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ON REPRESENTATIONS OF COMMUTATIVE 
BCK-ALGEBRAS 

Abstract. We introduce the relative cancellation property for commutative BCK-
algebras and we study the problem of embedding of commutative BCK-algebras into 
Abelian lattice ordered groups. We show that if a BCK-algebra is not directed upwards, 
then we cannot use the method of Wyler and Baer. Anyway, supposing either union 
property or unitary extendibility, we can present the embedding of such a BCK-algebra 
into the positive cone of an Abelian lattice ordered group with universal property. Finally, 
some interesting examples are presented. 

1. Introduction 
BCK-algebras were introduced by Imai and Iseki [Imls], [Ise], and they 

have been intensively studied by several authors ([MeJu] is an interesting 
monograph about BCK-algebras). A very important class of BCK-algebras 
is the class of commutative BCK-algebras [RoTr], and in particular, of 
bounded commutative BCK-algebras which are categorically equivalent to 
MV-algebras [Mun 1]. For MV-algebras there is a representation theorem by 
Mundici [Mun] via intervals [0, u] with a strong unit u in an Abelian lattice 
ordered group. In this case we have also a universal property. 

If a commutative BCK-algebra is directed upwards, its representation via 
Abelian lattice ordered groups with universal property was made in [DvGr]. 

In the present paper, we shall study a representation of a class of commu-
tative BCK-algebras which are not directed upwards, in general, via lattice 
ordered groups with universal property. We show that the "words" method 
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of Baer [Bae], and applied by Wyler [Wyl] to clans, does not work in the 
case of commutative BCK-algebras which are not directed upwards. 

More information we obtain if we shall study commutative BCK-algebras 
with relative cancellation property. 

The paper is organized as follows. In section 2, we give some lattice-
like properties of commutative BCK-algebras and we introduce the relative 
cancellation property which is a central notion. Some Riesz properties for 
commutative BCK-algebras known in lattice ordered groups are presented in 
Section 3. A "words" technique of Baer [Bae] and Wyler [Wyl] is presented in 
Section 4. Finally, we shall study union BCK-algebras (Section 5) and union 
BCK-algebras which are unitarily extendible [Hoo] (Section 6). For them we 
find a lattice ordered group representation with universal property. These 
results generalize the famous result of Mundici [Mun] for MV-algebras. The 
paper is accomplished with plenty of illustrating examples. 

The relative cancellation property is a necessary condition for a repre-
sentation of commutative BCK-algebras via Abelian lattice ordered groups. 
In generally, the problem of representation of commutative BCK-algebras 
with this property seems to be open, and the authors hope to solve it. 

DEFINITION 1.1. A BCK-algebra is a non-empty set X with a binary oper-
ation * and with a constant element 0 such that the following axioms are 
satisfied: for all x, y, z 6 X, 

(BCK-1) ((x * y) * (x * z)) * (z * y) = 0; 
(BCK-2) (x * (x * y)) * y = 0; 
(BCK-3) x * x = 0; 
(BCK-4) x * y — 0 and y * x = 0 imply x — y\ 
(BCK-5) 0 * x = 0. 

We write X = (X; *, 0). In X, there is a binary relation < defined by 

x <y iff x *y = 0. 

This is a partial order relation on X which is called the BCK- order. We recall 
some elementary properties of BCK-algebras [MeJu, Thms 1.1.2,1.1.3,1.1.4]: 
if (X; *, 0) is a BCK-algebra, then for all x, y, z € X, 

(a) x < y implies z*y < z*x\ 
(b) (x * y) * z = (x * z) * y\ 
(c) (x * z) * (y * z) < x * y; 
(d) x <y implies x * z < y * z; 
(e) x * y < x; 
(f) x * 0 = x. 
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If we denote by x A y := y * (y * x), x, y E X, x A y is a lower bound of x 
and y, x Ax = x, I A 0 = 0 = 0 A I , and it is true that 

(1.1) x * (y A x) = x * y, x,y E X. 

In general, x Ay ^ y Ax, and a BCK-algebra is said to be commutative if it 
satisfies, for all x, y E X, 

(1 .2) x * (x * y) = y * (y * x), x,y E X. 

In this case, x Ay = y Ax is the greatest lower bound of x and y, and (X; *, 0) 
is a lower semilattice with respect to the BCK-order. According to [MeJu, 
Thm 1.5.6], a BCK-algebra X is commutative if and only if x < y implies 
x = y * (y * x). 

2. Lattice properties of commutative BCK-algebras 
We recall that it follows from [CST] that any commutative BCK-algebra 

is a distributive neax lattice, therefore the following result holds. 

THEOREM 2.1. Let (X\ *, 0) be a commutative BCK-algebra, and let 
x,y,z,zi E X. 

(i) Let x,y < z. Define 

(2.1) x V2 y := z * ((z * x) A (z * y)). 

Then x < x V zy, y <x\/zy and, for any z\ € X with z\ > z, we have 

(2.2) i V2 y = x V2 l y. 
(ii) x V y exists in X if and only if there exists an element z E X such 

that x,y < z. 
(iii) If x V j/ exists in X, then (z A x) V (z A y) exists in X for any z E X, 

and 

(2.3) z A ( x Vy) = (zAx) V(zAy). 

(iv) If (X; *,0) is directed upwards,1 then X is a distributive lattice with 
respect to the BCK-order. 

We say that a commutative BCK-algebra (X; *, 0) has the relative can-
cellation property if, for a,x,y E X, a < x,y with x * a = y * a imply 
x = y. 

LEMMA 2.2. Let (X; *, 0) be any upwards directed commutative BCK-algebra. 
Then it has the relative cancellation property. 

1 A poset (X; <) is said to be directed upwards if given a,b 6 X, there is an element 
c € X such that a < c and b < c. 
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P r o o f . Suppose that there exist c,c' € X such that a < c,c' and c*a = c'*a. 
We have to prove that c = c'. Let u € X be such that c, c' < u. 

Then (u * a) * (u * c) = (u * (u * c)) * a = (u A c) * a = c * a. Since 
a < c, we have u * c < u * a and then [u * (c * a)] * a = (w * a) * (c * a) = 
(u * a) * [(it * a) * (u * c)] = (u * a) A (w * c) = u * c. 

In the same way we show that [u * (c' * a)] * a = u * c'. From c * a = d * a, 
it follows u * c' = u * c. Hence c = u * (u * c) = u * (u * d) = c.' Q.E.D. 

EXAMPLE 2 .3 . The example B4-3-3 from [MeJu], where * is given by the 
table (next to it there is its Hasse diagram), gives a commutative BCK-
algebra which is not upwards directed, consequently it is not a lattice. It 
has not the relative cancellation property. Indeed, we have 1 < 2,3 and 
2 * 1 = 1 = 3 * 1 but 2 ^ 3 , consequently, X cannot be embedded into the 
positive cone of a lattice ordered group. 

* 0 1 2 3 
0 0 0 0 0 
1 1 0 0 0 
2 2 1 0 1 
3 3 1 1 0 

4 3 

0 

EXAMPLE 2.4 . The example B5-2-7 from [MeJu], where * is given by the 
table, gives a commutative BCK-algebra which has the relative cancellation 
property but which is not directed upwards. 

2\x3 
1 

0 

THEOREM 2.5 . Let (X; *, 0 ) be a commutative BCK-algebra having the rela-
tive cancellation property. Define a partial binary operation + with the do-
main S — {(a, b) 6 X xX : there exists c e X with c> b and a = c*b}, and 
we define c = a + b if c> b, and a = c*b. Then, for all a,b,c 6 X, we have 

(I) a + 0, 0 + a exist for any a £ X, and a + 0 = a = 0 + a. 
(II) a + b exists if and only if b + a exists, and then a + b = b + a (the 

commutativity). 
(Ill) a + b and (a + b) + c exist in X if and only ifb+c and a+(b + c) exist 

in X, and in this case (a + b) + c = a + (b + c) (the associativity). 

* 0 1 2 3 4 

0 0 0 0 0 0 
1 1 0 1 0 1 
2 2 2 0 2 0 
3 3 1 3 0 3 
4 4 4 2 4 0 
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( I V ) If a + b exists in X and if a i < a, b\ < b, then ai + bi exists in X, 

and ai + b\ < a + b. 

( V ) a = b holds whenever u +a = u + b for some u € X (the cancellation 

property). 

( V I ) If a + b < a + b' then b < b'. Conversely, i f b < b ' and a + b' exists in 

X , then a + b < a + b'. 

( V I I ) If a + c and b + c exist in X , then (a A b) + c exists in X, and 

(2.4) (a + c) A (b + c) = (a A b) + c 

(VIII) Let u > x,y. Then x V y exists in X , and 

(2.5) (x V y) * y = x * (x A y) = x * y, 

and (x * (x A y)) + y, (x * y ) + y exist in X , and 

(2.6) x V y = (x * (x A y)) + y = (x * y) + y. 

P r o o f . The relative cancellation property entails that the partial binary 
operation + is defined correctly. 

(I) and (II) are evident. To prove prove (III) suppose that a + b and 
(a + b) + c exist in X. Then there exist x,y € X such that a < x and 
x * a = b, a + b = x < y and y * x = y * (o + b) = c. 

Since c = y * x < y * a and (y*a)*c= ( y * a ) * ( y * x ) = [y * (y * s)] * a — 
x *a = b, then b + c 6 X and b + c — y * a. 

From a < y and y*a = b+c, it follows (o + (b + c)) G X and a + (b + c) = 
y = (a + b) + c. 

(IV) There are x,y in X such that ai + x = a and b\ + y = b. Using 
commutativity and associativity, we have a + b = (ai + x) + (bi + y) = 
(ai + &i) + (x + y) which entails the assertion. 

(V) It follows easily from definition of the relative cancellation property. 
(VI) There exists c S X such that (a + b) + c = a + b'. Using associativity 

and commutativity of + , we have a + (b + c) = a + b' and (b + c) + a — b' + a, 
so that b + c = b' and, consequently, b < b'. The second part follows from 
(IV). 

(VII) Since a + c> c and b + c > c, we have (a + c) A (b + c) > c. Then 
using property (b), we have 

((a + c) A (6 + c)) *c = ((a + c) * ((a + c) * (b + c))) *c = a * ((a + c) * (6 + c)). 

Calculate 

a*b = ((a + c) * c) * ((b + c) * c) < (a + c) * (b + c), 

when we have used property (c) of BCK-algebras, so that 

a * ((o + c) * (b + c)) < a * (a * b) = a A b. 
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Hence, 

(2.7) ((o + c) A (6 + c)) * c < o A b. 

Since a > a A b and a + c exists in X, we have by (IV) that (o A b) + c 
exists in X. It is clear that a + c> (a A 6) + c and b + c> (a A b) + c, so that 

(a + c) A (b + c) > (a A b) + c, 
((a + c) A (i> + c)) * c > ((a A b) + c) * c, 
((a + c) A (b + c)) * c > a A 6, 

which in view of (2.7) entails ((a + c) A (b + c)) *c = a A 6, and, consequently, 
we have (2.4). 

(VIII) Due to (1.1), we have x * (x A y) = x * y. Using Theorem 2.1 (ii), 
definition (2.1), and the basic properties (b), (1.1) and (1.2), we have 

(x V y) * y = (it * ((u * x) A (u * y)) * y 
= (u * y) * ((u * x) A (u * y)) 
= (it * y) * (u * x) = (u * (u * x)) * y = x * y, 

which proves (2.5) and, consequently, (2.6). Q.E.D. 

In the paper [DvGr, Thm 3.4], we have proved that any upwards directed 
commutative BCK-algebra has the relative cancellation property, and it can 
be converted via Theorem 2.5 into a commutative minimal clan. Motivated 
by this, we call the structure (X; +, *,0) the BCK-clan, where + is derived 
from Theorem 2.5, supposing that (X; *, 0) is a commutative BCK-algebra 
having relative cancellation property. 

EXAMPLE 2.6. Let G = (G; + , < , 0) be a lattice ordered group and let G+ := 
{x € G : x > 0} be its positive cone. Define a total binary operation *G on 
G+ via 

(2.8) x*Gy:=(x-y)V 0, 

for all x,y € G+. Then 

(2.9) x *Gy = x - (x Ay) = (x Vy) - y , x,y€G+, 

and (G+;*G,0) is an upwards directed commutative BCK-algebra having 
the relative cancellation property. 

Let GO be a non-void subset of G+ such that x,y E GO entail x*cy € GO-
Then (Go; *G> 0) is a commutative BCK-subalgebra of (G+;*G, 0) having the 
relative cancellation property, which is a lower semilattice. 

Our aim is to prove that some commutative BCK-algebras having rela-
tive cancellation property can be embedded onto some (GO;*G,0) of some 
lattice ordered group (G; + , <, 0) with Go C G + . 
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3. BCK-algebras and the Riesz decomposition property 
A poset {X;<) has the interpolation property (or simply has interpola-

tion), iff x,y,p,q 6 X with x,y < p,q imply that there exists z € X with 
as, y < z < p, q. A BCK-clan (X; - f , *,0) has the Riesz decomposition prop-
erty iff a, b, x G X with x < a + b imply that there exist ai, b\ 6 X with 
ai < a, &i < b and x = a\ + b\. 

It is evident that any commutative BCK-algebra (X; *, 0) has interpola-
tion. Indeed, let x,y < p,q then x,y < p A q < p,q. 
E x a m p l e 3.1. Let Cl ^ 0 and let A, B be two non-void disjoint subsets of i l 
Define E := {X C £1 : X C A or X C B}. Then (£; *, 0), where * is the set-
theoretical difference, is a commutative BCK-algebra having relative can-
cellation property which is not directed upwards. The BCK-clan (E\ +, \ , 0) 
is not a minimal clan but it has the Riesz decomposition property. 

Similarly, it is possible to show, (see e.g. [Wyl, Thm 5.9]) that any 
commutative clan has the Riesz decomposition property, consequently, any 
BCK-clan (X;+, *,0) has it whenever X is directed upwards; this follows 
also from a more general proposition: 
THEOREM 3.2. Let (X; *, 0) be a commutative BCK-algebra having the rel-
ative cancellation property. Then the BCK-clan (X;+,*,0) has the Riesz 
decomposition property. 
P r o o f . Suppose that c < a + b, and define u := a + b and Xu := {x € X : 
x <u}. Put now v = c * (6 A c) and ai = a A v, so that oi < a. On the other 
hand, c * v = b A c and if we put bi = c * oi, then oi, bi are defined in Xu 
and, moreover, ai + b\ = c. 

We must show that &i < b. Applying (2.6) and (2.4), we obtain 
ox + bi = c < (a + b) A (b V c) 

= (a + b) A [(c * (b A c)) + b] 
= (a + b) A (v + b) 
= (a A v) + b = ai + b, 

and thus by (VI), &i < b. Q.E.D. 
L e m m a 3.3 . Let, for a\, 0 2 , 6 1 , 6 2 G X, we have ai + 02 = b\ + 62, "where 
( X ; + , * , 0 ) is a BCK-clan. Then there are cn,ci2,c2i,c22 € X such that 

01 = cu +C12, bi = cn + c2i, 
G2 = C21+C22, & 2 = C i 2 + C22-

P r o o f . Since ai < 61 + 62, due to Theorem 3.2, we have that ai = cu + C12, 
where cu < 61 and C12 < 62. Then there are £21,022 £ X such that C11+C21 = 
61 and C12 + C22 = 62 • 
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Calculate (en + C12) + a2 = (en + C21) + (C12 + 022)- Using associativity 
and cancellation (V), we have a2 = C21 + 022- Q.E.D. 

4. Construction of a derived semigroup 
Throughout this section we shall suppose that X = (X;+,*,()) is a 

BCK-clan derived from a commutative BCK-algebra (X; *, 0) which has the 
relative cancellation property. The aim of this section is a construction of 
an ordered Abelian semigroup in that X can be embedded preserving * and 
+; that will be possible, for instance, if X is directed upwards. 

We shall follow ideas of Wyler [Wyl] who used Baer's approach [Bae]. 
We define [X] := ( X L i A n element A = ( x i , . . . ,xn) G [X] is said 

to be a word with entries (letters) x i , . . . , x n from the alphabet X, and n is 
the length of the word A. Two words ( x i , . . . , x n ) and ( y i , . . . , y m ) are the 
same if n = m and Xi — yi for any i with 1 < i < n. 

[X] can be organized into an additive semigroup via 

( x i , . . . ,x n ) + ( y i , . . . ,ym) •= ( x i , . . . , x n , y i , . . . ,ym), 
where ( x i , . . . , x n ) , (yi,...,ym) G [X]. 

We call two words A + (a, b) + B and A + (c) + B, where A,B e [X] 
and a,b,c G X, directly similar if a + b — c. Here A or B or both may 
be the empty words. For A,B G [X], we write A ~ B iff A and B are 
directly similar. Then (i) A ~ A, and (ii) if A ~ B, then B ~ A. Let ~ 
be the transitive closure of i.e., A ~ B iff there is a finitely many words 
Ai,. ..,An G [X] such that A = A± ~ A2 ~ • • • ~ An = B. 

Then ~ is a congruence relation. Indeed, suppose that A ~ B and C — 
D. Without loss of generality we can assume that there are two sequences 
of words Ai,..., An and C\,..., Cm with n = m such that A — A± ~ A2 ~ 

An = B and C = Cx ~ C2 Cn = D. Then A + C = A + C i ~ 
A+C2 ~ • • • ~ A+Cn = A+D ~ Ai+D ~ A2+D An+D = B+D. 

Denote by S(X) the quotient semigroup [X]/ we call it a derived 
semigroup of a BCK-algebra (X; *, 0). Given a word A G [X], we denote by 
[vl] the corresponding equivalence class in S(X) given by A. Hence [(0)] is 
the neutral element of S(X), and if ( a i , . . . , an) G [X], we have 

( a i , . . . , a n ) = (ai) H h (an), 
so that 

(4.1) [(oi, . . ..On)] = [(01)] + • • • + [(an)]. 
According to Baer [Bae], given a word ( a i , . . . , on), inductively define a 

subset of X, <S(ai,..., a n ) , as follows: (i) if n = 1, define <S(ai) = {ai}, (ii) 
if n > 1, then a G <S(ai,..., a„) iff there exist an integer i and b,c G X with 
1 < i < n — 1, 6G <S(ai,.. . , ai), c G «S(ai+ i , . . . , a n ) such that a = b + c. 
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L e m m a 4 .1 . Let ( X ; + , * , 0 ) be a BCK-clan. 

(i) If a £ £ ( o i , . . . ,an), where n > 1, then there exists an integer i with 
1 < i < n such that a* + a^+i exists in X and a € < S ( a i , . . . , 0 , - 1 , 0 , + 

Oi+1, • • • , On)-
(ii) I f l < i < n , n > 1, and i f a i + Oi+i exists in X , then < S ( a i , . . . , i , 

a , + a i + i , a j + 2 , . . . , o n ) C £ ( a i , . . . , a „ ) . 
(iii) If a i + • • • + an = a, then a £ £ ( o i , . . . , a n ) . 
( i v ) If S ( a \ , . . . , an) 0 , then a := a i + • • • + an exists in X , and 

£ ( o i , . . . , a „ ) = { a } . 

( v ) For any word A £ [ X ] we have | £ ( A ) | < 1; and if ( a i , . . . ,an) ~ 
( 6 i , . . . , 6 n + i ) and £ ( o i , . . . , an) # 0, then S ( h , . . . ,bn+1) 

(v i ) If ( o i , . . . , a n ) ~ ( 6 i , . . . ,£>n+i) o-nd < S ( a i , . . . ,an) ± 0 , then S ( a i , . . . 
. . . , a n ) = S ( & i , . . . , 6 n + i ) . 

P r o o f , ( i ) L e t n = 2. If a € S(ai,a2), t h e n a = a[ + a'2, w h e r e a[ G <S(ai) , 
a'2 € S(a2), a n d b y d e f i n i t i o n , a i = a^, a2 = a'2, c o n s e q u e n t l y a € < S ( a i + a 2 ) . 
L e t n o w n — 3 a n d a £ S(a\, 0 2 , 0 3 ) . T h e n t h e r e are b,c £ X w i t h a = b + c 
s u c h t h a t e i t h e r b € <S(ai) a n d c G £ ( 0 2 , 0 3 ) or b € <S(ai, <22) a n d c £ <S(a3). 
I n t h e f irst c a s e , b y i n d u c t i o n s t e p for n = 2, w e h a v e c 6 <S(a.2 + <23), 
c o n s e q u e n t l y , a £ < S ( a i , a 2 + <23). S i m i l a r l y for t h e s e c o n d case . T h e g e n e r a l 
c a s e o f n f o l l o w s f r o m c o m p l e t e i n d u c t i o n . 

( i i) L e t n = 2 a n d le t a i + a2 e x i s t in X . T h e n a i + a2 £ S(a\, a2). S i n c e 
S(ai +CI2) = { a i +a2}, w e c o n c l u d e <S(ai + 0 2 ) ^ ¿>(01 ,02) . L e t n o w n = 3. 
S u p p o s e , for e x a m p l e , 01 + 02 e x i s t s in X a n d le t a £ <S(oi + 0 2 , 0 3 ) . T h e n 
a = b + c, w h e r e b £ <S(oi + 0 2 ) C 5 ( 0 1 , 0 2 ) ( in v i e w of i n d u c t i o n s t e p for 
n = 2) a n d c £ £ ( 0 3 ) . H e n c e a = ( a i + 0 2 ) + 03 £ £ ( 0 1 , 0 2 , 0 3 ) . S i m i l a r l y 
w e e x h i b i t t h e s e c o n d poss ib i l i t y . T h e res t of t h i s p r o o f u s e s t h e c o m p l e t e 
i n d u c t i o n a n d t h e a s s o c i a t i v i t y o f + . 

(i i i) L e t A = ( 0 1 , . . . , o n ) . If n = 1, w e h a v e a = o i a n d 01 £ <S(A) = 
{ o i } , s o t h a t a £ <S(oi) . If n = 2, t h e n o = o i + o^, w h e r e a'i £ <S(oi) = { a i } 
a n d a2 € £ ( 0 2 ) = { 0 2 } - T h e r e f o r e , a = a\+a2 £ < S ( o i , 0 2 ) . T h e g e n e r a l c a s e 
of n c a n b e p r o v e d b y c o m p l e t e i n d u c t i o n . 

( iv ) If n = 1, t h e s t a t e m e n t h o l d s . L e t n o w n = 2, t h e n t h e r e e x i s t s 
a £ £ ( 0 1 , 0 2 ) s u c h t h a t 0 = 01 + 02 , w h i c h p r o v e s £ ( 0 1 , 0 2 ) = { o i + 0 2 } . L e t 
n o w n = 3 a n d s u p p o s e a £ £ ( 0 1 , 0 2 , 0 3 ) . T h e n a = b\ + 62, w h e r e e i t h e r 
61 £ £ ( o i ) a n d 62 £ £ ( 0 2 , 0 3 ) , or b\ £ £ ( 0 1 , 0 2 ) a n d 62 £ £ ( 0 3 ) - I n t h e f irst 
c a s e w e h a v e £ ( o i ) = { 0 1 } = { 6 1 } a n d 62 = 02 + 03 . U s i n g a s s o c i a t i v i t y o f 
+ , w e h a v e a = o i + 02 + 03 a n d £ ( 0 1 , 0 2 , 0 3 ) = { o } . I n a n a l o g i c a l w a y w e 
p r o c e e d in t h e s e c o n d c a s e . 

S i m i l a r l y w e o b t a i n t h e g e n e r a l c a s e of n b y c o m p l e t e i n d u c t i o n . 
( v ) D u e t o ( i i i ) a n d ( i v ) e i t h e r S(A) = 0 or \S(A)\ = 1. 
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Let n = 1, then a = ai = b\ + 62, so that a € ¿>(61,62). Let n = 2. By 
(iv), a = ai + a2 exists in X , and either ai = 6i + 62 and 02 = or ai = 61 
and a,2 = i>2 + 63• For the first case we have G ¿>(61,62) and 02 G ¿>(63), 
so that a = ai + o2 G ¿>(61, 62,63) ^ 0. 

For the second case we have ai G <S(6i) and a2 G ¿>(62,63). Using again 
(iv), we have a = 01 + 02 = 61 + 62 + 63 G ¿>(61,62,63). The general case of 
n follows from complete induction. 

(vi) It follows from (v) and (iii), (iv). Q.E.D. 

L E M M A 4.2. Let (X;+,*,()) be a BCK-clan. Then (i) ( a i , . . . , a n ) ~ (6) if 
and only if a\ + ••• + an exists in X and equals 6; (ii) if [(a)] = [(6)] then 
a = 6. 

P r o o f . It follows from (v) Lemma 4.1 and the results of Baer [Bae, (iv), 
(v) Thm 1.1] (compare also [Wyl]). Q.E.D. 

L E M M A 4 . 3 . Let a and b from X have an upper bound in X. Then 

(4-2) [(«)] + [(&)] = [(&)] + [(«)]. 
In particular, if X is directed upwards, then S(X) is a commutative semi-
group. 

P r o o f . Let u G X be an upper bound of a and 6. Then due to (ii) Theorem 
2.1, a V 6 exists in X. Using (2.5) and (2.6), we have 

(a, 6) ~ (a A 6, a * (a A 6), 6) = (a A 6, (a V 6) * 6,6) 
~ (a A 6, a V 6) ~ (a A 6, (a V 6) * a, a) 
= (a A 6,6 * (a A 6), a) ~ (6, a). 

The second assertion follows from (4.1) and (4.2). Q.E.D. 

L E M M A 4 .4 . Let, for A, B G [X], we have [A] + [¿?] = [(0)]. Then [A] = 
[(0)] = [B\. 

P r o o f . It follows easily from Lemma 4.2(i). Q.E.D. 

We note that if X is not directed upwards, then (4.2) can fail. Indeed, 
take X from Example 2.4. Then the partial binary operation + is given 
by the table below, and here we have [(1)] + [(2)] = [(1, 2)] ± [(2,1)] = 
[(2)] + [(!)]• 

+ 0 1 2 3 4 
0 0 1 2 3 4 
1 1 3 
2 2 4 
3 3 
4 4 
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The following result was proved originally by Wyler [Wyl, Thm 5.4] 
for commutative clans. His proof works also in our case because it does not 
depend on the existence of suprema in X, and therefore, the proof is omitted 
(see also Ravindran [Rav] for a special case of X). 
LEMMA 4 . 5 . Let A,B,W e [X] such that [A] + [ 5 ] = [W\. Then there are 
elements c^c" e X, for i = 1 , . . . , k, such that W = (c'y + c " , . . . , c'k + c'fc'), 
andA^(c'1,...,c'k),B^(c,{,...,c^). 

If we assume that X is directed upwards, then we can say more about 
the derived semigroup S(X). 
THEOREM 4 .6 . Let ( X ; + ; * , 0 ) be an upwards directed BCK-clan. Then, for 
all A,B,Ce [ X ] , we have 

(i) [A} + [B] = [B] + [A}. 
(ii) If [A] + [B] = [A] + [C], then [B] = [C]. 

(iii) <x, where [A] <x [5] if and only if there is an C £ [X] such that 
[A] + [C] = [¿J], is a partial order on S(X). 

(iv) [(a)] A [(b)] = [(a A b)}, a,beX. 
(v) (S(X)\+, <x, [(0)]) is an Abelian partially ordered semigroup which 

is a lower semilattice and it is the generating positive cone of a lattice 
ordered group G(X). 

(vi) A mapping h : X —> G(X) defined via 
h(a) := [(a)], a € X, 

is injective and preserving A, and +. 
(vii) The couple (G(X),h) has the universal property, i.e., if g : X —> 

G\ is an order and + preserving mapping into a partially ordered 
Abelian group Gi, then g = g' o h for a uniquely determined group 
homomorphism of ordered Abelian groups g' : G(X) —» G\. 

(viii) If X is bounded with the greatest element 1 € X, then /i(l) is a strong 
unit in G(X) and h maps X onto the order interval [[(0)], [(1)]] : = 
{g e G(X) : [(0)] <x g <x [(l)]}.2 

(ix) If g € G(X), 0 < g < h(x) for some x e X, then there exists a unique 
y 6 X such that y < x and h(y) = g. 

P r o o f . This result has been proved in [DvGr, Thm 3.5] using Wyler's ideas 
[Wyl], or it can follow ideas from this section. Q.E.D. 

REMARK 4 . 7 . We recall that if, for the derived group S(X), ( 4 . 2 ) holds, 
then S(X) is the positive generating cone of a lattice ordered group G(X) 

2In this case, a commutative BCK-algebra X can be converted by a natural way into 
an MV-algebra and conversely, and (viii) gives Mundici's famous representation theorem 
of MV-algebras [Mun]. 
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as it is indicated in Theorem 4.6. Unfortunately, that is not a general case, 
and we do not know other conditions as upwards directness guaranteeing 
(4.2). Hence, we have to look for other ways for representing commutative 
BCK-algebras via lattice ordered groups. Such possibilities will be done in 
Sections 5 and 6. 

The lattice ordered group G(X) from the proof of the last theorem is 
said to be the derived group of (X; +, *, 0). 

5. Union BCK-algebras 
In this section, we introduce a family of commutative BCK-algebras 

which can be embedded into the positive cones of lattice ordered groups. 
Let {(Xi; *i, 0j)}ie/ be a system of BCK-algebras such that (i) 0* = 0 

for any i 6 / ; and (ii) Xi PI X j = {0} for i ^ j , i , j G I. Put X = ( J i g / Xi 
and define a total binary operation * on X via 

_ j x *i y if x, y € Xi, i € I, 
X * V ~ \ x if x G Xi, y G X j , i ± j, i , j G I. 

Then (X; *, 0) is a BCK-algebra called a union BCK-algebra, and we denote 
X = ® i g / Xi. A union BCK-algebra is commutative iff each Xi is commu-
tative. It is clear that any BCK-algebra X = Xi, where Xi = X and 
| / | = 1. Moreover, any Xi is a BCK-subalgebra of X = 0 i 6 J Xl) and if 
u G Xi, then 

Xu := {x € X : x < u} C Xi. 
Conversely, let { X i } i e j be a family of subsets of a BCK-algebra (X; *, 0) 

such that 
(a) X — Uie/ Xi, 
(b) ^ n Xj = {o}, 
(c) u € Xi implies Xu C Xi, 

then each Xi is a BCK-subalgebra of X, and X is the union BCK-algebra 
of {Xj} i e j . 

More about union BCK-algebras is in [MeJu]. 
We recall that if X — © i € / Xi and there are two different subalgebras Xi 

and Xj having at least two elements, then X does not satisfy the condition 
(S).3 Indeed, if a G Xi and b 6 Xj are non-zero elements, then a * a < b 
and b*a < b but there is no element c G X such that a < c and b < c. 

3 A BCK-algebra (X; *, 0) satisfies condition (S) if given elements a,b € X there is an 
element a o b € X such that (i) (a o b) * a < b, and (ii) if x * a < b then x < a o b. Then 
(X\ o, 0, <) is a commutative po-semigroup [MeJu, Thml.7.7). Since a < aob and b < aob, 
(X\ *, 0) is directed upwards and by [DvGr], X can be embedded into the positive cone of 
some lattice ordered group. 
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We say that a BCK-algebra (X;*,0) has a u.d. union property if X 
can be expressed as X = Xi, where each Xl is directed upwards. A 
BCK-clan (X; + , *, 0) has a u.d. union property if (X; *, 0) has it. 

Since {0} is trivially an upwards directed BCK-subalgebra of X, using 
Zorn's lemma we conclude that in any BCK-algebra X there is a maximal 
upwards directed BCK-subalgebra of X. 

Any BCK-algebra with u.d. union property has a unique decomposition 
X = @ieIXi, where all Xi are directed upwards: 

L e m m a 5 .1 . Let X = Xi, where each Xi is directed upwards. Then, if 
X = Yj, where each Yj is directed upwards, for any i E I, there is a 
unique j 6 J such that Xi — Yj and conversely. 

P r o o f . Let u € Xi be non-zero. Then there is a unique Yj such that u EYj. 
Hence, Xu C Xi and Xu C Yj. Let now v be an arbitrary element of Xz. 
There is an element w € Xi which as an upper bound of u and v, i.e., 
u,v <w. Then v £ Xw C Xi and since u € Yj, we conclude that Xw C Yj, 
so that Xi C Yj. By symmetrical reasoning we can show that Yj C Xi. 
Q.E.D. 

We recall that Example 2.4 gives a BCK-algebra and a BCK-clan which 
have u.d. union property, while the following example not. 

E x a m p l e 5 .2 . The example # 5 - 2 - 8 from [MeJu], where * is given by the 
table below, gives a commutative BCK-algebra which has not u.d. union 
property because 1 < 3,4 while 3 and 4 has no upper bound in it. 

+ 0 1 2 3 4 
0 0 0 0 0 0 
1 1 0 1 0 0 
2 2 2 0 0 2 
3 3 2 1 0 2 
4 4 1 4 1 0 

L e m m a 5.3. (i) Any commutative BCK-algebra with the u.d. union property 
has relative cancellation property. 

(ii) If X = Xi is a commutative BCK-algebra, then, for x € Xi 
and y € X j , where i ^ 0 ^ y and i ^ j, x + y does not exist in X. In 
general, if u + v exists in X, then u and v belong to the same subalgebra 
Xi. 

P r o o f , (i) Suppose that a < x,y and x * a = y * a. If a = 0, then trivially 
x = y. If a 0, then a € Xx H Xy, so that there is a unique Xi in X = 
0 i e J Xi such that x,y € Xi. Applying Lemma 2.2, we see that x = y. 
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(ii) This part follows from an observation that if x + y exists in X, then 
x, y < x + y so that x, y € Xx+y, which means that x and y have to belong 

LEMMA 5 .4 . Let X = ®i6/ Xi and let ( X ; + , * , 0 ) be a BCK-algebra having 
the u.d. union property. Let all elements of (ai,... ,an) belong to a fixed Xs, 
s E I. If (ai,..., an) ~ (bi,..., bm), then all elements bj's belong to Xs. 

If [ (a i , . . . ,an)] = [(£>i,.. .,bm)], then all bj € Xs, for j = 1 , . . . ,m. 

P r o o f . Let ( o i , . . . , o n ) be directly similar with (b\,... ,bm). Then either 
some ai = a' + a" and b{ = a', b{+1 = a" and at- = bk for 1 < k < i and 
afc = 6fe+1 for i < k < n, or bj = aj + a^+i and other elements coordinately 
coincide. In the first case b{,bi+\ < ai so that bi,bi+1 E Xs and similarly in 
the second one. 

The rest of Lemma is now evident. Q.E.D. 

We now present the main result, a representation theorem for commuta-
tive BCK-algebras having u.d. union property, which converts in some sense 
Example 2.6. 

THEOREM 5 .5 . Let ( X ; * , 0 ) be a commutative BCK-algebra with the u.d. 
union property. Then there is a lattice ordered group (G\ + , < , 0) with the 
positive generating cone G+ and a subset Go of G+ generating G+, which is 
a lower semilattice closed under such that X can be injectively embedded 
onto Go with an embedding h satisfying 

whenever a + b exists in X, and 

(5.2) h(x *y) = h(x) *G h{y) := h(x) - (h(x) A h(y)), x,y € X. 

P r o o f , (i) Suppose X = ® i Xi, where each Xi is an upwards directed 
BCK-subalgebra. Since this decomposition is due to Lemma 5.1 unique and 
by Lemma 5.4, ( a i , . . . , o n ) ~ (&i,... ,i>m) with entries o^ € Xi for any 
1 < k < n, we can construct the derived semigroups S(Xi) for each Xi such 
that S(Xi) C S(X) for any i with S ' (X t )n5 (X i ) = {[0]} for i + j. According 
to Theorem 4.6, for each i, the derived group Gi := G(Xi) is a lattice derived 
group and a mapping hi : Xi —> Gi is an embedding preserving + and the 
order in Xi. 

Define the direct sum G of the system of groups {G(Xi)}i, G = G(X) := 
G(Xi). That is, G(X) is the subset of the product J^i G(Xi) consisting 

of all elements (wi)i, where Wi £ Xi , with finitely many non-zero wl,s, and 
the addition and the ordering are by coordinates. In addition, G(X) is a 
lattice ordered group. 

to the same subalgebra. Q.E.D. 

(5.1) h(a + b) = h(a) + h(b) 
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The mapping h : X —> G defined via h(a) := (bi)i, where bi — [(a)] if 
a G Xi and bi — [(0)] if a £ Xi, is an injection. 

(ii) It is possible to show that h(a) < h(b) in G iff a < b in X, and 
h(0) = [(0)]. Indeed, let a < b in X. Since a G Xb := {x G X : x < b}, 
both a and b belong to the same subalgebra Xi of X, so that h(a) < h(b). 
Conversely, let h(a) < h(b) in G. By definition of h, both a and b belong 
to the same subalgebra Xi, and using (iv) Theorem 4.6, we conclude that 
hi(a) < hi(b), so that, a < b. 

(iii) Let now c = a Ab, a,b G X. Then c G Xa fl Xb. If a and b belong to 
the same subalgebra, say Xi, then by (iv) Theorem 4 .6, /i»(c) = hi(a)Ahi(b), 
so that h(c) = h(a) A h(b). If a and b belong to different subalgebras, say Xl 
and Xj, then c = 0 and by definition of h, h(a) A h(b) = [(0)] = h(c). 

(iv) Equation (5.1) is a consequence of (ii) Lemma 5.3. 
Let now x and y be arbitrary elements of X. Due to (5.1), we have 

h(x * (x A y ) ) = h(x) — h(x Ay) = h(x) — ( h ( x ) A h(y)). 

On the other hand, we have x * y = x * ( y A x ) = x * ( x A y ) which proves 
(5.2) and finishes the proof. Q.E.D. 

We say that a partially ordered Abelian group (G; +, <, 0) with a map-
ping h : X —> G+ is a universal group for a BCK-clan (X; +, *, 0) if (i) 
the positive cone G+ is generating for G; (ii) h(X) generates G+; (iii) 
h(x + y) = h(x) + h(y) whenever x + y exists in X, x,y G X, and (iv) 
for any partially ordered Abelian group G\ and any order and + preserving 
mapping g : X —> G\ there is a group homomorphism of ordered groups 
g' : G —> G\ such that g = g' o h. The universal group, if it exists, is 
unique up to isomorphism, and g' from (iv) is a unique group homomor-
phism of ordered semigroups with that property. We denote the universal 
group G = (G, h). 

T H E O R E M 5 .6 . Under the conditions of Theorem 5 .5 , the group G(X) and 
the embedding h from the proof of Theorem 5 . 5 has the universal property 
for ( X ; + , *, 0 ) , and (G{X),h) is a universal group for (X; +, *). 

P r o o f . Let g be a mapping from X into a partially ordered Abelian group 
G\ preserving + and the order in X. Then the restriction gi : Xi —> G\ of g 
onto Xi preserves + and the order in Xi, and due to (vii) of Theorem 4.6, 
there is a unique group homomorphism of ordered semigroups g[ : Gi(X) —> 
G\ such that 9i = g[ ° hi. Define g' : G —» G\ via 

( 5 . 3 ) g'((wi)i) : = ^ ¿ ( I I * ) , («*)< G G(X). 
i 

Since in any (w{)i there are only finitely many non-zero elements 
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Wi € G(Xi), the sum on the right-hand side of (5.3) is defined well, and 
g' is a group homomorphism of ordered groups from G = G(X) into G\. 

Take a € X. If a = 0, then ^'(^(0)) = s'([(0)]) = 0 = 5(0). If a ± 0, then 
there is a unique subalgebra Xi containing a. Then g'(h(a)) = gi(hi(a)) = 
pi (a) = g(a). 

The uniqueness of g' is now clear because if g' : G(X) -> Gi is a 
group homomorphism such that g"(h(a)) = g(a), a G X, then for a 6 Xi, 

9i(a) = g(a) = g"(h(a)) = g"(. • •, [(0)], • • •, [(0)], hi(a), [(0)], • • • [(0)], • • •) = 
g'{hi{a)). The definition of G(X) = 0 . G{Xi) gives g' = g". 

The last statement follows from the construction of derived semigroups 
and derived groups. Q.E.D. 

The following example shows that there is a commutative BCK-algebra 
which can be embedded into a lattice ordered group but not via Theorem 5.5. 

EXAMPLE 5.7. Le t ft = { 1 , 2 , 3 , 4 } , and X = { 0 , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 2 , 3 } } . 

Then (X;\,0), where \ is the set-theoretical difference, is a commutative 
BCK-algebra having the relative cancellation property but not the u.d. union 
property. Therefore, for its embedding into a lattice ordered group we cannot 
use Theorem 5.5, but it can be embedded into a lattice ordered group, 
because it can be embedded into the Boolean algebra 2n, and 2 n into a 
lattice ordered group. 

We recall that Example 5.7 is a special case of a positively implica-
tive commutative BCK-algebra, i.e., X satisfies x * y = (x * y) * y for all 
x,y € X. Such algebras are so-called implicative BCK-algebras. In this case 
(see [DvGr, Thm 6.7] and a discussion to this theorem, and [MeJu, Thm 
VII.2.7]), it was proved that X can be embedded into a Boolean algebra of 
subsets, and consequently, into a lattice ordered group. 

REMARK 5.8. Let a BCK-clan (X; +, *, 0) be isomorphic under an isomor-
phism h with a BCK-subclan (G0; +, *G, 0) of the BCK-clan (G+; +, *G , 0) 
of some lattice ordered group G such that (G, h) is a universal group for X. 
Hence, if (Gi, hi) is any universal group for X, then h\ is injective. 

REMARK 5.9. Let Z be the group of all integers with the usual addition and 
the order. It is worth to recall that 

(i) Example 2.3 cannot be embedded into any lattice ordered group. 
(ii) Example 2.4 has a universal group (Z2,h), where /i(0) = (0,0), 

M l ) = (1,0), h(2) = (0,1), h(3) = (2,0), ¿1(4) = (0,2). 
(iii) Example 5.2 has a universal group (Z 2 ,h ) , where h(0) = (0,0), 

h{ 1) = (0,1), h(2) = (1,0), h(3) = (1,1), h(4) = (0,2). 
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(iv) Example 5.7 has a universal group (Z 3 ,h) , where /i(0) = (0,0,0), 
h({ 1}) = (1,0,0), M{2}) = (0,1,0), h({3}) = (0,0,1), h({ 1,2}) -
(1,1,0), M{2,3}) = (0,1,1). 

6. Unitarily extendible BCK-algebras 
In the present section, we introduce another class of commutative BCK-

algebras, which can be embedded into lattice ordered groups. 
According to Hoo, [Hoo], a commutative BCK-algebra (X;*,0) is said 

to be unitarily extendible if, for e ^ X, we can extend the commutative 
BCK-algebra structure on X to the commutative BCK-algebra structure 
on X U {e} with e as the greatest element in X U {e}. It is clear that any 
non-zero BCK-algebra is unitarily extendible. Hoo proved the following two 
important statements: 

THEOREM 6.1. (i) A non-zero commutative BCK-algebra ( X ; * , 0 ) is unitar-
ily extendible if and only if there is a function f : X \ {0} —> X \ {0} such 
that f ( f ( x ) ) = x and x * f ( y ) — y* f{x) for all x,y e X \ {0}.4 

(ii) A bounded commutative BCK-algebra (X; *,0) is unitarily extendible 
if and only if there exists an element XQ € X \ {0} such that XQ < x for all 
x E X \ {0}. 

We note that Example 2.3 is a case of a commutative BCK-algebra which 
is not unitarily extendible; Example 2.4 is a case of a BCK-algebra having 
u.d. union property but it is not unitarily extendible. Similarly, the set of 
all nonnegative integers N = {0 ,1 ,2 , . . .} ordered by the natural way can 
be converted into a commutative BCK-algebra only in one way: n * m := 
max{0, n — m}, n,m € N, in this case it has a linear structure and it can 
be embedded into the lattice ordered group of all integers, but N is not 
unitarily extendible. 

EXAMPLE 6 .2 . Let X = {0, {1} , {2} , {3} , { 1 , 2 } , { 2 , 3 } , { 1 , 3 } } . Then 
(X]\,0), where \ is the set-theoretical difference, is a commutative BCK-
algebra which has no u.d. union property, but X is unitarily extendible. 

The proofs of the following three examples follow from [Dvu, Exs 3 . 2 - 3 . 4 ] , 
Theorem 6.1, and the definition of unitarily extendible BCK-algebras. 

EXAMPLE 6 .3 . Let X = [ 0 , 1 ) be the interval of real numbers ordered by the 
natural way. Let g : [0,1) —• [0, oo) be an increasing, continuous function 
with ^(O) = 0. Define a total binary operation *g on X via 

(6.1) x *g y := <7-1(max{0, g(x) - g{y)}), x, y E X. 

4 We recall that in this case e* x — f(x) for each x € X \ {0}. 
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Then ([0,l) ;*g ,0) is a commutative BCK-algebra with the natural order. 
Conversely, if ([0,1);*,0) is a commutative BCK-algebra with the natural 
order, then there is an increasing, continuous function g : [0,1) —> [0, oo) 
with g(0) = 0 such that * = *g, where *g is defined via (6.1). Moreover, 
([0,1); *g, 0) is unitarily extendible if and only if g is bounded; in this case the 
function / from Theorem 6.1 is defined via f(x) = g(l~) — g(x), x G (0,1), 
and ([0,1); *g, 0) is isomorphic with ([0,1); *id[0il), 0). 

E X A M P L E 6.4. Let X = [0, oo) be the interval of real numbers ordered by 
the natural way. Then ([0, oo); *, 0) is a commutative BCK-algebra with the 
natural order if and only if there exists an increasing, continuous function 
g : [0, oo) —> [0, oo) with y(0) = 0 such that * — *g, where *g is defined via 
(6.1). ([0, oo); *g, 0) is unitarily extendible if and only if g is bounded. In this 
case, ([0, oo); *g, 0) is isomorphic with ([0,1); *,d[0 0), and the function / 
from Theorem 6.1 is defined via f(x) = p(+oo) — g(x), x E (0, oo). 

EXAMPLE 6.5. Let X = [0,1] be the interval of real numbers ordered by 
the natural way. Then ([0,1]; *, 0) is a commutative BCK-algebra with the 
natural order if and only if there exists an increasing, continuous function 
g : [0,1] —> [0,1] with <7(0) = 0 and <7(1) = 1 such that * = *g, where 
*g is defined via (6.1). Any ([0,l];*g ,0) is bounded and isomorphic with 
([0,1]; *idx, 0). Moreover, ([0,1]; *g, 0) is not unitarily extendible. 

T H E O R E M 6 . 6 . Let X = ® i e / XI be a union BCK-algebra, where each XI 
is either directed upwards or a non-zero and unitarily extendible commu-
tative BCK-subalgebra of X. Then X can be converted into a BCK-clan 
( X ; + , *, 0), and there is a lattice ordered group (G; + , <, 0) with the posi-
tive generating cone G+ and a lower semilattice GQ of G+, which generates 
G+, such that X can be embedded onto GO with an injective embedding h 
satisfying (5.1) and (5.2). 

P r o o f . Let X = XI satisfy the conditions of Theorem. Then X has a 
relative cancellation property, and (X; + , *, 0) is a well-defined BCK-clan. 

For any i € I, let Xi := Xi if Xi is directed upwards and Xi := Xi U {e*} 
when Xi is only unitarily extendible, where ei is the greatest element in 
Xi U {ei}. Without loss of generality we can assume that all EJ are diverse. 
Define the commutative union BCK-algebra X := X{. According to 
Theorems 5.5 and 5.6, there exists a universal group (G, h) for (X; + , *, 0) 
satisfying (5.1) and (5.2), so that h is an embedding of X preserving + and 
the order in X. Consequently, the restriction ho of h onto X also satisfies 
(5.1) and (5.2), respectively. 

We know that h(X) generates the positive cone G+ of G. We show that 
also h(X) generates G+. Take g G G+. Then g — h(xi) + J2jHej)> 
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Xi £ l j , where the sums Yli a n d X^j a r e both over finite (also empty) sets 
of indices. For any ej E Xj, there are two non-zero elements x'-, x" G Xj 
such that ej = x'- +x", where the sum is in Xj, hence h(ej) = h(x'-) + h(x'j). 

This means that any element g € G+ can be expressed as a finite sum of 
elements from h(X). Q.E.D. 

THEOREM 6.7. Under the conditions of Theorem 6.6, ( X ; + , * , 0 ) possesses 

a lattice ordered universal group. 

P r o o f . Take the lattice ordered group G and the embedding h from X into 
G which have been used in the proof of Theorem 6.6. Let ho be the restriction 
of h onto X. We claim that (G; ho) is a universal group for (X; +, *, 0) in 
question. For that it is necessary to verify only the condition (iv) of universal 
groups. 

So let Gi be an ordered Abelian group and let g : X —> G\ be a mapping 
preserving + and the order in X. We extend g to g : X —> G\ which will pre-
serve order and all existing sums in X. Suppose that Xi = Xi U {ej}, where 
ei Xi and ej is the greatest element in Xj. Take two non-zero vectors 
® 1)2/1 £ Xj^Then x2 := ej *x i , yi := ei*yi € Xi \ {0, } and x\ + x2 = ej = 
2/1 +2/2 in Xi. We assert that <7(2:1) + g(x2) = <7(2/1) + <7(2/2)- Indeed, accord-
ing to Lemma 3.3, there are four elements cn,ci2,c2i,c22 £ Xi such that 
z i = en + C12, x2 = c2i + c22, 2/1 = c n + c2i, 2/2 = C12 + c22- It is clear that 
e n , C12, C21, c22 £ Xi and all sums in the last four equalities exist also in Xi. 

Calculate 
pfa i ) + g{x 2) = s ( c n + C12) + g(c2i + c22) 

= 5 ( c n ) + 9(c 12) + 9(021) + 9(022) 

= ff(cn) + g{c21) + g(c12) + g(c22) 

= 9{cn + C21) + g{c 12 + C22) = 5(2/1) + 3(2/2)-

Then g : X —> G\ defined via g(x) := g(x) if x € X, and g(ei) 
g(xi)+g(x2), if xi+x2 = ej, x\, x2 G Xj\{0}, preserves order and sums in X. 
Due to Theorem 5.6, (G, h) is a universal group for (X\ + , *, 0), so that there 
exists a unique group homomorphism of ordered semigroups g' : G —> G\ 
such that g = g' o h. Consequently, g = g' o ho, and g' is a unique group 
homomorphism of ordered semigroups satisfying the equation g = g' o ho-

Q.E.D. 

REMARK 6.8. We recall that Example 5.2 gives a unitarily extendible BCK-
algebra which has not u.d. union property. Indeed, the function / : X \ { 0 } —> 
X \ {0} in question can be chosen as follows: / (4) = 2, / (3) = 1, / (2) = 
4, / (1) = 3. According to Theorem 6.7, it has a universal group which is a 
lattice ordered one, namely Z2, as it has been shown in (iii) of Remark 5.9. 
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