

Mieczysław A. Kłopotek

**PARTIAL DEPENDENCY SEPARATION – A NEW CONCEPT
FOR EXPRESSING DEPENDENCE-INDEPENDENCE
RELATIONS IN CAUSAL NETWORKS**

Abstract. Spirtes, Glymour and Scheines [19] formulated a Conjecture that a direct dependence test and a head-to-head meeting test would suffice to construe directed acyclic graph decompositions of a joint probability distribution (Bayesian network) for which Pearl's d-separation [2] applies. This Conjecture was later shown to be a direct consequence of a result of Pearl and Verma [21], cited as Theorem 1 in [13], see also Theorem 3.4. in [20].

This paper is intended to prove this Conjecture in a new way, by introducing the concept of p-d-separation (partial dependency separation). While Pearl's d-separation works with Bayesian networks, p-d-separation is intended to apply to causal networks: that is partially oriented networks in which orientations are given to only to those edges, that express statistically confirmed causal influence, whereas undirected edges express existence of direct influence without possibility of determination of direction of causation.

As a consequence of the particular way of proving the validity of this Conjecture, an algorithm for construction of all the directed acyclic graphs (dags) carrying the available independence information is also presented. The notion of a partially oriented graph (pog) is introduced and within this graph the notion of p-d-separation is defined. It is demonstrated that the p-d-separation within the pog is equivalent to d-separation in all derived dags.

1. Introduction

An analysis detecting only a model of joint probability distribution of a set of variables is not of itself a reliable guide to judgements about policy, which inevitably involves causal conclusions. The policy implications of empirical data can be completely reversed by alternative hypotheses about the causal relationships of variables and the estimates of a particular causal influence can be radically altered by changes in the assumptions made about other dependencies. For these reasons one of the common aims of empirical research in the social sciences is to determine the causal relations among a

Keywords: soft computing, knowledge representation, Bayesian networks, causal networks, I.2.3, I.2.4.

set of variables, and to estimate the relative importance of various causal factors [19].

How can causal relations among variables be discovered ?

The difficulty of this question may be realized if one consideres the number of possible causal models for a given set of variables. If the causal dependence of one variable on the other is represented by a directed edge in a graph, then there are $4^{n \cdot (n-1)/2}$ such models for a set of n variables. If causal cycles are forbidden, then the number of possible (acyclic) graph models is still immense: (always more than $2^{n \cdot (n-1)/2}$) for 12 variables it is: 521 939 651 343 829 405 020 504 063 [5]. Even if the ordering of the variables consistent with the given directed acyclic graph (dag) is known, the number of possibilities remains large: for 12 variables it is $7 \cdot 10^{19}$.

A scientist addressing problem areas where causal questions are of concern is therefore faced with an extremely difficult discovery problem, for which three avenues of solution can be mentioned: (i) use experimental controls to eliminate most of alternative causal structures (ii) introduce prior knowledge to restrict the space of alternatives; and (iii) use features of sample data to restrict the space of alternatives. Following the first avenue may be too expensive or even not feasible, the second one may be not advisable if theoretical foundtions are too vague so that restrictions imposed by them may prevent from discovering the true underlying causal structure.

As far as the third alternative is concerned, methodologists routinely warn against such inferences (exploiting the slogan “correlation does not imply causation”), warn that “substantial knowledge”, not sample data, should determine the causal structure of a model (compare e.g. [10, 7]). Procedures that use the sample data are denounced as “data mining” or “ransacking”.

Bayesian networks (called also belief networks, probabilistic networks) encode properties of probability distributions using directed acyclic graphs (dag). Their usage is spread among many disciplines such as Artificial Intelligence [12], Decision Analysis [6, 14], Economics [22], Genetics [23], Philosophy [4], and Statistics [9, 18].

Bayesian networks are popular due to existence of numerous efficient methods of reasoning with probabilities if the joint probability distribution has an underlying dag structure [11, 12, 15, 16, 17].

Spirtes, Glymour and Scheines [19] formulated a Conjecture (called below SGS Conjecture) that a direct dependence test and a head-to-head meeting test would suffice to construe directed acyclic graph decompositions from data of a joint probability distribution (Bayesian network) for which Pearl’s d-separation [2] applies. This conjecture was later shown to be a direct consequence of a result of Pearl and Verma [21], cited as Theorem 1 in [13], see

also Theorem 3.4. in [20]).

This paper is intended to prove the SGS Conjecture in a new way, by introducing the concept of p-d-separation (partial dependency separation). While Pearl's d-separation, indirectly referred to in the SGS Conjecture, works with Bayesian networks, p-d-separation is intended to apply to causal networks: that is partially oriented networks in which orientations are given only to those edges, that express statistically suggested causal influence, whereas undirected edges express existence of direct influence without possibility of determination of direction of causation.

The concept of p-d-separation seems to be more natural in the context of the SGS Conjecture, because the direct dependence test and the head-to-head meeting test cannot in general recover all edge orientations in the dag to be reconstructed from the data. Hence at a point the construction of a dag requires an arbitrary (though compatible) orientation of the unoriented edges. It is only after this arbitrary edge orientation step that Pearl's d-separation concept can be applied to reason qualitatively about conditional dependence and independence of variables. However, usage of arbitrary edge orientation in order to reason about independence seems to be very strange. We suspected that the partially oriented graph (pog) just before arbitrary orientation may as well be used for qualitative reasoning about (in)dependence without inserting unsupported information about edge orientation. Hence the concept of p-d-separation has been introduced.

We have still to keep in mind that not any partially oriented graph is suitable for reasoning about independence. Too few edge orientation information may produce misleading results. One has to incorporate also the information about the misses that is that some head-to-head orientations have been rejected. By formulating so-called principles II^c, IV and V we managed to pass enough edge orientation information into partially oriented graph (pog), obtained using Spirtes et al. direct dependence test and head-to-head meeting test to orient the pog, so that p-d-separation in the resulting pog is equivalent to Pearl's d-separation in any arbitrarily derived compatible dag.

As a consequence of validity of the SGS Conjecture and the particular proof based on p-d-separation, an algorithm for construction of all the directed acyclic graphs (dags) carrying the available independence information is also presented and justified.

2. A review of d-separation and its important properties

Let us first recall the definition of a Bayesian network, its relation to intrinsic causal networks and the important d-separation properties shared by both.

DEFINITION 1. [2] A *Bayesian network* is a pair (D, P) where D is a dag (directed acyclic graph) and P is a probability distribution called the *underlying distribution*. Each node i in D corresponds to a variable X_i in P , a set of nodes I corresponds to a set of variables X_I and x_i, x_I denote values drawn from the domain of X_i and from the (cross product) domain of X_I respectively. Each node in the network is regarded as a storage cell for the distribution $P(x_i|x_{\pi(i)})$ where $X_{\pi(i)}$ is a set of nodes corresponding to the parent nodes $\pi(i)$ of i . The underlying distribution represented by a Bayesian network is computed via:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i|x_{\pi(i)}).$$

Formally, the Bayesian network is nothing more than a representation of a joint probability distribution. In practice, however, the edges within the dag associated with the Bayesian network and their orientation are intuitively understood as expression of direct causal links and the expression of orientation of causation. As it is in general assumed that a variable can cause itself neither directly nor indirectly, we can introduce the partial ordering of variables such that for a variable X the set of its direct predecessors $\pi(X)$ completely determines the value of X up to a noise, that distrubrs the value of X ($X = f(\pi(X)) + \epsilon$). Under these circumstances obviously the joint probability distribution in all the variables can be appropriately expressend by a Bayesian network with its dag representing exactly this partial ordering of causation.

Of course, a Bayesian network can be transformed into another more complex Bayesian network (e.g. by edge reversal [16]) that expresses the same joint probability distribution. However, the resulting more complex Bayesian network will no more be the intrinsic causal network. Hence the intrinsic causal network is intuitively associated wih the simplest Bayesian network. A more formal definition of causation and causal networks will be given in the next section.

The Bayesian networks and hence also the intrinsic causal networks have several important properties. One of them is the so-called d-separation, relating statistical (conditional) independence to some graph-theoretic properties of the dag associated with the Bayesian network. We cite in this section subsequently large portions of section 1 and 2 of Geiger et al. [2].

DEFINITION 2. A *trail* in a dag is a sequence of links that form a path in the underlying undirected graph. A node β is called a *head-to-head node* with respect to a trail t if there are two consecutive links $\alpha \rightarrow \beta$ and $\beta \leftarrow \gamma$ on that t .

DEFINITION 3. A trail t connecting nodes α and β is said to be *active* given a set of nodes L , if (1) every head-to-head-node wrt t either is or has a descendent in L and (2) every other node on t is outside L . Otherwise t is said to be *blocked* (given L).

DEFINITION 4. If J, K and L are three disjoint sets of nodes in a dag D , then L is said to *d-separate* J from K , denoted $I(J, K|L)_D$ iff no trail between a node in J and a node in K is active given L .

It has been shown in [3] that

THEOREM 1. *Let L be a set of nodes in a dag D , and let $\alpha, \beta \notin L$ be two additional nodes in D . Then α and β are connected via an active trail (given L) iff α and β are connected via a simple (i.e. not possessing cycles in the underlying undirected graph) active trail (given L).*

DEFINITION 5. If X_J, X_K, X_L are three disjoint sets of variables of a distribution P , then X_J, X_K are said to be conditionally independent given X_L (denoted $I(X_J, X_K|X_L)_P$ iff $P(x_J, x_K|x_L) = P(x_J|x_L) \cdot P(x_K|x_L)$ for all possible values of X_J, X_K, X_L for which $P(x_L) > 0$). $I(X_J, X_K|X_L)_P$ is called a *(conditional) independence statement*

THEOREM 2. *Let $P_D = \{P|(D, P)$ is a Bayesian network\}. Then $I(J, K|L)_D$ iff $I(X_J, X_K|X_L)_P$ for all $P \in P_D$.*

The “only if” part (soundness) states that whenever $I(J, K|L)_D$ holds in D , it must represent an independence that holds in every underlying distribution.

The “if” part (completeness) asserts that any independence that is not detected by d-separation cannot be shared by all distributions in P_D and hence cannot be revealed by non-numeric methods.

3. The SGS Conjecture

Many writers have connected causation with statistical dependence. In [19] the following understanding of causation was assumed:

DEFINITION 6. “Let \mathbf{V} be a set of random variables with a joint probability distribution. We say that variables $X, Y \in \mathbf{V}$ are *directly causally dependent* if and only if there is a causal dependency between X, Y (either the value of X influences the value of Y or the value of Y influences the value of X or the value of a third variable not in \mathbf{V} influences the values of both X and Y) that does not involve any other variable in \mathbf{V} .”

DEFINITION 7. “We say that B is *directly causally dependent on A* provided that A and B are causally dependent and the direction of causal influence is from A to B .”

As self-causation of variables is discarded by Spirtes, Glymour and Scheines, we assume that:

DEFINITION 8. An *intrinsic causal network* is a directed acyclic graph (dag) over the set of variables \mathbf{V} such that there is an edge connecting variables $X, Y \in \mathbf{V}$ if and only if $X, Y \in \mathbf{V}$ are directly causally dependent and the edge is oriented from X to Y if and only if Y is directly causally dependent on X . We additionally assume that the joint probability P in variables \mathbf{V} is accessible for computation of marginals and conditional marginals.

In [19] the following principles for association of causation with statistical dependence were assumed:

“Principle I: For all X, Y in \mathbf{V} , X and Y are directly causally dependent if and only if for every subset \mathbf{S} of \mathbf{V} not containing X or Y , X and Y are not statistically independent conditional on \mathbf{S} ” (page 185).

“Principle II: If A and B are directly causally dependent and B and C are directly causally dependent, but A and C are not, then: B is causally dependent on A , and B is causally dependent on C if and only if A and C are statistically dependent conditional on any set of variables containing B and not containing A or C .” (pages 186-187).

“Principle III: A directed acyclic graph represents a probability distribution on the variables that are vertices of the graph if and only if for all vertices X, Y and all sets \mathbf{S} of vertices in the graph ($X, Y \notin \mathbf{S}$), \mathbf{S} d-separates X and Y if and only if X and Y are independent conditional on \mathbf{S} ” (page 193).

We refrain here from citing the d-separation definition presented therein, as it is semantically a bit different from that of Geiger and Pearl [2]. and we are convinced that the latter is the correct one, so we cited the latter in the previous section.

Spirtes et al. claim the following:

THEOREM 3. “*Let P be a probability distribution represented by an acyclic directed graph G according to Principle III. Then G is an orientation (G has the undirected structure) of an undirected graph U that represents P according to Principle I.*”

THEOREM 4. “*Principle III implies Principle II.*”

SGS Conjecture: “*Let Γ be the set of directed graphs that represent probability distribution P according to Principle III. Then Γ is also the set of directed graphs obtained from P by Principles I and II.*”

From the above-mentioned theorems we can easily guess that the orientation of edges in the intrinsic causal network may not be accessible to our

observation even if the causation mechanism fits the statistical assumptions. Therefore, for practical reasons, we need the concept of a causal network that takes this into account.

DEFINITION 9. A *causal network* is a graph over the set of variables \mathbf{V} as the set of node labels with some edges unoriented and other oriented, that can be transformed to a dag by proper orienting the unoriented edges, such that

- (1) there is an edge connecting variables $X, Y \in \mathbf{V}$ if and only if $X, Y \in \mathbf{V}$ are directly causally dependent and
- (2) if the edge connecting X and Y is oriented then the edge is oriented from X to Y if and only if Y is directly causally dependent on X .

We additionally assume that the joint probability P in variables \mathbf{V} is accessible for computation of marginals and conditional marginals.

The intrinsic causal network is a special case of causal network in which all the edges are oriented.

4. From the SGS conjecture to a theorem

We shall stress at this point the immense importance of the Spirtes et al. Conjecture. Principle III, when applied for construction of the dag, refers for every pair of nodes to the whole future dag structure. Hence it may prove quite cumbersome to apply - virtually nearly any possible dag needs to be checked.

On the other hand, Principle I refers in the construction stage only to the pair of nodes (and to other nodes), but never checks any future (directed or undirected) edges of the dag. Principle II refers only to nodes in the "neighbourhood" due to the Principle I and it refers only to nodes and to two already established undirected edges and never to the future directed structure of the dag.

Let us introduce some notions. First let us define a *partially oriented graph* (pog).

DEFINITION 10. A *partially oriented graph* (pog) is a structure (\mathbf{V}, E, O) , where

1. \mathbf{V} is the set of nodes,
2. E is the set of edges with an edge being a subset of \mathbf{V} with cardinality 2,
3. $O : E \rightarrow 2^{V \times V}$ is the orientation function of edges assigning each edge $\{X_i, X_j\}$ in E
 - (a) either the orientation $\{\}$ (no orientation)
 - (b) or $\{(X_i, X_j)\}$ (from X_i to X_j),
 - (c) or $\{(X_j, X_i)\}$ (from X_j to X_i)

(d) or $\{(X_i, X_j), (X_j, X_i)\}$ (both from X_i to X_j and from X_j to X_i).

The last (bidirectional) orientation is an unpleasant one, but may occur in processes described below. If the first (empty) orientation is assigned, the edge is called unoriented, otherwise it is called oriented.

Furthermore let us call two edges *neighbouring edges* iff they share a vertex. Let $\{X_i, X_j\}$ and $\{X_k, X_j\}$ be neighbouring edges (they share X_j so they are neighbouring at X_j). We call them *bridged edges* iff there exists an edge $\{X_i, X_k\}$ in E . Otherwise they are called *unbridged*. The edge $\{X_i, X_j\}$ (with respect to the neighbouring pair of edges) is said to be *head-to-neighbour* oriented iff $(X_i, X_j) \in O(\{X_i, X_j\})$. The edge $\{X_i, X_j\}$ (with respect to the neighbouring pair of edges) is said to be *tail-to-neighbour* oriented iff $(X_j, X_i) \in O(\{X_i, X_j\})$.

As the first step in proving the validity of the SGS conjecture let us strengthen Theorem 3. In general, several different dags G_1, G_2, \dots may represent the probability distribution P according to Principle III. Each of the dags has an underlying structure (unoriented graph) U_1, U_2, \dots . But for a given set of variables, it is easily seen that Principle I applied to a distribution P yields exactly one undirected graph U , because in the formulation of Principle I there is no reference to the structure of the underlying dag. Hence $U = U_1 = U_2 = \dots$. So the phrase “an undirected graph U ” should be replaced with “the undirected graph U ” in Theorem 3.

(So if the intrinsic graph is given by Fig.1 then Principle I yields a graph given by Fig.2).

Let us look at this theorem more closely. If two nodes/variables X_i and X_j are connected via an undirected edge within the U -graph generated by Principle I, then there exists no set of variables Y_1, \dots, Y_k such that for every combination of values $P(x_i, x_j | y_1, \dots, y_n) = P(x_i | y_1, \dots, y_n) \cdot P(x_j | y_1, \dots, y_n)$ as otherwise the edge would not be inserted. Assume for a moment Principle III would not generate a directed edge connecting both variables in a directed graph D . Then in this graph D a d-separation of both variables can be found: take simply the set of nodes that directly precede any of the variables. But this would enforce conditional independence in contradiction with the result established previously. So any edge generated by Principle I is also present in every graph generated by Principle III.

On the other hand if Principle I establishes that there is no undirected edge connecting both variables then there exists a set of variables on which these two are conditionally independent. But then Principle III cannot establish an edge between them as there would exist no d-separation between them. So whenever Principle I establishes no edge between variables, no edge will be established by Principle III.

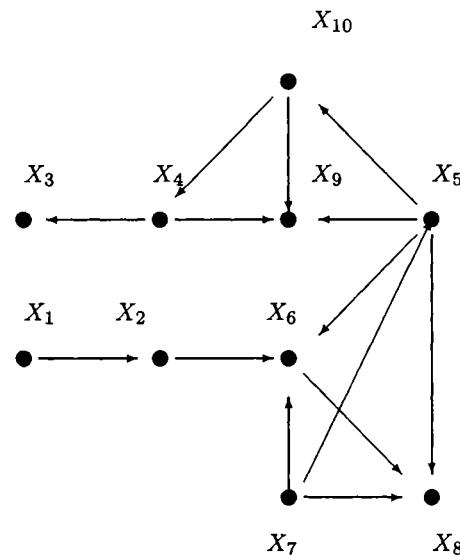


Figure 1. An Example of a Directed Acyclic Graph (dag)

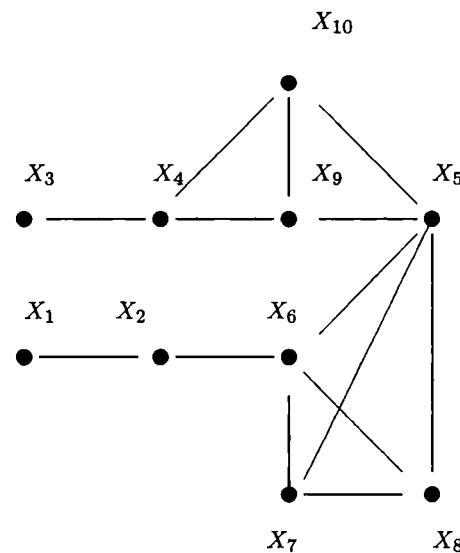


Figure 2. An undirected graph obtained by application of Principle I

Let us consider the graph U generated by Principle I. Let us consider partial orientations of the graph U generated from it by Principle II. It is easily seen that there may be only one such orientation. Let us turn our attention to Theorem 4.

Let us consider a head-to-head meeting of directed edges (X_i, X_l) , (X_j, X_l) generated by Principle II, that is X_i, X_j not being directly connected in U , X_i, X_l being directly connected in U , X_j, X_l being directly connected in U , no set containing X_l rendering X_i, X_j independent. Then Principle III has also to generate this head-to-head meeting as the existence of the trail of directed edges (X_i, X_l) , (X_j, X_l) guarantees in this case that no d-separation containing X_l exists. So every head-to-head-meeting generated by Principle II occurs also in every graph generated by Principle III. On the other hand, if during testing independence by means of Principle II for the edges (X_i, X_l) , (X_j, X_l) a set containing X_l was detected such that it renders X_i, X_j independent, then head-to-head meeting of these edges must not occur if Principle III is applied.

In this way we have established that: if there exists a dag of the distribution generated by Principle III, then application of Principles I and II will deliver its undirected structure and orientation of all those unbridged pairs of arcs that meet head-to-head at a node.

(So if the intrinsic graph is given by Fig.1 then Principle II yields a graph given by Fig.3).

Let us now discuss which orientations of other arcs are established rigidly by Principle III. Pearl's definition of d-separation refers to arc orientation at following nodes: (1) head-to-head nodes

(2) direct and indirect descendants of head-to-head nodes

So let us establish the following principle:

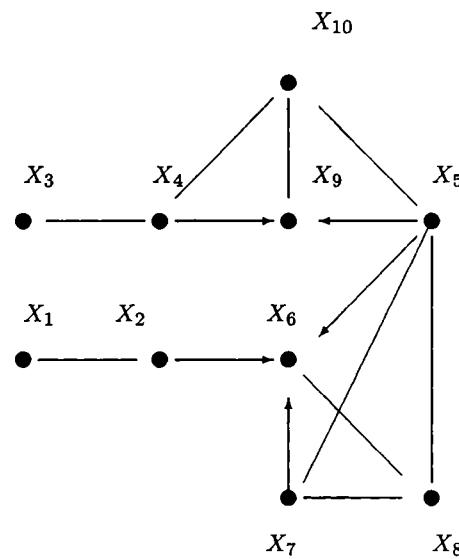
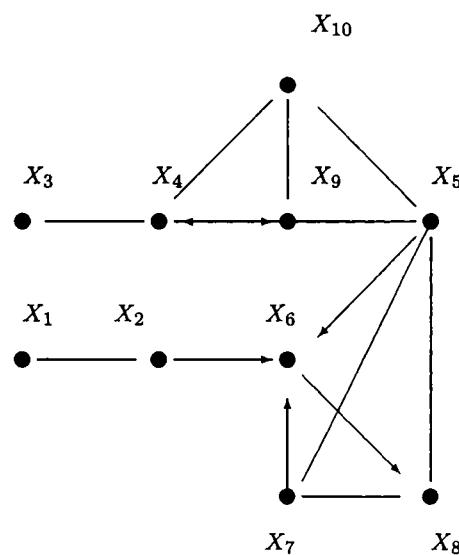
Principle II^c Let H be a partially oriented graph generated by Principles I and II. Whenever $\{X_i, X_j\}$ and $\{X_k, X_j\}$ are neighbouring unbridged edges, with $\{X_i, X_j\}$ being head-to-neighbour oriented and $\{X_k, X_j\}$ being unoriented, orient $\{X_k, X_j\}$ tail-to-neighbour.

Please notice that Principle II^c is a kind of operationalization of Principle II, as it is a direct consequence of the "if and only if" expression in Principle II. It has been introduced because the formulation of Principle II directs our attention to orienting edges head-to-head, but it is less obvious that it also implies some head-to-tail orientations.

Obviously, the following theorem holds:

THEOREM 5. *Principle III implies Principle II^c.*

The Theorem is obvious if we consider the previous ones. (So if the intrinsic graph is given by Fig.1 then Principle II^c yields a graph given by Fig.4).

Figure 3. A partially oriented graph due to Principle II(nodes X_4, X_8, X_9)Figure 4. A partially oriented graph due to Principle II^c (arrow (X_6, X_8))

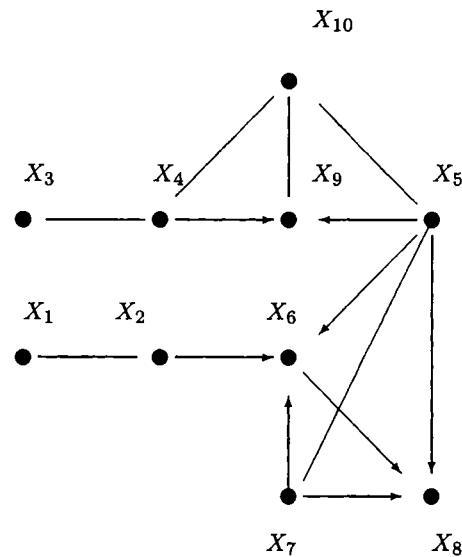


Figure 5. A partially oriented graph due to Principle IV (arrows (X_7, X_8) , (X_5, X_8))

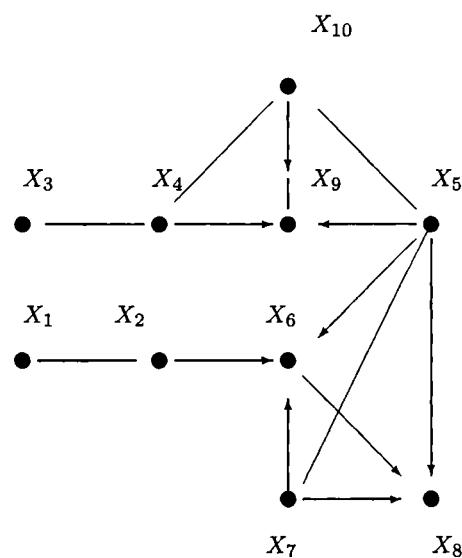


Figure 6. A partially oriented graph due to Principle V (arrow (X_{10}, X_9)). Nodes X_1 , X_3 , X_8 , X_9 are legitimately removable.

Furthermore let us introduce the following principle:

Principle IV: Let H be a partially oriented graph. Let the subgraph H' of H contain only oriented edges in H . Let $\{X_i, X_j\}$ be an unoriented edge in H . If X_j is a descendent of X_i in H' , then orient this edge from X_i to X_j .

THEOREM 6. Dag-structure and Principle III imply Principle IV.

(So if the intrinsic graph is given by Fig.1 then Principle IV yields a graph given by Fig.5).

Principle V: Let H be a partially oriented graph generated by Principles I and II. Let the unbridged edges $\{X_i, X_j\}$, $\{X_k, X_l\}$ be oriented head-to-head by Principle II. Let both edges $\{X_i, X_l\}$, $\{X_j, X_l\}$ or both edges $\{X_k, X_l\}$, $\{X_j, X_l\}$, or all the edges $\{X_i, X_l\}$, $\{X_k, X_l\}$, $\{X_j, X_l\}$ be left unoriented in the process. Then orient $\{X_j, X_l\}$ as from X_l to X_j .

(If the intrinsic graph is given by Fig.1 then Principle V yields a graph given by Fig.6).

THEOREM 7. Dag-structure and Principle III imply Principle V.

Proof: The edges $\{X_i, X_l\}$, $\{X_k, X_l\}$ (see Fig.7) are unbridged (because $\{X_i, X_j\}$, $\{X_k, X_j\}$ are unbridged), hence their orientation head-to-head is excluded (as Principle II didn't orient them). Hence either we have orientation (X_l, X_i) or (X_l, X_k)

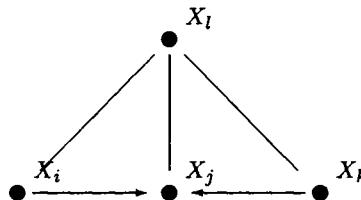


Figure 7. Visualisation to the Proof of Theorem on Principle V

Let us assume the orientation (X_l, X_i) of $\{X_i, X_l\}$. Then if $\{X_l, X_j\}$ would be oriented (X_j, X_l) then X_j, X_l, X_i would form an oriented cycle, hence H would not be a dag. So this is impossible.

Let us assume the orientation (X_l, X_k) of $\{X_k, X_l\}$. Then if $\{X_l, X_j\}$ would be oriented (X_j, X_l) then X_j, X_l, X_k would form an oriented cycle, hence H would not be a dag. So this is impossible.

Hence $\{X_l, X_j\}$ must be oriented (X_l, X_j) . Q.e.d. \square

To prove the SGS conjecture we shall introduce first the notion of p-d-separation.

DEFINITION 11. A *p-trail* in a pog is a sequence of links that form a path in the underlying undirected graph. A node β is called a head-to-head node with respect to a *p-trail* t if there are two consecutive links $\alpha \rightarrow \beta$ and $\beta \leftarrow \gamma$ on that t . A *p-trail* is minimal iff no two of its succeeding links on the *p-trail* are bridged in the graph.

DEFINITION 12. A *p-descendent* of a node n in a pog is any node m such that there exists a minimal *p-trail* from n to m such that every oriented link on the *p-trail* is oriented from n to m and an oriented edge (m, n) does not exist in the graph.

DEFINITION 13. A *p-trail* t connecting nodes α and β is said to be *active* given a set of nodes L , if (1) every head-to-head-node wrt t either is or has a *p-descendent* in L and (2) every other node on t is outside L . Otherwise t is said to be *blocked* (given L).

DEFINITION 14. If J, K and L are three disjoint sets of nodes in a pog H , then L is said to *p-d-separate* J from K , denoted $I(J, K|L)_H$ iff no minimal *p-trail* between a node in J and a node in K is active given L .

We claim that

THEOREM 8. Let L be a set of nodes in a pog H , and let $\alpha, \beta \notin L$ be two additional nodes in H . Then α and β are connected via an active *p-trail* (given L) iff α and β are connected via a simple (i.e. not possessing cycles in the underlying undirected graph) active *p-trail* (given L).

Now let us formulate the central theorem of this paper.

THEOREM 9. Let D be a dag generated by Principle III. Let H be a pog generated by Principles I, II, II^c, IV and V. Then $I(J, K|L)_H$ iff $I(J, K|L)_D$

Proof: To show this, let us consider an active minimal *p-trail*. We claim that there exists then an active trail.

If after final orientation no head-to-head meeting occurs on the *p-trail* then this is also the interesting active trail. Otherwise if there exists a head-to-head-meeting on the underlying trail then two cases are possible: (1) it existed on the original *p-trail*, (2) it did not exist on the original *p-trail*. The second case is impossible since then it must have been generated by Principle II (the meeting edges are unbridged). So we have had also a head-to-head-meeting on the original *p-trail*. So let us consider the *p-descenders* of the head-to-head-meeting. No head-to-head-meeting could have been generated on the path as the *p-trail* to the descendent was minimal. *p-descendents* of head-to-head meetings connected by unoriented links form a kind of equivalence class in that if the edges $(A, B), (C, B)$ are there and D is a *p-descendent* of B on a totally unoriented path then oriented edges (A, D) and (C, D) are

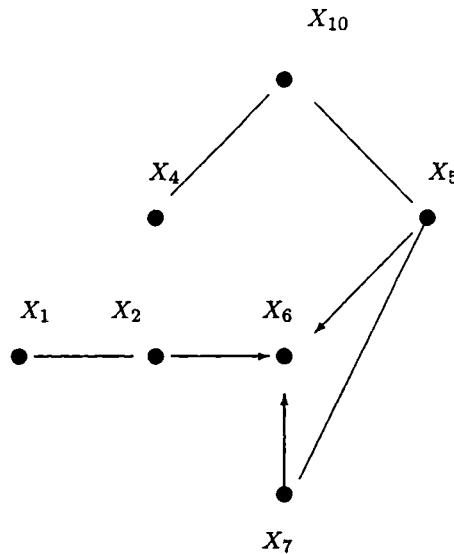


Figure 8. After legitimate removal of nodes X_3 , X_8 and X_9 . (The arrow (X_4, X_3) was inforced). Nodes X_1 , X_4 , X_6 are legitimately removable.

also present. So p-descendants are either descendants (OK) or are such predecessors, that they form together with the nodes of the primary p-trail but the discussed head-to-head node a minimal p-trail containing that predecessor as a head-to-head node and which proves to be an active trail in the dag (see Fig.9).

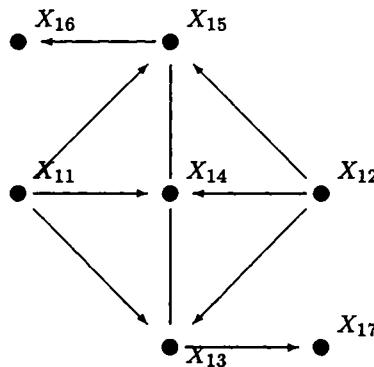


Figure 9. A partially oriented graph. Active trails and active p-trails. Consider the p-trail (X_{11}, X_{15}) , (X_{15}, X_{12}) and assume the node X_{13} being blocked. The p-trail under consideration is active. In any derived dag either the trail (X_{11}, X_{15}) , (X_{15}, X_{12}) is active or there exists another trail (e.g. (X_{11}, X_{13}) , (X_{13}, X_{12})) that is active.

Let us consider an active minimal trail. We claim that then there exists a minimal p-trail. First of all all the successors are also p-successors. Second, a minimal trail is also a minimal p-trail. Now the question is whether or not it is also active. As the trail is minimal, no head-to-head meeting will vanish on the p-trail. Hence also the successor requirement is met. So the proof is complete. Q.e.d. \square

This theorem actually corresponds straight forwardly to the SGS conjecture. The only difference to it is the extensive use of Principle II^c that is actually a kind of exploitation of the Spirtes Principle II. Furthermore, it is to some extent constructive: it states how it is possible to uncover the d-separations applying only Principles I, II, II^c, IV and V for construction of a pog, and without actually instantiating a single dag. It is immediately visible, that any dag compatible with the pog expresses exactly all the independences Principle III dag does and hence is a Principle III dag.

We can however be still more constructive and formulate the construction algorithm for generation of all the dags according to Principle III based only on the results of Principles I, II, II^c, IV and V and the definition of a dag.

Let us define the legitimate removal of a node from the pog graph:

DEFINITION 15. *A node can be removed legitimately from a pog iff all the oriented edges it meets are oriented towards it, and all pairs of edges meeting at it for which at least one is unoriented, are bridged.*

Pog-to-dag algorithm:

1. Find a legitimately removable node in the pog, remove it with edges meeting it while marking the edges as oriented towards this node.
2. Proceed with Step 1 until all the nodes are removed.
3. Orient the edges of the original pog so as they were marked in step 1.

Notice that the algorithm is non-deterministic: At step 1 we can have several candidate legitimately removable nodes. Selecting any of them may lead to different, though statistically equivalent dags.

(Compare Fig. 6, Fig. 8). We claim that:

THEOREM 10. *Let there exist a dag obtainable from Principle III. Let G be a pog generated from Principles I, II, II^c, IV and V. Then every dag obtained from the pog G by the above algorithm is a Principle III dag. Every Principle III dag for this population is a dag obtainable from G by means of the above algorithm.*

P r o o f: This is easily seen as on the one hand every dag has a legitimately removable node, and on the other hand the orientations generated by the

above algorithm do not lead to any conflict with Principles I, II, II^c, IV and V, if a dag exists. Q.e.d. \square

In this way we hope to have also shown the validity of the SGS conjecture definitely, giving a constructive algorithm to generate the dag out of a pog which is necessary for belief network applications.

The result of this section may be stated as follows

THEOREM 11. *Let Γ be the set of directed graphs that represent probability distribution P according to Principle III. Then Γ is also the set of directed graphs obtained from P by Principles I and II.*

P r o o f: Let us look closely at Theorem 9. From Theorems 3 and 4 we know that any dag D in Γ must have been generated also by Principles I and II. As Principles II^c, IV and V follow from Principles I and II and from the property of being a dag (look at Theorems 5, 6, 7), then any dag in Γ as generated by Principle III would also be generated by Principles I, II, II^c, IV and V. Let us take now any of these dags in Γ , say D . Let us assume that from the respective pog H generated by Principles I, II, II^c, IV and V (that is in fact from the only such pog H) a different dag D' may be derived beside D . From Theorem 9 we have: $I(J, K|L)_H$ iff $I(J, K|L)_D$, but also: $I(J, K|L)_H$ iff $I(J, K|L)_{D'}$. Hence also $I(J, K|L)_D$ iff $I(J, K|L)_{D'}$. But then D' must also have been generated by Principle III as both D and D' carry the same independence information.

So we see immediately that any dag in Γ must have been generated by Principles I and II and all the dags derived via Principles I and II must be in Γ . Q.e.d. \square

5. Discussion and Conclusions

In this paper, the notion of p-d-separation was introduced for causal networks, paralleling the notion of d-separation of [2] in belief networks. Its usefulness and power for representation of dependence/independence relations in causal networks was demonstrated by providing another proof of the SGS conjecture from [19].

Specifically: In this paper, new Principles II^c, IV and V were introduced allowing to orient constructively more edges of the undirected underlying graph of the causal structure than it was possible using only original Principles I and II of Spirtes et al [19]. Furthermore, an algorithm was given allowing for derivation of all the dags having identical dependence/independence information as the partially oriented graph derived from Principles I and II, provided at least one dag exists. The new notion of p-d-separation paralleling d-separation of Geiger, Verma and Pearl [2], being applicable to partially oriented graphs was introduced and has been shown to carry the

same dependence/independence information as all the d-separations of all compatible dags.

Over the last years a number of alternative (both general and specialized) methods for construction of probabilistic belief networks has been proposed (compare the method described in [1] and other discussed in last sections therein and also in [20]). The SGS conjecture investigated here deserved special attention because it relates the oriented structure of a directed acyclic graph representation to the causal relationship in the described part of reality.

With the power of p-d-separation, a (partially recovered) causal network structure can be used for qualitative reasoning about statistical dependence/independence in just the same manner as a belief network structure is exploited for qualitative statistical reasoning in [2].

We shall draw attention to the fact that the concept of p-d-separation appears to be more natural in the context of the SGS conjecture, because Principles I and II do not in general recover all edge orientations in the dag to be reconstructed from the data. Therefore, to obtain a dag an arbitrary (though compatible) orientation of the unoriented edges is needed, because only after this arbitrary edge orientation step Pearl's d-separation concept can be applied to reason qualitatively about marginal and conditional dependence and independence of variables. But such an orientation stage adds information not supported by anything and hence it is unnatural. p-d-separation allows for the same qualitative reasoning but without the arbitrary information. Also the edge-orientation stage may turn out to be complex because not all edge orientations may turn out to be consistent both with dag properties and constraints resulting from principle II. So back-tracking while randomly orienting may be necessary. Checking p-d-separation in a partially oriented graph may be less cumbersome.

Not any partially oriented graph is suitable for reasoning about independence. Too few edge orientation information may lead to misleading results. By formulating so-called principles II^c, IV and V we managed to pass enough edge orientation information into partially oriented graph (pog), obtained using Spirtes et al. Principles I and II, so that p-d-separation in the resulting pog is equivalent to Pearl's d-separation in any arbitrarily derived compatible dag.

This research is restricted to the case of causally sufficient sets of variables that is to cases when all variables needed to construct a dag of the intrinsic underlying process are available. Further research is needed to extend the notion of p-d-separation on causal network recovery from data under causal insufficiency, that is whenever influential variables remain hidden. The concept of Possible-D-Sep from [20] can be considered as a good start-

ing point, but the need to maintain information (on discarded head-to-head meetings) beside the partially oriented graph is to some extent discouraging. It should be attempted to get the outside constraints into the partially oriented graphs as done in this paper for causally sufficient cases.

As the only reference to the data in this methodology relies on conditional dependence/independence test, also an investigation has been started on possibilities of extension of the methodology onto Dempsterian-Shaferian belief networks and other constructs for which the dependence/independence test from the data may be carried out.

References

- [1] G. F. Cooper, E. Herskovits, *A Bayesian method for the induction of probabilistic networks from data*, Machine Learning 9 (1992), 309–347.
- [2] D. Geiger, T. Verma, J. Pearl, *d-Separation: From theorems to algorithms*, M. Henrion, R. D. Shachter, L. N. Kamal, J. F. Lemmer (Eds): *Uncertainty in Artificial Intelligence 5*, Elsevier Science Publishers B.V. (North-Holland), (1990), 139–148.
- [3] D. Geiger, *Graphoids: A qualitative framework for probabilistic inference*, PhD dissertation, Computer Science Department, Technical Report R-142, UCLA Cognitive Systems Laboratory, 1990.
- [4] C. Glymour, R. Sheines, P. Spirtes, K. Kelly, *Discovering Causal Structures*, Academic Press, New York, 1987.
- [5] F. Hilary, E. Palmer, *Graphical Enumeration*, Academic Press, New York 1973.
- [6] R. A. Howard, J. E. Matheson, *Influence diagrams*, in: *Principles and Applications of Decision Analysis*, Manlo Park CA, Strategic Decision Group 1981.
- [7] L. R. James, S. A. Mulaik, J. Brett, *Causal Analysis*, Sage Publications, 1982.
- [8] M. A. Kłopotek, Restricted Causal Inference Algorithm. [in:] B. Pehrson, I. Simon Eds: Proc. World Computer Congress of IFIP, Hamburg 28 August - 2 September 1994, Vol.1, Elsevier Scientific Publishers (North-Holland), Amsterdam, 342–347.
- [9] S. L. Lauritzen, A. P. David, B. N. Larsen, H. G. Leimer, *Independence Properties of Directed Markov Fields*, Technical Report R 88-32, Aalborg Universitetcenter, Aalborg Denmark, 1988.
- [10] J. Leohlin, *Latent Variable Models*, Lawrence Erlbaum Associates, Hilldale N.J., 1987.
- [11] J. Pearl, *A constraint-propagation approach to probabilistic reasoning*, in Kanal L.N., Lemmer J.F. (eds): *Uncertainty in Artificial Intelligence*, Elsevier Science Publishers B.V. (North Holland) (1986), 357–369.
- [12] J. Pearl, *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*, Morgan Kaufmann, San Mateo CA, 1988.
- [13] J. Pearl, T. Verma, A theory of inferred causation,, [in:] *Principles of Knowledge Representation and Reasoning*, Proc. of the Second International Conference, Cambridge, Massachusetts, April 22-25, 1991, Allen J., Fikes R., Sandewell E. Eds., San Mateo CA:Morgen Kaufmann, 441–452.
- [14] R. D. Shachter, *Probabilistic reasoning in intelligent systems*, Operations Research 36 (1988), 589–604.

- [15] R. D. Shachter, *A linear approximation method for probabilistic inference*, Elsevier Science Publishers (1990), 93–103 Shachter R. D. et.al eds: Uncertainty in Artificial Intelligence 4.
- [16] R. D. Shachter, *Evidence absorption and propagation through evidence reversals*, (1990), 173-190 Henrion M. et. at. eds: Uncertainty in AI 5.
- [17] P.P. Shenoy, G. Shafer, *Axioms for probability and belief-function propagation*, in: Shachter R. D., Levitt T. S., Kanal L. N., Lemmer J. F. (eds): Uncertainty in Artificial Intelligence 4, Elsevier Science Publishers B. V. (North Holland), 1990.
- [18] J. Q. Smith, *Influence Diagrams for Statistical Modeling*, Technical Report No.117, Department of Statistics, University of Warwick, Coventry, England, 1987.
- [19] P. Spirtes, C. Glymour, R. Scheines, *Causality from probability*. In: G. McKee (Ed.): Evolving knowledge in natural and artificial intelligence, London: Pitman, 1990.
- [20] P. Spirtes, C. Glymour, R. Scheines, *Causation, Prediction and Search*, Lecture Notes in Statistics 81, Springer-Verlag, 1993.
- [21] T. S. D. Verma, J. Pearl, *Equivalence and synthesis of causal models*, Proc. 6th Conference on Uncertainty in AI, 220-227, 1990.
- [22] H. Wold, *Econometric Model Building*, Amsterdam, North-Holland Publishing Co., 1964.
- [23] S. Wright, *The method of path coefficients*, Ann. Math. Statist. 5 (1934), 161–215.

INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES
21 Ordona St.
PL 01-237 WARSAW, POLAND
E-mail: kłopotek@ipipan.waw.pl
<http://www.ipipan.waw.pl/~kłopotek/>

Received February 10, 1998.