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PARTIAL DEPENDENCY SEPARATION - A NEW CONCEPT
FOR EXPRESSING DEPENDENCE-INDEPENDENCE
RELATIONS IN CAUSAL NETWORKS

Abstract. Spirtes, Glymour and Scheines [19] formulated a Conjecture that a direct
dependence test and a head-to-head meeting test would suffice to construe directed acyclic
graph decompositions of a joint probability distribution (Bayesian network) for which
Pearl’s d-separation [2] applies. This Conjecture was later shown to be a direct consequence
of a result of Pearl and Verma [21], cited as Theorem 1 in [13}, see also Theorem 3.4.
in [20]).

This paper is intended to prove this Conjecture in a new way, by introducing the
concept of p-d-separation (partial dependency separation). While Pearl’s d-separation
works with Bayesian networks, p-d-separation is intended to apply to causal networks:
that is partially oriented networks in which orientations are given to only to those edges,
that express statistically confirmed causal influence, whereas undirected edges express
existence of direct influence without possibility of determination of direction of causation.

As a consequence of the particular way of proving the validity of this Conjecture, an
algorithm for construction of all the directed acyclic graphs (dags) carrying the available
independence information is also presented. The notion of a partially oriented graph (pog)
is introduced and within this graph the notion of p-d-separation is defined. It is demon-
strated that the p-d-separation within the pog is equivalent to d-separation in all derived
dags.

1. Introduction

An analysis detecting only a model of joint probability distribution of
a set of variables is not of itself a reliable guide to judgements about pol-
icy, which inevitably involves causal conclusions. The policy implications of
empirical data can be completely reversed by alternative hypotheses about
the causal relationships of variables and the estimates of a particular causal
influence can be radically altered by changes in the assumptions made about
other dependencies. For these reasons one of the common aims of empirical
research in the social sciences is to determine the causal relations among a
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set of variables, and to estimate the relative importance of various causal
factors [19)].

How can causal relations among variables be discovered 7

The difficulty of this question may be realized if one consideres the num-
ber of possible causal models for a given set of variables. If the causal de-
pendence of one variable on the other is represented by a directed edge
in a graph, then there are 4™ ("=1)/2 gych models for a set of n variables.
If causal cycles are forbidden, then the number of possible (acyclic) graph
models is still immense: (always more than 2"(~1)/2) for 12 variables it
15:521 939 651 343 829 405 020 504 063 [5). Even if the ordering of the vari-
ables consistent with the given directed acyclic graph (dag) is known, the
number of possibilities remains large: for 12 variables it is 7 - 1019,

A scientist addressing problem areas where causal questions are of con-
cern is therefore faced with an extremely difficult discovery problem, for
which three avenues of solution can be mentioned: (i) use experimental con-
trols to eliminate most of alternative causal structures (ii) introduce prior
knowledge to restrict the space of alternatives; and (iii) use features of sam-
ple data to restrict the space of alternatives. Following the first avenue may
be too expensive or even not feasible, the second one may be not advisable
if theoretical foundtions are too vague so that restrictions imposed by them
may prevent from discovering the true underlying causal structure.

As far as the third alternative is concerned, methodologists routinely
warn against such inferences (exploiting the slogan “correlation does not
imply causation”), warn that “substantial knowledge”, not sample data,
should determine the causal structure of a model (compare e.g. {10, 7]).
Procedures that use the sample data are denounced as “data mining” or
“ransacking”.

Bayesian networks (called also belief networks, probabilistic networks)
encode properties of probability distributions using directed acyclic graphs
(dag). Their usage is spread among many disciplines such as Artificial In-
telligence [12], Decision Analysis [6, 14], Economics [22], Genetics [23], Phi-
losophy [4], and Statistics [9, 18].

Bayesian networks are popular due to existence of numerous efficient
methods of reasoning with probabilities if the joint probability distribution
has an underlying dag structure [11, 12, 15, 16, 17].

Spirtes, Glymour and Scheines [19] formulated a Conjecture (called be-
low SGS Conjecture) that a direct dependence test and a head-to-head meet-
ing test would suffice to construe directed acyclic graph decompositions from
data of a joint probability distribution (Bayesian network) for which Pearl’s
d-separation [2] applies. This conjecture was later shown to be a direct con-
sequence of a result of Pearl and Verma [21], cited as Theorem 1 in [13], see
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also Theorem 3.4. in [20]).

This paper is intended to prove the SGS Conjecture in a new way, by
introducing the concept of p-d-separation (partial dependency separation).
While Pearl’s d-separation, indirectly referred to in the SGS Conjecture,
works with Bayesian networks, p-d-separation is intended to apply to causal
networks: that is partially oriented networks in which orientations are given
only to those edges, that express statistically suggested causal influence,
whereas undirected edges express existence of direct influence without pos-
sibility of determination of direction of causation.

The concept of p-d-separation seems to be more natural in the con-
text of the SGS Conjecture, because the direct dependence test and the
head-to-head meeting test cannot in general recover all edge orientations in
the dag to be reconstructed from the data. Hence at a point the construc-
tion of a dag requires an arbitrary (though compatible) orientation of the
unoriented edges. It is only after this arbitrary edge orientation step that
Pearl’s d-separation concept can be applied to reason qualitatively about
conditional dependence and independence of variables. However, usage of
arbitrary edge orientation in order to reason about independence seems
to be very strange. We suspected that the partially oriented graph (pog)
just before arbitrary orientation may as well be used for qualitative reason-
ing about (in)dependence without inserting unsupported information about
edge orientation. Hence the concept of p-d-separation has been introduced.

We have still to keep in mind that not any partially oriented graph is
suitable for reasoning about independence. Too few edge orientation infor-
mation may produce misleading results. One has to incorporate also the
information about the misses that is that some head-to-head orientations
have been rejected. By formulating so-called principles II¢, IV and V we
managed to pass enough edge orientation information into partially ori-
ented graph (pog), obtained using Spirtes et al. direct dependence test and
head-to-head meeting test to orient the pog, so that p-d-separation in the
resulting pog is equivalent to Pearl’s d-separation in any arbitrarily derived
compatible dag. ‘

As a consequence of validity of the SGS Conjecture and the particular
proof based on p-d-separation, an algorithm for construction of all the di-
rected acyclic graphs (dags) carrying the available independence information
is also presented and justified.

2. A review of d-separation and its important properties
Let us first recall the definition of a Bayesian network, its relation to

intrinsic causal networks and the important d-separation properties shared
by both.
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DEFINITION 1. [2] A Bayesian network is a pair (D, P) where D is a dag
(directed acyclic graph) and P is a probability distribution called the un-
derlying distribution. Each node 7 in D corresponds to a variable X; in P,
a set of nodes I corresponds to a set of variables X; and z;, z; denote val-
ues drawn from the domain of X; and from the (cross product) domain of
X1 respectively. Each node in the network is regarded as a storage cell for
the distribution P(z;|z,(;)) where X, is a set of nodes corresponding to
the parent nodes 7 (%) of . The underlying distribution represented by a
Bayesian network is computed via:

n
P(.’El, ey :En) = H P(:c1|a:,,(z))
=1

Formally, the Bayesian network is nothing more than a representation of
a joint probability distribution. In practice, however, the edges within the
dag associated with the Bayesian network and their orientation are intu-
itively understood as expression of direct causal links and the expression of
orientation of causation. As it is in general assumed that a variable can cause
itself neither directly nor indirectly, we can introduce the partial ordering of
variables such that for a variable X the set of its direct predecessors 7(X)
completely determines the value of X up to a noise, that distrurbs the value
of X (X = f(n(X)) + €). Under these circumstances obviously the joint
probability distribution in all the variables can be appropriately expressend
by a Bayesian network with its dag representing exactly this partial ordering
of causation.

Of course, a Bayesian network can be transformed into another more
complex Bayesian network (e.g. by edge reversal [16]) that expresses the
same joint probability distribution. However, the resulting more complex
Bayesian network will no more be the intrinsic causal network. Hence the
intrinsic causal network is intuitively associated wih the simplest Bayesian
network. A more formal definition of causation and causal networks will be
given in the next section.

The Bayesian networks and hence also the intrinsic causal networks have
several important properties. One of them is the so-called d-separation, re-
lating statistical (conditional) independence to some graph-theoretic proper-
ties of the dag associated with the Bayesian network. We cite in this section
subsequently large portions of section 1 and 2 of Geiger et al. [2].

DEFINITION 2. A trailin a dag is a sequence of links that form a path in the
underlying undirected graph. A node § is called a head-to-head node with
respect to a trail t if there are two consecutive links @« — 8 and 8 + v on
that ¢.
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DEFINITION 3. A trail ¢ connecting nodes « and 3 is said to be active given
a set of nodes L, if (1) every head-to-head-node wrt ¢ either is or has a
descendent in L and (2) every other node on t is outside L. Otherwise t is
said to be blocked (given L).

DEFINITION 4. If J, K and L are three disjoint sets of nodes in a dag D, then
L is said to d-separate J from K, denoted I(J, K|L)p iff no trail between a
node in J and a node in K is active given L.

It has been shown in [3] that

THEOREM 1. Let L be a set of nodes in a dag D, and let o, & L be two
additional nodes in D. Then a and B are connected via an active trail (given
L) iff & and B are connected via a simple (i.e. not possessing cycles in the
underlying undirected graph) active trail (given L).

DEFINITION 5. If Xy, X, X are three disjoint sets of variables of a dis-
tribution P, then X;, Xg are said to be conditionally independent given
X (denoted I(X;, Xk|Xr)p ff P(zy,zk|zr) = P(zs|zL) - P(ezk|zr) for
all possible values of X, Xk, Xt for which P(zr) > 0. I(X;, Xk|X)p is
called a (conditional) independence statement

THEOREM 2. Let Pp = {P|(D,P) is a Bayesian network}. Then
I(J,KlL)D iﬂI(XJ,XKlXL)p for all P € Pp.

The “only if” part (soundness) states that whenever I(J, K|L)p holds
in D, it must represent an independence that holds in every underlying
distribution.

The “if” part (completeness) asserts that any independence that is not
detected by d-separation cannot be shared by all distributions in Pp and
hence cannot be revealed by non-numeric methods.

3. The SGS Conjecture
Many writers have connected causation with statistical dependence. In
[19] the following understanding of causation was assumed:

DEFINITION 6. “Let V be a set of random variables with a joint probability
distribution. We say that variables X,Y €V are directly causally dependent
if and only if there is a causal dependency between X,Y (either the value
of X influences the value of Y or the value of Y influences the value of X or
the value of a third variable not in V influences the values of both X and
Y') that does not involve any other variable in V.”

DEFINITION 7. “We say that B is directly causally dependent on A provided
that A and B are causally dependent and the direction of causal influence
is from A to B.”
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As self-causation of variables is discarded by Spirtes, Glymour and Sche-
ines, we assume that:

DEFINITION 8. An intrinsic causal network is a directed acyclic graph (dag)
over the set of variables V such that there is an edge connecting variables
X,Y €V if and only if X,Y €V are directly causally dependent and the
edge is oriented from X to Y if and only if Y is directly causally dependent
on X. We additionally assume that the joint probability P in variables V is
accessible for computation of marginals and conditional marginals.

In [19] the following principles for association of causation with statistical
dependence were assumed:

“Principle I: For all X,Y in V, X and Y are directly causally dependent
if and only if for every subset S of V not containing X or Y, X and Y are
not statistically independent conditional on S ” (page 185).

“Principle II: If A and B are directly causally dependent and B and
C are directly causally dependent, but A and C are not, then: B is causally
dependent on A, and B is causally dependent on C if and only if A and C
are statistically dependent conditional on any set of variables containing B
and not containing A or C.” (pages 186-187).

“Principle ITI: A directed acyclic graph represents a probability dis-
tribution on the variables that are vertices of the graph if and only if for
all vertices X,Y and all sets S of vertices in the graph (X,)Y ¢ S ), S d-
separates X and Y if and only if X and Y are independent conditional on S
” (page 193).

We refrain here from citing the d-separation definition presented therein,
as it is semantically a bit different from that of Geiger and Pearl [2]. and
we are convinced that the latter is the correct one, so we cited the latter in
the previous section.

Spirtes et al. claim the following:

THEOREM 3. “Let P be a probability distribution represented by an acyclic
directed graph G according to Principle III. Then G is an orientation (G
has the undirected structure) of an undirected graph U that represents P
according to Principle 1.”

THEOREM 4. “Principle III implies Principle I1I.”

SGS Conjecture: “Let I' be the set of directed graphs that represent
probability distribution P according to Principle III. Then T' is also the set
of directed graphs obtained from P by Principles I and IL.”

From the above-mentioned theorems we can easily guess that the orien-
tation of edges in the intrinsic causal network may not be accessible to our
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observation even if the causation mechanism fits the statistical assumptions.
Therefore, for practical reasons, we need the concept of a causal network that
takes this into account.

DEFINITION 9. A causal network is a graph over the set of variables V as
the set of node labels with some edges unoriented and other oriented, that
can be transformed to a dag by proper orienting the unoriented edges, such
that

(1) there is an edge connecting variables X, Y €V if and only if X, Y €V
are directly causally dependent and

(2) if the edge connecting X and Y is oriented then the edge is oriented
from X to Y if and only if Y is directly causally dependent on X.

We additionally assume that the joint probability P in variables V is
accessible for computation of marginals and conditional marginals.

The intrinsic causal network is a specialcase of causal network in which
all the edges are oriented.

4. From the SGS conjecture to a theorem

We shall stress at this point the immense importance of the Spirtes et al.
Conjecture. Principle I, when applied for construction of the dag, refers for
every pair of nodes to the whole future dag structure. Hence it may prove
quite cumbersome to apply - virtually nearly any possible dag needs to be
checked.

On the other hand, Principle I refers in the construction stage only to the
pair of nodes (and to other nodes), but never checks any future (directed
or undirected) edges of the dag. Principle II refers only to nodes in the
“neighbourhood” due to the Principle I and it refers only to nodes and to
two already established undirected edges and never to the future directed
structure of the dag.

Let us introduce some notions. First let us define a partially oriented
graph (pog).

DEFINITION 10. A partially oriented graph (pog) is a structure (V, E, O),
where

1. V is the set of nodes,
2. Eis the set of edges with an edge being a subset of V with cardinality 2,
3. O : E — 2V*V is the orientation function of edges assigning each edge
{Xi, X;}in E
(a) either the orientation {} (no orientation)
(b) or {(X;, X;)} (from X; to Xj),
(c) or {(X;,X:)} (from X; to X;)
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(d) or {(X;, X;), (X}, X;)} (both from X; to X; ) and from X; to X;).

The last (bidirectional) orientation is an unpleasant one, but may occur
in processes described below, If the first (empty) orientation is assigned, the
edge is called unoriented, otherwise it is called oriented.

Furthermore let us call two edges neighbouring edges iff they share a
vertex. Let {X;, X;} and {X}, X;} be neighbouring edges (they share X
so they are neighbouring at X;). We call them bridged edges iff there ex-
ists an edge {X;, Xi} in E. Otherwise they are called unbridged. The edge
{Xi, X;} (with respect to the neighbouring pair of edges) is said to be head-
to-neighbour oriented iff (X;, X;) € O({X;, X;}). The edge {X;, X;} (with
respect to the neighbouring pair of edges) is said to be tail-to-neighbour
oriented iff (X;, X;) € O({X;, X;}).

As the first step in proving the validity of the SGS conjecture let us
strengthen Theorem 3. In general, several different dags Gi,Gs,... may
represent the probability distribution P according to Principle III. Each of
the dags has an underlying structure (unoriented graph) Uy, Uy, . ... But for
a given set of variables, it is easily seen that Principle I applied to a distri-
bution P yields exactly one undirected graph U, because in the formulation
of Principle I there is no reference to the structure of the underlying dag.
Hence U= U; = U = .. .. So the phrase “an undirected graph U” should be
replaced with “the undirected graph U” in Theorem 3.

(So if the intrinsic graph is given by Fig.1 then Principle I yields a graph
given by Fig.2).

Let us look at this theorem more closely. If two nodes/variables X;
and X; are connected via an undirected edge within the U-graph gener-
ated by Principle I, then there exists no set of variables Yi,...., Yy such
that for every combination of values P(z;, z{y1,...,yn) = P(Zily1, ..., ¥n) -
P(z;ly1,...,yn) as otherwise the edge would not be inserted. Assume for a
moment Principle III would not generate a directed edge connecting both
variables in a directed graph D. Then in this graph D a d-separation of both
variables can be found: take simply the set of nodes that directly precede
any of the variables. But this would enforce conditional independence in
contradiction with the result established previously. So any edge generated
by Principle I is also present in every graph generated by Principle III.

On the other hand if Principle I establishes that there is no undirected
edge connecting both variables then there exists a set of variables on which
these two are conditionally independent. But then Principle III cannot es-
tablish an edge between them as there would exist no d-separation between
them. So whenever Principle I establishes no edge between variables, no edge
will be established by Principle III.
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X10
[
X3 X4 Xg Xs
® o
X1 X2 Xs
o o ®

X7 Xg

Figure 1. An Example of a Directed Acyclic Graph (dag)

X10

®

X3 X4 Xo X5
[ J [ ®
X1 X5 Xe
[ [ [

[
X7 Xsg

Figure 2. An undirected graph obtained by application of Principle I
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Let us consider the graph U generated by Principle I. Let us consider
partial orientations of the graph U generated from it by Principle II. It is
easily seen that there may be only one such orientation. Let us turn our
attention to Theorem 4.

Let us consider a head-to-head meeting of directed edges (X;, X)),
(Xj,X1) generated by Principle II, that is X;, X; not being directly con-
nected in U, X;, X; being directly connected in U, X}, X; being directly
connected in U, no set containing X; rendering X;, X; independent. Then
Principle III has also to generate this head-to-head meeting as the existence
of the trail of directed edges (X;, X;), (X;, X;) guarantees in this case that
no d-separation containing X; exists. So every head-to-head-meeting gener-
ated by Principle II occurs also in every graph generated by Principle III.
On the other hand, if during testing independence by means of Principle II
for the edges (X;, X1), (X;, X1) a set containing X; was detected such that it
renders X;, X; independent, then head-to-head meeting of these edges must
not occur if Principle I1I is applied.

In this way we have established that: if there exists a dag of the distribu-
tion generated by Principle III, then application of Principles I and IT will
deliver its undirected structure and orientation of all those unbridged pairs
of arcs that meet head-to-head at a node.

(So if the intrinsic graph is given by Fig.1 then Principle II yields a graph
given by Fig.3).

Let us now discuss which orientations of other arcs are established rigidly
by Principle III. Pearl’s definition of d-separation refers to arc orientation
at following nodes: (1) head-to-head nodes

(2) direct and indirect descendants of head-to-head nodes

So let us establish the following principle:

Principle II¢ Let H be a partially oriented graph generated by Princi-
ples I and II. Whenever {Xj;, X;} and {Xj, X;} are neighbouring unbridged
edges, with {X;, X;} being head-to-neighbour oriented and {Xy, X;} being
unoriented, orient {Xj, X;} tail-to-neighbour.

Please notice that Principle I1€ is a kind of operationalization of Principle
II, as it is a direct consequence of the “if and only if” expression in Principle
IL. It has been introduced because the formulation of Principle II directs our
attention to orienting edges head-to-head, but it is less obvious that it also
implies some head-to-tail orientations.

Obviously, the following theorem holds:

THEOREM 5. Principle IIT implies Principle I°.

The Theorem is obvious if we consider the previous ones. (So if the intrin-
sic graph is given by Fig.1 then Principle II°¢ yields a graph given by Fig.4).
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X0
®
X3 X4 }\ X5
® ® [ )
X1 Xo Xe
[ J ® ®
—_— e
X7 X3

Figure 3. A partially oriented graph due to Principle II(nodes X4, Xg, X9)

X10

®

X3 X4 X9 Xs
® ® @
X1 Xa Xe
® ® [ )

®
X7 Xg

Figure 4. A partially oriented graph due to Principle II° (arrow (X§, X3))
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X10

]
X3 X4 XQ\ Xs
® ® @
X1 Xo Xe
o ® [

®
X7 Xsg

Figure 5. A partially oriented graph due to Principle IV (arrows (X7, X3), (X5, X3))

X10

®

Xs X4 | JA Xs
[ J [ ) [ )
X1 X2 Xs
o ® ®

[ ]
Xy Xs

Figure 6. A partially oriented graph due to Principle V (arrow (X109, X9)). Nodes X, X3,
Xg, Xg are legitimately removable.
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Furthermore let us introduce the following principle:

Principle IV: Let H be a partially oriented graph. Let the subgraph
H’ of H contain only oriented edges in H. Let {Xj;, X;} be an unoriented
edge in H. If X is a descendent of X; in H’, then orient this edge from X;
to X Iz
THEOREM 6. Dag-structure and Principle III imply Principle IV.

(So if the intrinsic graph is given by Fig.1 then Principle IV yields a
graph given by Fig.5).

Principle V: Let H be a partially oriented graph generated by Principles
I and II. Let the unbridged edges {Xi, X;}, {Xk, X;} be oriented head-
to-head by Principle II. Let both edges {X;, Xi}, {X;, Xi} or both edges
{Xk, X}, {X;, X1}, or all the edges {X;, Xi}, {Xk, X}, {X;, Xi} be left
unoriented in the process. Then orient {X;, X;} as from X; to X;.

(If the intrinsic graph is given by Fig.1 then Principle V yields a graph
given by Fig.6).
THEOREM 7. Dag-structure and Principle III imply Principle V.
Proof: The edges {X;, Xi}, {Xk, X1} (see Fig.7) are unbridged (because
{Xi, X;}, {Xk, X;} are unbridged), hence their orientation head-to-head is

excluded (as Principle II didn’t orient them). Hence either we have orienta-
tion (Xj, X;) or (Xl,Xk)

i X; Xk
@ [ [ )

Figure 7. Visualisation to the Proof of Theorem on Principle V

Let us assume the orientation (X;, X;) of {X;, X;}. Then if {X;, X;}
would be oriented (Xj;, X)) then Xj, X;, X; would form an oriented cycle,
hence H would not be a dag. So this is impossible.

Let us assume the orientation (Xj, Xj) of {Xj, X;}. Then if {X;, X;}
would be oriented (Xj;,X;) then X;, X;, X, would form an oriented cycle,
hence H would not be a dag. So this is impossible.

Hence {X;, X;} must be oriented (X, X;). Q.e.d.O

To prove the SGS conjecture we shall introduce first the notion of p-d-
separation.
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DEFINITION 11. A p-trail in a pog is a sequence of links that form a path
in the underlying undirected graph. A node 8 is called a head-to-head node
with respect to a p-trail ¢ if there are two consecutive links @« — 8 and
B < v on that ¢t. A p-trail is minimal iff no two of its succeeding links on
the p-trail are bridged in the graph.

DEFINITION 12. A p-descendent of a node n in a pog is any node m such
that there exists a minimal p-trail from n to m such that every oriented link
on the p-trail is oriented from n to m and an oriented edge (m,n) does not
exist in the graph.

DEFINITION 13. A p-trail ¢ connecting nodes o and (3 is said to be active
given a set of nodes L, if (1) every head-to-head-node wrt t either is or has
a p-descendent in L and (2) every other node on ¢ is outside L. Otherwise ¢
is said to be blocked (given L).

DeriNITION 14. If J, K and L are three disjoint sets of nodes in a pog H,
then L is said to p-d-separate J from K, denoted I(J, K|L)y iff no minimal
p-trail between a node in J and a node in K is active given L.

We claim that

THEOREM 8. Let L be a set of nodes in a pog H, and let o, & L be two
additional nodes in H. Then a and (3 are connected via an active p-trail
(given L) iff @ and B are connected via a simple (i.e. not possessing cycles
in the underlying undirected graph) active p-trail (given L).

Now let us formulate the central theorem of this paper.

THEOREM 9. Let D be a dag generated by Principle III. Let H be a pog
generated by Principles I, I, IFF, IV and V. Then I(J,K|L)g iff I(J, K|L)p

Proof: To show this, let us consider an active minimal p-trail. We claim
that there exists then an active trail.

If after final orientation no head-to-head meeting occurs on the p-trail
then this is also the interesting active trail. Otherwise if there exists a head-
to-head-meeting on the underlying trail then two cases are possible: (1) it
existed on the original p-trail, (2) it did not exist on the original p-trail. The
second case is impossible since then it must have been generated by Principle
IT (the meeting edges are unbridged). So we have had also a head-to-head-
meeting on the original p-trail. So let us consider the p-descenders of the
head-to-head-meeting. No head-to-head-meeting could have been generated
on the path as the p-trail to the descendent was minimal. p-descendents of
head-to-head meetings connected by unoriented links form a kind of equiva-
lence class in that if the edges (A,B), (C,B) are there and D is a p-descendent
of B on a totally unoriented path then oriented edges (A,D) and (C,D) are
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X10
®
X4 X
®
X1 Xs Xe
® ® o
Xy

Figure 8. After legitimate removal of nodes X3, Xg and Xg. (The arrow (X4, X3) was
inforced). Nodes X, X4, X¢ are legitimately removable.

also present. So p-descendants are either descendants (OK) or are such pre-
decessors, that they form together with the nodes of the primary p-trail but
the discussed head-to-head node a minimal p-trail containing that predeces-
sor as a head-to-head node and which proves to be an active trail in the dag
(see Fig.9).

X6 Xis
[ J o
11 X14 X2
o [ ®
Xa7
.x——>13 ®

Figure 9. A partially oriented graph. Active trails and active p-trails. Consider the p-
trail (X131, X15), (X15,X12) and assume the node X33 being blocked. The p-trail under
consideration is active. In any derived dag either the trail (X131, X15), (X15, X12) is active
or there exists another trail (e.g. (X11,X13), (X13, X12)) that is active.
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Let us consider an active minimal trail. We claim that then there exists a
minimal p-trail. First of all all the successors are also p-successors. Second,
a minimal trail is also a minimal p-trail. Now the question is whether or not
it is also active. As the trail is minimal, no head-to-head meeting will vanish
on the p-trail. Hence also the successor requirement is met. So the proof is
complete. Q.e.d.O

This theorem actually corresponds straight forwardly to the SGS con-
jecture. The only difference to it is the extensive use of Principle II¢ that
is actually a kind of exploitation of the Spirtes Principle II. Furthermore,
it is to some extent constructive: it states how it is possible to uncover the
d-separations applying only Principles I, II, IT1¢, IV and V for construction
of a pog, and without actually instantiating a single dag. It is immediately
visible, that any dag compatible with the pog expresses exactly all the in-
dependences Principle IIT dag does and hence is a Principle III dag.

We can however be still more constructive and formulate the construction
algorithm for generation of all the dags according to Principle III based only
on the results of Principles I, II, II¢, IV and V and the definition of a dag.

Let us define the legitimate removal of a node from the pog graph:

DEFINITION 15. A node can be removed legitimately from a pog iff all the
oriented edges it meets are oriented towards it, and all pairs of edges meeting
at it for which at least one is unoriented, are bridged.

Pog-to-dag algorithm:

1. Find a legitimately removable node in the pog, remove it with edges
meeting it while marking the edges as oriented towards this node.

2. Proceed with Step.1 until all the nodes are removed.

3. Orient the edges of the original pog so as they were marked in step 1.

Notice that the algorithm is non-deterministic: At step 1 we can have
several candidate legimately removable nodes. Selecting any of them may
lead to different, though statistically equivalent dags.

(Compare Fig. 6, Fig. 8). We claim that:

THEOREM 10. Let there ezist a dag obtainable from Principle III. Let G be a
pog generated from Principles I, II, IFF, IV and V. Then every dag obtained
from the pog B by the above algorithm is a Principle III dag. Every Principle
III dag for this population is a dag obtainable from G by means of the above
algorithm.

Proof: This is easily seen as on the one hand every dag has a legitimately
removable node, and on the other hand the orientations generated by the
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above algorithm do not lead to any conflict with Principles I,II,II¢, IV and
V, if a dag exists. Q.e.d.O

In this way we hope to have also shown the validity of the SGS conjecture
definitely, giving a constructive algorithm to generate the dag out of a pog
which is necessary for belief network applications.

The result of this section may be stated as follows

THEOREM 11. Let I" be the set of directed graphs that represent probability
distribution P according to Principle III. Then I is also the set of directed
graphs obtained from P by Principles I and II.

Proof: Let us look closely at Theorem 9. From Theorems 3 and 4 we know
that any dag D in I must have been generated also by Principles I and II.
As Principles II¢, IV and V follow from Principles I and IT and from the
property of being a dag (look at Theorems 5, 6, 7), then any dag in I" as
generated by Principle III would also be generated by Principles I, II, II€,
IV and V. Let us take now any of these dags in I", say D. Let us assume
that from the respective pog H generated by Principles I, II, II¢, IV and V
(that is in fact from the only such pog H) a different dag D’ may be derived
beside D. From Theorem 9 we have: I(J, K|L)g iff I{J,K|L)p, but also:
I(J,K|L)y iff I(J, K|L)p:. Hence also I(J, K|L)p iff I(J, K|L)ps. But then
D’ must also have been generated by Principle IIT as both D and D’ carry
the same independence information.

So we see immediately that any dag in I' must have been generated by
Principles I and II and all the dags derived via Principles I and II must be
inT. Q.e.d.O

5. Discussion and Conclusions

In this paper, the notion of p-d-separation was introduced for causal
networks, paralleling the notion of d-separation of [2] in belief networks. Its
usefulness and power for representation of dependence/independence rela-
tions in causal networks was demonstrated by providing another proof of
the SGS conjecture from [19].

Specifically: In this paper, new Principles II¢, IV and V were introduced
allowing to orient constructively more edges of the undirected underlying
graph of the causal structure than it was possible using only original Princi-
ples Land II of Spirtes et al [19]. Furthermore, an algorithm was given allow-
ing for derivation of all the dags having identical dependence/independence
information as the partially oriented graph derived from Principles I and
I1, provided at least one dag exists. The new notion of p-d-separation par-
alleling d-separation of Geiger, Verma and* Pearl [2], being applicable to
partially oriented graphs was introduced and has been shown to carry the
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same dependence/independence information as all the d-separations of all
compatible dags.

Over the last years a number of alternative (both general and specialized)
methods for construction of probabilistic belief networks has been proposed
(compare the method described in [1] and other discussed in last sections
therein and also in [20]). The SGS conjecture investigated here deserved spe-
cial attention because it relates the oriented structure of a directed acyclic
graph representation to the causal relationship in the described part of re-
ality.

With the power of p-d-separation, a (partially recovered) causal net-
work structure can be used for qualitative reasoning about statistical depen-
dence/independence in just the same manner as a belief network structure
is exploited for qualitative statistical reasoning in [2].

We shall draw attention to the fact that the concept of p-d-separation
appears to be more natural in the context of the SGS conjecture, because
Principles I and II do not in general recover all edge orientations in the
dag to be reconstructed from the data. Therefore, to obtain a dag an ar-
bitrary (though compatible) orientation of the unoriented edges is needed,
because only after this arbitrary edge orientation step Pearl’s d-separation
concept can be applied to reason qualitatively about marginal and condi-
tional dependence and independence of variables. But such an orientation
stage adds information not supported by anything and hence it is unnat-
ural. p-d-separation allows for the same qualitative reasoning but without
the arbibtrary information. Also the edge-orientation stage may turn out
to be complex because not all edge orientations may turn out to be con-
sistent both with dag properties and constraints resultung from principle
II. So back-tracking while randomly orienting may be necessary. Checking
p-d-separation in a partially oriented graph may be less cumbersome.

Not any partially oriented graph is suitable for reasoning about indepen-
dence. Too few edge orientation information may lead to misleading results.
By formulating so-called principles II¢, IV and V we managed to pass enough
edge orientation information into partially oriented graph (pog), obtained
using Spirtes et al. Principles I and II, so that p-d-separation in the re-
sulting pog is equivalent to Pearl’s d-separation in any arbitrarily derived
compatible dag.

This research is restricted to the case of causally sufficient sets of vari-
ables that is to cases when all variables needed to construct a dag of the
intrinsic underlying process are available. Further research is needed to ex-
tend the notion of p-d-separation on causal network recovery from data un-
der causal insufficiency, that is whenever influential variables remain hidden.
The concept of Possible-D-Sep from [20] can be considered as a good start-
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ing point, but the need to maintain information (on discarded head-to-head
meetings) beside the partially oriented graph is to some extent discourag-
ing. It should be attempted to get the outside constraints into the partially
oriented graphs as done in this paper for causally sufficient cases.

As the only reference to the data in this methodology relies on condi-
tional dependence/independence test, also an investigation has been started
on possibilities of extension of the methodology onto Dempsterian-Shaferian
belief networks and other constructs for which the dependence/independence
test from the data may be carried out.
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