 1]. For MV-algebras there is a representation theorem by
Mundici {Mun]| via intervals [0, u] with a strong unit v in an Abelian lattice
ordered group. In this case we have also a universal property.

If a commutative BCK-algebra is directed upwards, its representation via
Abelian lattice ordered groups with universal property was made in [DvGr].

In the present paper, we shall study a representation of a class of commu-
tative BCK-algebras which are not directed upwards, in general, via lattice
ordered groups with universal property. We show that the “words” method
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of Baer [Bae], and applied by Wyler [Wyl] to clans, does not work in the
case of commutative BCK-algebras which are not directed upwards.

More information we obtain if we shall study commutative BCK-algebras
with relative cancellation property.

The paper is organized as follows. In section 2, we give some lattice-
like properties of commutative BCK-algebras and we introduce the relative
cancellation property which is a central notion. Some Riesz properties for
commutative BCK-algebras known in lattice ordered groups are presented in
Section 3. A “words” technique of Baer [Bae] and Wyler [Wyl] is presented in
Section 4. Finally, we shall study union BCK-algebras (Section 5) and union
BCK-algebras which are unitarily extendible [Hoo] (Section 6). For them we
find a lattice ordered group representation with universal property. These
results generalize the famous result of Mundici [Mun] for MV-algebras. The
paper is accomplished with plenty of illustrating examples.

The relative cancellation property is a necessary condition for a repre-
sentation of commutative BCK-algebras via Abelian lattice ordered groups.
In generally, the problem of representation of commutative BCK-algebras
with this property seems to be open, and the authors hope to solve it.

DEFINITION 1.1. A BCK-algebra is a non-empty set X with a binary oper-
ation * and with a constant element 0 such that the following axioms are
satisfied: for all z, y, z € X,

(BCK-1) ((z*xy)*(zx2))*(zxy)=0;
(BCK-2) (zx(zx*xy))*xy=0;

(BCK-3) z*z=0;

(BCK-4) z*xy=0and y*xz=0imply z =y;
(BCK-5) Oxz =0.

We write X = (X;*,0). In X, there is a binary relation < defined by
z<y iff zxy=0.

This is a partial order relation on X which is called the BCK-order. We recall
some elementary properties of BCK-algebras [MeJu, Thms 1.1.2,1.1.3, 1.1.4]:
if (X;*,0) is a BCK-algebra, then for all z, y, 2z € X,

(a) z <y implies z*y < z xx;

(b) (z*xy)*xz=(z*x2z)*y;

(c) (z*2)*(y*x2)<zx*y;

(d) z<yimpliesz*z<yx*z;

() z*xy<uz;

(f) zx0==.
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If we denote by z Ay :=yx*(y*z), z,y € X, z Ay is a lower bound of z
andy,zAz=z,zA0=0=0Az, and it is true that

(1.1) z*x(yAx)=zx*xy, z,y€X.

In general, z Ay # y Az, and a BCK-algebra is said to be commutative if it
satisfies, for all z, y € X,

(1.2) zx(z*ry)=yx(yxz), z,y€X.

In this case, zAy = yAxz is the greatest lower bound of z and y, and (X; *,0)
is a lower semilattice with respect to the BCK-order. According to [MelJu,
Thm 1.5.6], a BCK-algebra X is commutative if and only if z < y implies

z=yx*(y*z)

2. Lattice properties of commutative BCK-algebras
We recall that it follows from [CST] that any commutative BCK-algebra
is a distributive near lattice, therefore the following result holds.

THEOREM 2.1. Let (X;%,0) be a commutative BCK-algebra, and let
xz,y,2,21 € X.

(i) Let z,y < z. Define
(2.1) zV,y:=zx((z*z) A (2 *xy)).
Thenz<zV,y, y<zV.y and, for any z; € X with z; > z, we have
(2.2) TV, Y=z V, ¥.

(ii) z V y exists in X if and only if there ezxists an element z € X such
that z,y < z.

(iii) If z Vy exists in X, then (zAxz)V (zAy) ezists in X for any z € X,
and

(2.3) zA(zVy)=(zAz2)V(2Ay).

(iv) If (X; *,0) is directed upwards,® then X is a distributive lattice with
respect to the BCK-order.

We say that a commutative BCK-algebra (X;*,0) has the relative can-
cellation property if, for a,z,y € X, a < z,y with £ *a = y * a imply
z=y.

LEMMA 2.2. Let (X; *,0) be any upwards directed commutative BCK-algebra.
Then it has the relative cancellation property.

1A poset {X; <) is said to be directed upwards if given a,b € X, there is an element
c€ Xsuchthat a <cand b<e.
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Proof. Suppose that there exist ¢,c’ € X such that a < ¢,c¢’ and cxa = ¢'+a.
We have to prove that ¢ = ¢’. Let u € X be such that ¢,¢’ < u.

Then (u*a)*(u*xc) = (u*(u*xc))*a = (uAc)*a = c¢*a. Since
a<c wehave uxc < uxa and then [ux(cxa)]*xa = (u*xa)*(c*xa) =
(uxa)*[(uxa)* (u*xc)]=(uxa)A(uxc)=uxc.

In the same way we show that [u*(¢'*a)]xa = uxc'. From cxa = ¢’ xa,
it follows ux ¢’ =uxc. Hencec=u* (uxc) =ux*(uxc)=c’ Q.ED.

EXAMPLE 2.3. The example By_3_3 from [MeJu], where * is given by the
table (next to it there is its Hasse diagram), gives a commutative BCK-
algebra which is not upwards directed, consequently it is not a lattice. It
has not the relative cancellation property. Indeed, we have 1 < 2,3 and
2x1=1=3x1 but 2 # 3, consequently, X cannot be embedded into the
positive cone of a lattice ordered group.

x]0 12 3
0{0000

11000 ) 2
212101

313110 0

ExAMPLE 2.4. The example Bs_5_7 from [MeJu], where * is given by the
table, gives a commutative BCK-algebra which has the relative cancellation
property but which is not directed upwards.

0123 4
000000 2 3
1|l10101

2122020 1
331303

4044240 5

THEOREM 2.5. Let (X; *,0) be a commutative BCK-algebra having the rela-
tive cancellation property. Define a partial binary operation + with the do-
main S = {(a,b) € X x X : there exists c € X withc > b and a = cxb}, and
we definec=a+bifc>b, anda = cx*b. Then, for all a,b,c € X, we have

(I) a+0, 0+ a ezist for anya € X, anda+0=a=0+a.
(IT) a + b exists if and only if b+ a ezists, and then a + b = b+ a (the
commutativity).
(IIT) a+b and (a+b)+c exist in X if and only if b+c and a+ (b+c) exist
in X, and in this case (a +b) + ¢ = a + (b+ c) (the associativity).



Commutative BCK-algebras 231

(IV) If a+ b ezists in X and if a1 < a, by < b, then ay + by exists in X,
anda; +b; <a+b
(V) a =1b holds whenever u+a = u+b for some u € X (the cancellation
property).
(VI) Ifa+b<a+b then b <b'. Conversely, ifb <V and a+ b exists in
X, thena+b<a+V¥.
(VII) Ifa+ ¢ and b+ ¢ ezist in X, then (a A b) + ¢ ezists in X, and

(2.4) (a+c)A(b+c)=(anb)+c
(VIII) Let u > z,y. Then z V y exists in X, and

(2.5) (zVy)xy=zx(zANy)=2x*y,
and (z*(zANy))+y, (x*y)+y exist in X, and

(2.6) gVy=(z*(zAhy))+y=(z*xy)+y.

Proof. The relative cancellation property entails that the partial binary
operation + is defined correctly.

(I) and (II) are evident. To prove prove (III) suppose that a + b and
(a + b) + c exist in X. Then there exist z,y € X such that a < z and
zxa=ba+b=z<yandyxz=y*x(a+bd) =c

Sincec=y*z <yxaand (y*a)*xc= (yxa)*(y*z) = [y*(y*z)]*a =
zxa=>b,thenb+ce X andb+c=y=*a.

From a < y and y*a = b+, it follows (a+ (b+c)) € X and a+(b+c¢) =
y=(a+b)+ec

(IV) There are z,y in X such that a; + * = a and b; + y = b. Using
commutativity and associativity, we have a + b = (a1 + z) + (b1 + y) =
(a1 + b1) + (z + y) which entails the assertion.

- (V) It follows easily from definition of the relative cancellation property.

(VI) There exists ¢ € X such that (a+b)+ ¢ = a+b'. Using associativity
and commutativity of +, we have a+ (b+c¢) = a+b and (b+c)+a = b +a,
so that b+ ¢ = b’ and, consequently, b < b’. The second part follows from
(IV). :

(VII) Since a + ¢ > c and b+ ¢ > ¢, we have (a +¢) A (b+¢) > ¢. Then
using property (b), we have

((atc)A(bt+c))xc=((a+c)*((a+c)x(b+c)))xc=ax((a+c)*(b+c)).
Calculate
axb=((a+c)*xc)*((b+c)*xc) < (a+c)*(b+c),
when we have used property (c) of BCK-algebras, so that
ax((a+c)x(b+c) <ax(a*xb)=aAbd.
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Hence,
(2.7) ((a+c)A(b+c))*xc<aAb.

Since a > a A b and a + ¢ exists in X, we have by (IV) that (a Ab) + ¢
exists in X. It is clear that a+ ¢ > (aAb)+c and b+c > (a Ab) +¢, so that
(a+c)A(b+c) > (anb)+g,
((a+e)A(b+c))*xc>((aAb)+c)*c,

((a+c)A(b+c))*c>aAnd,
which in view of (2.7) entails ((a+¢) A(b+c¢)) *c = aAb, and, consequently,
we have (2.4).
(VII) Due to (1.1), we have z * (z Ay) = z * y. Using Theorem 2.1 (ii),
definition (2.1), and the basic properties (b), (1.1) and (1.2), we have
(zVy)xy=(u*x((uxz)A(u*xy))*y
=(u*y) * ((u*rz) A(uxy))
=(uxy)*x(uxz)=(u*x(u*xz))*xy=2zx*xy,
which proves (2.5) and, consequently, (2.6). Q.ED.
In the paper [DvGr, Thm 3.4], we have proved that any upwards directed
commutative BCK-algebra has the relative cancellation property, and it can
be converted via Theorem 2.5 into a commutative minimal clan. Motivated
by this, we call the structure (X; +, *,0) the BCK-clan, where + is derived

from Theorem 2.5, supposing that (X;*,0) is a commutative BCK-algebra
having relative cancellation property.

EXAMPLE 2.6. Let G = (G; +, <, 0) be a lattice ordered group and let G :=
{z € G : z > 0} be its positive cone. Define a total binary operation *g on
Gt via

(2.8) zxgy:=(z—-y) Vo0,
for all z,y € G*. Then
(2.9) zrgy=z—(zAy)=(zVy)-y, z,y€CT,

and (G*;*¢,0) is an upwards directed commutative BCK-algebra having
the relative cancellation property.

Let G be a non-void subset of GT such that z,y € Gy entail zxgy € Go.
Then (Go; *g, 0) is a commutative BCK-subalgebra of (G1; x¢, 0) having the
relative cancellation property, which is a lower semilattice.

Our aim is to prove that some commutative BCK-algebras having rela-
tive cancellation property can be embedded onto some (Gy;*¢, 0) of some
lattice ordered group (G; +, <,0) with Gp C G*.
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3. BCK-algebras and the Riesz decomposition property

A poset (X; <) has the interpolation property (or simply has interpola-
tion), iff z,y,p,q € X with z,y < p,q imply that there exists z € X with
z,y < 2 £ p,q. A BCK-clan (X; +, *,0) has the Riesz decomposition prop-
erty iff a,b,z € X with £ < a + b imply that there exist a;,b; € X with
alga,blgbandzzal-i-bl.

It is evident that any commutative BCK-algebra (X; *,0) has interpola-
tion. Indeed, let z,y < p,q then z,y < pAqg <p,q.
EXAMPLE 3.1. Let Q # 0 and let A, B be two non-void disjoint subsets of (2.
Define E:= {X CQ: X C Aor X C B}. Then (E;, ), where * is the set-
theoretical difference, is a commutative BCK-algebra having relative can-
cellation property which is not directed upwards. The BCK-clan (E; +, \, 0)
is not a minimal clan but it has the Riesz decomposition property.

Similarly, it is possible to show, (see e.g. [Wyl, Thm 5.9]) that any
commutative clan has the Riesz decomposition property, consequently, any
BCK-clan (X;+,*,0) has it whenever X is directed upwards; this follows
also from a more general proposition:

THEOREM 3.2. Let (X;*,0) be a commutative BCK-algebra having the rel-
ative cancellation property. Then the BCK-clan (X;+,*,0) has the Riesz
decomposition property.

Proof. Suppose that ¢ < a + b, and define u :=a+band X, :=={z € X :
z < u}. Put now v = c*(bAc) and a; = a Av, so that a; < a. On the other
hand, c*v = b A ¢ and if we put by = ¢ * a;, then aj, b; are defined in X,
and, moreover, a; + b; = c.

We must show that b; < b. Applying (2.6) and (2.4), we obtain

aat+tbh=c<(a+bA(bVe)
=(a+b)Allc*x(bAc))+b]
=(a+b)A(v+0b)
=(aAv)+b=a;+},
and thus by (VI), b, < b. QED.

LEMMA 3.3. Let, for ay,as,b1,b2 € X, we have a; + a2 = by + bo, where
(X;+,*,0) is a BCK-clan. Then there are c11,c¢12,¢C21,¢22 € X such that

a; = c11 + C12, by = c11 + c21,
az = c21 + €22, bs = c12 + ¢22.

Proof. Since a; < b; +bg, due to Theorem 3.2, we have that a; = ¢1; + 12,
where ¢11 < by and ¢12 < bs. Then there are ¢21, ¢22 € X such that c;1+¢91 =
b1 and ¢15 + ca2 = bs.
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Calculate (c11 + c12) + a2 = (c11 + ¢21) + (€12 + ¢22). Using associativity
and cancellation (V), we have ay = ca1 + ¢22. Q.E.D.

4. Construction of a derived semigroup

Throughout this section we shall suppose that X = (X;+,%,0) is a
BCK-clan derived from a commutative BCK-algebra (X; *,0) which has the
relative cancellation property. The aim of this section is a construction of
an ordered Abelian semigroup in that X can be embedded preserving * and
+; that will be possible, for instance, if X is directed upwards.

We shall follow ideas of Wyler [Wyl] who used Baer’s approach [Bae].

We define [X] := [Jo_, X™. An element A = (z1,...,z,) € [X] is said
to be a word with entries (letters) zi,...,z, from the alphabet X, and n is
the length of the word A. Two words (z1,...,z,) and (y1,...,ym) are the
same if n = m and z; = y; for any ¢ with 1 < i < n. :

[X] can be organized into an additive semigroup via

(mla"-,xn)'i"(yl’"'aym) = (xly-“axnayla"'aym)a

where (z1,...,2,), (¥1,.-.,Ym) € [X].

We call two words A + (a,b) + B and A + (c) + B, where A, B € [X]
and a,b,c € X, directly similar if a + b = ¢. Here A or B or both may
be the empty words. For A,B € [X], we write A ~ B iff A and B are
directly similar. Then (i) A ~ A, and (ii) if A ~ B, then B ~ A. Let =
be the transitive closure of ~, i.e., A ~ B iff there is a finitely many words
Ay,...,A, € [X]such that A=A; ~Ay~.--~ A, =B.

Then ~ is a congruence relation. Indeed, suppose that A ~ B and C ~
D. Without loss of generality we can assume that there are two sequences
of words A;,...,A, and Cy,...,C,, with n = m such that A = A; ~ A; ~

e~Ap,=BandC=C;~Cy~--~Cp=D.Then A+ C=A+C; ~
A+Cy~ -~ A+Cr=A+D~ A1+D ~Ay+D ~ ...~ A,+D = B+D.

Denote by S(X) the quotient semigroup [X]/ ~~; we call it a derived
semigroup of a BCK-algebra (X *,0). Given a word A € [X], we denote by
[4] the corresponding equivalence class in S(X) given by A. Hence [(0)] is
the neutral element of S(X), and if (ay,...,a,) € [X], we have

(a1y...,an) = (a1) +--- + (an),

so that
(4.1) [(a1,..-,an)] = [(a1)] + - - + [(an)].
According to Baer [Bae], given a word (ai,...,an), inductively define a

subset of X, S(ai,...,an), as follows: (i) if n = 1, define S(a1) = {a1}, (ii)
if n > 1, then a € S(ay,...,a,) iff there exist an integer 7 and b,c € X with
1<i<n-1,be 8(ay,...,ai), c € S(ai+1,...,a,) such that a = b+ c.
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LEMMA 4.1. Let (X;+,*,0) be a BCK-clan.

(i) Ifa € S(a1,...,an), where n > 1, then there ecists an integer ¢ with
1 <i < n such that a; +a;41 ezists in X and a € S(aa,...,qi—1,a; +
Qit1,Ai42,--- an)

(i) If1<i<mn,n>1, and if a; + a;4+1 exists in X, then S(aq,...,0i-1,
a; +a;41,8i42, .- an) - S(al, .. an)

(iii) Ifa1 +---+an =aq, thenaES(al, ey Qp).
(iv) If S(ay,...,an) # O, then a := a1 + -+ + a, ezists in X, and
S(ai1,...,a,) = {a}. '

(v) For any word A € [X] we have |S(4)| < 1; and if (a1,...,an) ~
(b1,...,bny1) and S(a1,...,a,) # 0, then S(by, ... ,bny1) # 0.

(vi) If (a1,-.-,an) ~ (b1,...,bns1) and S(ay,...,a,) # 0, then S(ay, ...
.,an) =S(b1,.. bn+1)

Proof. (i) Let n = 2. If a € S(ay,az), then a = a} + a5, where a} € S(a1),
a4 € S(az), and by definition, a; = af, az = a}, consequently a € S(a; +a3).
Let now n = 3 and a € S(a1,az2,a3). Then there are b,c € X witha=b+c¢
such that either b € S(a1) and ¢ € S(az,a3) or b € S(a1,a2) and ¢ € S(as).
In the first case, by induction step for n = 2, we have ¢ € S(az + as),
consequently, a € S(a1, a2 + a3). Similarly for the second case. The general
case of n follows from complete induction.

(ii) Let n = 2 and let a; + a3 exist in X. Then a; +as € S(a1,asz). Since
S(a1+az) = {a1 + a2}, we conclude S(ay +az2) C S(a1,az). Let now n = 3.
Suppose, for example, a; + a3 exists in X and let a € S(a; + a2,a3). Then
a = b+ ¢, where b € §(a1 + a2) C S(a1,a2) (in view of induction step for
n = 2) and ¢ € S(a3). Hence a = (a1 + a2) + a3 € S(a1,az,as3). Similarly
we exhibit the second possibility. The rest of this proof uses the complete
induction and the associativity of +.

(iii) Let A = (@1,...,8,). If n = 1, we have a = a; and a; € S(4) =
{a1}, so that a € S(a1). If n = 2, then a = a} +a), where a} € S(a1) = {a1}
and aj € S(az) = {az}. Therefore, a = a; +az € S(a1, az). The general case
of n can be proved by complete induction.

(iv) If n = 1, the statement holds. Let now n = 2, then there exists
a € 8(a1,az2) such that a = a; + az, which proves S(a;,az) = {a1 +az}. Let
now n = 3 and suppose a € S(a1,a2,a3). Then a = by + be, where either
by € S(a1) and by € S(az,a3), or by € S(a1,az2) and by € S(asz). In the first
case we have S(a1) = {a1} = {b1} and b, = ag + a3. Using associativity of
+, we have a = a; + a2 + a3 and S(a;,as,a3) = {a}. In analogical way we
proceed in the second case.

Similarly we obtain the general case of n by complete induction.

(v) Due to (iii) and (iv) either S(4) =0 or |S(A4)| = 1.
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Let n = 1, then a = a; = by + bs, so that a € S(by,b2). Let n = 2. By
(iv), @ = a1 + ay exists in X, and either a; = b; + b, and ay = b3 or a; = b;
and ap = by + bs. For the first case we have a; € S(b1,b2) and as € S(bs3),
so that a = a1 +as € S(bl,bg,b;;) 7é 0.

For the second case we have a; € §(b1) and a2 € S(b2,b3). Using again
(iv), we have a = a3 + a2 = by + bz + bz € S(b1, b2, b3). The general case of
n follows from complete induction.

(vi) It follows from (v) and (iii), (iv). Q.ED.

LEMMA 4.2. Let (X;++,*,0) be a BCK-clan. Then (i) (a1,...,an) ~ (b) if
and only if a1 + - -+ + an ezists in X and equals b; (ii) i [(a)] = [(b)] then
a=>b

Proof. It follows from (v) Lemma 4.1 and the results of Baer [Bae, (iv),

(v) Thm 1.1] (compare also [Wyl]). Q.ED.
LEMMA 4.3. Let a and b from X have an upper bound in X. Then
(4.2) [(@)} + [(®)] = [(B)] + [(a)]-

In particular, if X is directed upwards, then S(X) is a commutative semi-
group.

Proof. Let u € X be an upper bound of a and b. Then due to (ii) Theorem
2.1, a V b exists in X . Using (2.5) and (2.6), we have

(a,b) ~(aAbyax*(aAb),b)=(aAb,(aVb)*b,b)
~(aNnbaVvd)~(aAb(aVb)*a,a)
=(aAbbx(aAb),a)~ (ba)

The second assertion follows from (4.1) and (4.2). Q.E.D.
LEMMA 4.4. Let, for A,B € [X], we have [A] + [B] = [(0)]. Then [A] =
[(0)] = [B].

Proof. It follows easily from Lemma 4.2(i). Q.E.D.

We note that if X is not directed upwards, then (4.2) can fail. Indeed,
take X from Example 2.4. Then the partial binary operation + is given
by the table below, and here we have [(1)] + [(2)] = [(1,2)] # [(2,1)] =

[(2)] + [()]-

+ (01234
001234
113

2 (2 4

3 |3

4 (4
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The following result was proved originally by Wyler [Wyl, Thm 5.4]
for commutative clans. His proof works also in our case because it does not
depend on the existence of suprema in X, and therefore, the proof is omitted
(see also Ravindran [Rav] for a special case of X).

LEMMA 4.5. Let A,B,W € [X] such that [A] + [B] = [W]. Then there are
elements ci,c! € X, fori =1,...,k, such that W = (¢} +¢f,..., ¢, +¢}),
and A~ (c},...,¢), B~ (c,...,c}).

If we assume that X is directed upwards, then we can say more about
the derived semigroup S(X).

THEOREM 4.6. Let (X; +;*,0) be an upwards directed BCK-clan. Then, for
all A, B,C € [X], we have

(i) [A]+[B] = [B] + [A].

(ii) If [A] + [B] = [A] + [C), then [B] = [C].

(i) <x, where [A] <x [B] if and only if there is an C € [X]| such that
[A] + [C] = [B], is a partial order on S(X).

(iv) [(@)] A[(B)] = [(a A D)], a,b € X.

(v) (S(X);+,<x,[(0)]) is an Abelian partially ordered semigroup which
1s a lower semilattice and it is the generating positive cone of a lattice
ordered group G(X).

(vi) A mapping h: X — G(X) defined via

h(a) := [(a)], a € X,

is injective and preserving A, and +-.

(vii) The couple (G(X),h) has the universal property, i.e., if g : X —
G1 is an order and + preserving mapping into a partially ordered
Abelian group Gi, then g = g’ o h for a uniquely determined group
homomorphism of ordered Abelian groups ¢’ : G(X) — Gi.

(viil) If X is bounded with the greatest element 1 € X, then h(1) is a strong
unit in G(X) and h maps X onto the order interval [[(0)],[(1)]] :=
{9 € G(X):[(0)] <x g <x [(D]}2

(ix) If g € G(X), 0 < g < h(z) for some z € X, then there ezists a unique

y € X such that y < z and h(y) = g.

Proof. This result has been proved in [DvGr, Thm 3.5] using Wyler’s ideas
[Wyl], or it can follow ideas from this section. Q.E.D.

REMARK 4.7. We recall that if, for the derived group S(X), (4.2) holds,
then S(X) is the positive generating cone of a lattice ordered group G(X)

2In this case, a commutative BCK-algebra X can be converted by a natural way into

an MV-algebra and conversely, and (viii) gives Mundici’s famous representation theorem
of MV-algebras [Mun].
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as it is indicated in Theorem 4.6. Unfortunately, that is not a general case,
and we do not know other conditions as upwards directness guaranteeing
(4.2). Hence, we have to look for other ways for representing commutative
BCK-algebras via lattice ordered groups. Such possibilities will be done in
Sections 5 and 6.

The lattice ordered group G(X) from the proof of the last theorem is
said to be the derived group of (X;+, *,0).

5. Union BCK-algebras

In this section, we introduce a family of commutative BCK-algebras
which can be embedded into the positive cones of lattice ordered groups.

Let {(X;;*;,0;)}icr be a system of BCK-algebras such that (i) 0; = 0
for any i € I; and (ii) X; N X; = {0} for i # j, 4,5 € I. Put X = J;o; Xi
and define a total binary operation * on X via

ray = {:z:*,-y ifr,ye X;, 1 €1,
T if:L‘GXi,yEXj,’L‘#j,i,jEI.
Then (X; *,0) is a BCK-algebra called a union BCK-algebra, and we denote
X = €P,c; Xi. A union BCK-algebra is commutative iff each X; is commu-
tative. It is clear that any BCK-algebra X = @ie 7 Xi, where X; = X and
|Il = 1. Moreover, any X; is a BCK-subalgebra of X = €p,.; X, and if
u € X;, then
Xy ={zeX:z<u} CX,.

Conversely, let {X;}:cs be a family of subsets of a BCK-algebra (X; *,0)

such that

(a) X = Ujer X

(c) v € X; implies X,, C X,
then each X; is a BCK-subalgebra of X, and X is the union BCK-algebra
of {Xi },’e I

More about union BCK-algebras is in [MeJu].

We recall that if X = @i el X; and there are two different subalgebras X;
and X; having at least two elements, then X does not satisfy the condition
(S).® Indeed, if @ € X; and b € X are non-zero elements, then a xa < b
and b*a < b but there is no element ¢ € X such that a < cand b < c.

3 A BCK-algebra (X; +,0) satisfies condition (S) if given elements a,b € X there is an
element a o b € X such that (i) (aob)*a < b, and (ii) if z xa < b then £ < aob. Then
(X;0,0,<) is a commutative po-semigroup [MeJu, ThmI.7.7]. Since a < aob and b < aob,
(X; *,0) is directed upwards and by [DvGr], X can be embedded into the positive cone of
some lattice ordered group.
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We say that a BCK-algebra (X;*,0) has a u.d. union property if X
can be expressed as X = @ie ; Xi, where each X; is directed upwards. A
BCK-clan (X;+, *,0) has a u.d. union property if (X;*,0) has it.

Since {0} is trivially an upwards directed BCK-subalgebra of X, using
Zorn’s lemma we conclude that in any BCK-algebra X there is a maximal
upwards directed BCK-subalgebra of X.

Any BCK-algebra with u.d. union property has a unique decomposition
X = @, Xi, where all X; are directed upwards:

LEMMA 5.1. Let X = @,; X;, where each X; is directed upwards. Then, if
X = ®j€ 7 Y;, where each Y; is directed upwards, for any i € I, there is a
unique § € J such that X; =Y, and conversely.

Proof. Let u € X; be non-zero. Then there is a unique Y; such that u € Y;.
Hence, X, C X; and X, C Y;. Let now v be an arbitrary element of X;.
There is an element w € X; which as an upper bound of u and v, i.e.,
u,v < w. Then v € X,, C X; and since u € Y}, we conclude that X,, C Y},
so that X; C Y;. By symmetrical reasoning we can show that Y; C X;.
Q.E.D.

We recall that Example 2.4 gives a BCK-algebra and a BCK-clan which
have u.d. union property, while the following example not.

EXAMPLE 5.2. The example Bs_»_g from [MeJu|, where * is given by the
table below, gives a commutative BCK-algebra which has not u.d. union
property because 1 < 3,4 while 3 and 4 has no upper bound in it.

(01234
000000 3 4
1110100

212200 2 1 2
3132102

4041410 :

LEMMA 5.3. (i) Any commutative BCK-algebra with the u.d. union property
has relative cancellation property.

(ii) If X = @;c; Xi is a commutative BCK-algebra, then, for z € X;
and y € X;, wherex # 0 # y and i # j, x + y does not exist in X. In
general, if u + v exists in X, then u and v belong to the same subalgebra
X;.

Proof. (i) Suppose that a < z,y and £ xa = y x a. If a = 0, then trivially
z = y. If a # 0, then a € X, N X, so that there is a unique X; in X =
;< Xi such that z,y € X;. Applying Lemma 2.2, we see that z = y.
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(ii) This part follows from an observation that if z +y exists in X, then
z,y <z +y so that z,y € X;4,, which means that z and y have to belong
to the same subalgebra. Q.E.D.

LEMMA 5.4. Let X = @,.; X; and let (X;+,%,0) be a BCK-algebra having

the u.d. union property. Let all elements of (a1, ..., ay,) belong to a fized X,

s€l If(a1,...,an) ~ (b1,...,bm), then all elements b;’s belong to X;.
If[(a1,...,a,)] = [(b1,...,bm)], then allbj € X, forj=1,...,m.

Proof. Let (aj,...,a,) be directly similar with (b;,...,b,). Then either
some a; = a’ +a” and b; = @, bi;.1 = a” and ax = by for 1 < k < ¢ and
ax = bpyy for i <k < n, or bj = a; + a;+1 and other elements coordinately
coincide. In the first case b;, b;+1 < a; so that b;,b;41 € X, and similarly in
the second one.

The rest of Lemma is now evident. Q.E.D.

We now present the main result, a representation theorem for commuta-
tive BCK-algebras having u.d. union property, which converts in some sense
Example 2.6.

THEOREM 5.5. Let (X;*,0) be a commutative BCK-algebra with the u.d.
union property. Then there is a lattice ordered group (G;+,<,0) with the
positive generating cone Gt and a subset Gy of Gt generating G*, which is
a lower semilattice closed under xg, such that X can be injectively embedded
onto Go with an embedding h satisfying

(5.1) h(a + b) = h(a) + h(b)
whenever a + b exists in X, and

(5.2) h(z *xy) = h(z) *c h(y) := h(z) — (h(z) A h(y)), =,y € X.

Proof. (i) Suppose X = P, X;, where each X; is an upwards directed
BCK-subalgebra. Since this decomposition is due to Lemma 5.1 unique and
by Lemma 54, (a1,...,an) =~ (b1,...,bn) with entries ax € X; for any
1 < k < n, we can construct the derived semigroups S(X;) for each X; such
that S(X;) C S(X) for any ¢ with S(X;)NS(X;) = {[0]} for i # j. According
to Theorem 4.6, for each ¢, the derived group G; := G(X;) is a lattice derived
group and a mapping h; : X; — G; is an embedding preserving + and the
order in X;.

Define the direct sum G of the system of groups {G(X;)}i, G = G(X) =
@, G(X;). That is, G(X) is the subset of the product []; G(X;) consisting
of all elements (w;);, where w; € X;, with finitely many non-zero w;’s, and
the addition and the ordering are by coordinates. In addition, G(X) is a
lattice ordered group.
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The mapping h : X — G defined via h(a) := (b;);, where b; = [(a)] if
a € X; and b; = [(0)] if a € X, is an injection.

(ii) It is possible to show that h(a) < h(b) in G iff @ < b in X, and
h(0) = [(0)]. Indeed, let a < b in X. Since a € X := {z € X : ¢ < b},
both a and b belong to the same subalgebra X; of X, so that h(a) < h(b).
Conversely, let h(a) < h(b) in G. By definition of h, both a and b belong
to the same subalgebra X;, and using (iv) Theorem 4.6, we conclude that
hi(a) < h;(b), so that, a < b.

(iii) Let now c =a A b, a,b € X. Then ¢ € X, N X,. If a and b belong to
the same subalgebra, say X, then by (iv) Theorem 4.6, h;(c) = h;(a) Ah;(b),
so that h(c) = h(a) A h(b). If a and b belong to different subalgebras, say X;
and X, then ¢ = 0 and by definition of h, h(a) A h(b) = [(0)] = h(c).

(iv) Equation (5.1) is a consequence of (ii) Lemma 5.3.

Let now z and y be arbitrary elements of X. Due to (5.1), we have

h(z * (z Ay)) = h(z) — h(z Ay) = h(z) — (h(z) A h(y))-
On the other hand, we have z xy = z * (y A z) = = * (z A y) which proves
(5.2) and finishes the proof. Q.E.D.

We say that a partially ordered Abelian group (G;+, <,0) with a map-
ping h : X — G7 is a universal group for a BCK-clan (X;+,*,0) if (i)
the positive cone G* is generating for G; (ii) h(X) generates G™*; (iii)
h(z + y) = h(z) + h(y) whenever z + y exists in X, z,y € X, and (iv)
for any partially ordered Abelian group G; and any order and + preserving
mapping g : X — G there is a group homomorphism of ordered groups

" G — G such that ¢ = ¢’ o h. The universal group, if it exists, is
unique up to isomorphism, and ¢’ from (iv) is a unique group homomor-
phism of ordered semigroups with that property. We denote the universal
group G = (G, h).

THEOREM 5.6. Under the conditions of Theorem 5.5, the group G(X) and
the embedding h from the proof of Theorem 5.5 has the universal property
for (X;+,%,0), and (G(X), h) is a universal group for (X;+,*).

Proof. Let g be a mapping from X into a partially ordered Abelian group
G preserving + and the order in X. Then the restriction g; : X; —» Gy of ¢
onto X; preserves + and the order in X;, and due to (vii) of Theorem 4.6,
there is a unique group homomorphism of ordered semigroups g; : G;(X) —
G, such that g; = gg o h;. Define ¢’ : G — G, via

(5.3) "((w;)s) Z gi(w;), : € G(X).

Since in any (w;); there are only finitely many non-zero elements
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w; € G(X;), the sum on the right-hand side of (5.3) is defined well, and
g’ is a group homomorphism of ordered groups from G = G(X) into G;.

Take a € X. If a = 0, then ¢'(h(0)) = ¢'({(0)]) = 0 = ¢(0). If a # O, then
there is a unique subalgebra X; containing a. Then g'(h(a)) = gi(hi(a)) =
6:(a) = g(a).

The uniqueness of g’ is now clear because if ¢/ : G(X) — G, is a
group homomorphism such that g”(h(a)) = g(a), a € X, then for a € X;,
gi(a) = g(a) = g"(h(a)) = g"(:--,[(0)],- - -, [(0)], hi(a), [(O)], - -- [(O)],- - ) =
g'(hi(a)). The definition of G(X) = @, G(X;) gives ¢’ = g".

The last statement follows from the construction of derived semigroups
and derived groups. Q.E.D.

The following example shows that there is a commutative BCK-algebra
which can be embedded into a lattice ordered group but not via Theorem 5.5.

ExaMPLE 5.7. Let Q = {1,2,3,4}, and X = {0, {1}, {2}, {3}, {1,2},{2,3}}.
Then (X;\,0), where \ is the set-theoretical difference, is a commutative
BCK-algebra having the relative cancellation property but not the u.d. union
property. Therefore, for its embedding into a lattice ordered group we cannot
use Theorem 5.5, but it can be embedded into a lattice ordered group,
because it can be embedded into the Boolean algebra 29, and 2 into a
lattice ordered group.

We recall that Example 5.7 is a special case of a positively implica-
tive commutative BCK-algebra, i.e., X satisfies z x y = (z * y) x y for all
z,y € X. Such algebras are so-called implicative BCK-algebras. In this case
(see [DvGr, Thm 6.7] and a discussion to this theorem, and [MeJu, Thm
VIIL.2.7]), it was proved that X can be embedded into a Boolean algebra of
subsets, and consequently, into a lattice ordered group.

REMARK 5.8. Let a BCK-clan (X; +,*,0) be isomorphic under an isomor-
phism h with a BCK-subclan (Go; +, *, 0) of the BCK-clan (Gt; +, *¢, 0)
of some lattice ordered group G such that (G, h) is a universal group for X.
Hence, if (G1, h1) is any universal group for X, then h; is injective.

REMARK 5.9. Let Z be the group of all integers with the usual addition and
the order. It is worth to recall that

(i) Example 2.3 cannot be embedded into any lattice ordered group.
(ii) Example 2.4 has a universal group (Z2%,h), where h(0) = (0,0),
h(l) = (110)’ h(2) = (0’1)’ h(3) = (2,0), h(4) = (0, 2)'
(iii) Example 5.2 has a universal group (Z2,h), where h(0) = (0,0),
h(1) = (0,1), h(2) = (1,0), h(3) = (1,1), h(4) = (0,2).
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(iv) Example 5.7 has a universal group (Z3,h), where h(@) = (0,0,0),

h({1}) = (1,0,0), h({2}) = (0,1,0), R({3}) = (0,0,1), h({1,2}) =
(1,1,0), h({2,3}) = (0,1,1).

6. Unitarily extendible BCK-algebras

In the present section, we introduce another class of commutative BCK-
algebras, which can be embedded into lattice ordered groups.

According to Hoo, [Hoo], a commutative BCK-algebra (X *,0) is said
to be unitarily extendible if, for e € X, we can extend the commutative
BCK-algebra structure on X to the commutative BCK-algebra structure
on X U {e} with e as the greatest element in X U {e}. It is clear that any
non-zero BCK-algebra is unitarily extendible. Hoo proved the following two
important statements:

THEOREM 6.1. (i) 4 non-zero commutative BCK-algebra (X; *,0) is unitar-
ily extendible if and only if there is a function f : X \ {0} — X \ {0} such
that f(f(z)) =z and z * f(y) =y * f(z) for all z,y € X \ {0}.4

(ii) A bounded commutative BCK-algebra (X; *,0) is unitarily extendible
if and only if there exists an element g € X \ {0} such that zo < z for all
z € X\ {0}.

We note that Example 2.3 is a case of a commutative BCK-algebra which
is not unitarily extendible; Example 2.4 is a case of a BCK-algebra having
u.d. union property but it is not unitarily extendible. Similarly, the set of
all nonnegative integers N = {0,1,2,...} ordered by the natural way can
be converted into a commutative BCK-algebra only in one way: n * m :=
max{0,n — m}, n,m € N, in this case it has a linear structure and it can
be embedded into the lattice ordered group of all integers, but N is not
unitarily extendible.

EXAMPLE 6.2. Let X = {0,{1},{2},{3},{L2},{2,3},{1,3}}. Then
(X;\,0), where \ is the set-theoretical difference, is a commutative BCK-
algebra which has no u.d. union property, but X is unitarily extendible.

The proofs of the following three examples follow from [Dvu, Exs 3.2-3.4],
Theorem 6.1, and the definition of unitarily extendible BCK-algebras.

EXAMPLE 6.3. Let X = [0,1) be the interval of real numbers ordered by the
natural way. Let g : [0,1) — [0,00) be an increasing, continuous function
with g(0) = 0. Define a total binary operation *, on X via

(6.1) z *gy = g~ (max{0, g(z) — g(¥)}), = y€EX.

4We recall that in this case e x z = f(z) for each z € X \ {0}.
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Then ([0,1);*4,0) is a commutative BCK-algebra with the natural order.
Conversely, if ([0,1);*,0) is a commutative BCK-algebra with the natural
order, then there is an increasing, continuous function g : [0,1) — [0, 00)
with g(0) = O such that * = %4, where *, is defined via (6.1). Moreover,
([0,1); g, 0) is unitarily extendible if and only if ¢ is bounded; in this case the
function f from Theorem 6.1 is defined via f(z) = g(17) — g(z), z € (0,1),
and ([0, 1); *4,0) is isomorphic with ([0, 1); *iq;, ,,,0)-

EXAMPLE 6.4. Let X = [0,00) be the interval of real numbers ordered by
the natural way. Then ([0, 00); *,0) is a commutative BCK-algebra with the
natural order if and only if there exists an increasing, continuous function
g : [0,00) — [0,00) with g(0) = 0 such that * = *,, where *, is defined via
(6.1). ([0, 00); %4, 0) is unitarily extendible if and only if g is bounded. In this
case, ([0, 00); *4,0) is isomorphic with ([0, 1); *i4, ,,,,0), and the function f
from Theorem 6.1 is defined via f(z) = g(4+o0) — g(z), = € (0, 0).

EXAMPLE 6.5. Let X = [0,1] be the interval of real numbers ordered by
the natural way. Then ([0, 1]; *,0) is a commutative BCK-algebra with the
natural order if and only if there exists an increasing, continuous function
g :[0,1] — [0,1] with g(0) = 0 and g(1) = 1 such that * = *4, where
*g is defined via (6.1). Any ([0, 1];%4,0) is bounded and isomorphic with
([0, 1]; %44 , 0). Moreover, ([0, 1]; %4, 0) is not unitarily extendible.

THEOREM 6.6. Let X = @,.; X; be a union BCK-algebra, where each X;
is either directed upwards or a non-zero and unitarily extendible commu-
tative BCK-subalgebra of X. Then X can be converted into a BCK-clan
(X;+,%,0), and there is a lattice ordered group (G;+,<,0) with the posi-
tive generating cone Gt and a lower semilattice Gy of G, which generates
G*, such that X can be embedded onto Gy with an injective embedding h
satisfying (5.1) and (5.2).

Proof. Let X = P, ; X; satisfy the conditions of Theorem. Then X has a
relative cancellation property, and (X; +, *,0) is a well-defined BCK-clan.

For any i € I, let X; := X if X; is directed upwards and X; := X; U {e;}
when X; is only unitarily extendible, where e; is the greatest element in
X; U {e;}. Without loss of generality we can assume that all e; are diverse.
Define the commutative union BCK-algebra X = ®ie 7 ).(i. According to
Theorems 5.5 and 5.6, there exists a universal group (G, h) for (X' i+, *,0)
satisfying (5.1) and (5.2), so that h is an embedding of X preserving + and
the order in X. Consequently, the restriction ho of h onto X also satisfies
(5.1) and (5.2), respectively.

We know that h(X) generates the positive cone G of G. We show that
also h(X) generates G*. Take g € G*. Then g = > h(z:) + 3_; h(ej),
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z; € X;, where the sums 3, and }, are both over finite (also empty) sets

of indices. For any e; € X there are two non-zero elements :n],x;' € X;
such that e; = z; +z7, where the sum is in X, hence h(e;) = h(z z)+h(z}).
This means that any element g € Gt can be expressed as a finite sum of

elements from h(X). Q.E.D.

THEOREM 6.7. Under the conditions of Theorem 6.6, (X;+,*,0) possesses
a lattice ordered universal group.

Proof. Take the lattice ordered group G and the embedding A from X into
G which have been used in the proof of Theorem 6.6. Let hg be the restriction
of h onto X. We claim that (G; hg) is a universal group for (X;+, *,0) in
question. For that it is necessary to verify only the condition (iv) of universal
groups.

So let G; be an ordered Abelian group and let g : X — G; be a mapping
preserving + and the order in X. We extend g to § : X — G; which will pre-
serve order and all existing sums in X. Suppose that X; = X;U{e;}, where
e; ¢ X; and e; is the greatest element in X Take two non-zero vectors
z1,y1 € X;. Then z3 :=e; %1, y1:=e;*xy; € X;\{0,} and z1 + 23 =¢; =
y1 +y2 in X;. We assert that g(z1) + g(z2) = g(y1) + 9(y2). Indeed, accord-
ing to Lemma 3.3, there are four elements ¢y1,¢12,¢21,C22 € Xi such that
Ty = c11 + C12, T3 = C21 + €22, Y1 = €11 + €21, Y2 = C12 + C22. It is clear that
€11, €12, €21, C22 € X; and all sums in the last four equalities exist also in X;.

Calculate

g(z1) + g(z2) = glc11 + c12) + g(ca1 + c22)
= g(c11) + g(c12) + g(ea1) + g(caz)
= g(c11) + g(c21) + g(c12) + g(ca2)
= g(en1 + c2a1) + g(er2 + c22) = g(y1) + 9(v2)-

Then § : X — G, defined via g(z) := g(z) if ¢ € X, and §(e;) =
9(z1)+g(z2), if z1+22 = €;, 21,22 € X;\{0}, preserves order and sums in X.
Due to Theorem 5.6, (G, k) is a universal group for (X;+, *,0), so that there
exists a unique group homomorphism of ordered semigroups ¢’ : G — G;
such that § = ¢’ o h. Consequently, g = ¢’ o hg, and ¢’ is a unique group

homomorphism of ordered semigroups satisfying the equation g = g’ o hg.
Q.E.D.

REMARK 6.8. We recall that Example 5.2 gives a unitarily extendible BCK-
algebra which has not u.d. union property. Indeed, the function f : X\ {0} —
X \ {0} in question can be chosen as follows: f(4) = 2, f(3) = 1, f(2) =
4, f(1) = 3. According to Theorem 6.7, it has a universal group which is a
lattice ordered one, namely Z2, as it has been shown in (iii) of Remark 5.9.
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