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Agnieszka Plucinska 

SOME PROPERTIES 
OF POLYNOMIAL-NORMAL DISTRIBUTIONS 

ASSOCIATED WITH HERMITE POLYNOMIALS 

This paper considers a class of densities formed by taking the prod-
uct of nonnegative polynomials and normal densities. We investigate some 
relations of these densities with Hermite polynomials. We construct a set 
of polynomials orthogonal with respect to the polynomial-normal density 
(PND). We invesigate the distribution of sums of independent random vari-
ables (r.v.) with PND. We construct a stochastic process such that the 
one-dimensional density of this process is PND. 

1. Introduction 
We consider a class of densities formed by taking the product of non-

negative polynomials and normal densities. This class is called by Evans 
and Swartz [1] polynomial-normal densities (PND). For abbreviation we use 
the symbol PND not only for densities but also for the class containing the 
r.v.'s. with densities PND. We shall investigate the class PND using Her-
mite polynomials. It is known that every polynomial can be represented as 
a linear combination of Hermite polynomials. Thus we will consider the r.v. 
X with the density given by one of the following equivalent forms 

where P21 is a nonnegative polynomial of the degree 21 (I > 0); c and hn 
are parameters (c > 0) and Hn is the Hermite polynomial defined by the 
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(1.1) 
n = 0 

— P2i{x) e x p ( — x 2 / 2 c 2 ) , 
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formula 

Hn(x) = e x p ( x 2 / 2 ) ^ L exp(—x2/2). 
We are going to extend some properties of the normal distribution to the 

polynomial-normal distribution. In particular, we will extend the following 
properties: the expectation of the Hermite polynomial in a centered normal 
r.v. X is equal zero; i.e. 

(1.2) E[Hn(X)] = 0, n > 1. 
The set (Hn(X), n > 0) forms a sequence of the orthogonal r.v's if X is a 
centred normal r.v., that means 
(1.3) E(Hm(X)Hn(X)) = 0 for n # m. 

We will also prove that the sum of independent r.v.'s with PND densities 
has also a PND density with suitably added parameters. 

In the last chapter we construct a stochastic process such that the one-
dimensional densities of this process are polynomial- normal densities. 

Hermite polynomials in Gaussian r.v.'s and in Gaussian processes are im-
portant tools in various probability problems; see for example monographs: 
Kallianpur [4], Hida et al. [2]. 

Conditions (1.2), (1.3) have the following statistical aspects: If condition 
(1.2) holds for n > no then the Gram-Charlier series reduces to the no 
components; therefore the difficult problem of the convergence of this series 
automaticly disapears. The orthogonality condition (1.3) expresses the fact 
that Hn(-), H m ( ) are uncorrelated random variables. 

A wide discussion concerning the applications, the theoretical properties, 
the statistical inference and the comparisons with Gram-Charlier approx-
imation of the polynomial-normal densities is given by Ewans and Swartz 
[1], These densities provide a rich class of distributions that can be used in 
modeling when faced with non-normal characteristics such as the skewness 
and the multimodality. 

The general problems connected with the Gram-Charlier series, its con-
vergence, the approximations by the "truncated" Gram-Charlier expansions 
are widely discussed in various statistical books; see for example Jonson, 
Kotz, Balakrishnan [3]. The present paper yields some new slight contribu-
tion to the applications of Gram-Charlier expansions. 

In chapter 5 we construct an example of a conditionally-Gaussian pro-
cess. This construction is based on the results of the previous chapter. The 
application of conditionally-Gaussian processes in the optimal non-linear 
filtering is presented for example by Liptser and Shiryayew [5]. 

In the present paper we investigate some properties of Hermite poly-
nomials in r.v.'s. In some sense the converse problem was considered by 
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Plucinska [7]. In this paper Hermite polynomials are characterized by the 
probabilistic methods, more precisely by the martingale property. Thus this 
paper gives an example of an application of probabilistic methods to a de-
terministic problem. 

2. The orthogonality 
We suppose that the r.v. X has the PND distribution given by (1.1). We 

are going to prove the following propositions. 

PROPOSITION 1. Let ni ,n2, / be given natural numbers such that n\ > 0, 
ri2 > 0, I > 0 and X has the density (1.1). Then 

H = ( H n i + { 2 l + n 2 ) n ( X / c ) , n > 0) 

is a sequence of orthogonal r.v. 's and 

(2.1) E((Hn(X)) = 0 for n> 21. 

P R O P O S I T I O N 2. If for a random variable Y 

(2.2) E(Hn(Y)) = E(Hn(X)), n > 1, 

then Y ~ X(Y,X are identically distributed). 

P r o o f of P r o p o s i t i o n 1. Without the loss of the generality we put 
c — 1. Let n > m, kn > km. For every elements Hkn,Hkm of the sequence 
H the difference of their indices satisfies the inequality kn~krn — n\ + (21 + 
712)71 H—(ni + (21 + 712)771) > 21. Then by formula (6.4) we have 

(2.3) E(Hkm(X)Hkn(X)) 
+00 

= S Hkrn(x)Hkn(x)f(x)dx 
—00 

+00 21 
= (2tt)-1/2 J Hkm(x)Hkn(x)^2hTHT(x)exp(-x2/2)dx = 0 

— 00 r=0 

since km + r < km + 21 < kn. 
Formula (2.1) follows from (2.3) for km = 0. • 

P r o o f of P r o p o s i t i o n 2. We must only to show that the moment 
problem has the unique solution (see for example Shiryaew [10]). Without 
the loss of the generality we put c = 1. For given I and for r < I all the 
moments E(X2r) are bounded by a constant C;. Then by formulas (2.1), 
(6.1) (6.4) we get for r > I 
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(2.4) = t { r _ ^ l l 2 r _ k H 2 k ( X ) ) 

= £(r-kWk)nr-kE{H2k{X)) 

= (2r)! ^ (- l) ' (2fc)! E ( Y2k-2S) 

£^o(r-k)\{2k)\2r-k f^Q(2k-2s)\2s { ' 

< c f _ i i _ f J t 
- 1 (r- k)\(2k)\2r~k ¿jj s\(k - s)\2k 

By (2.4) 

Ihn < lim ( ( 2 r - f 2 r c X " ' < 2 . i—>oo 2r ~ r-^oo ^ (2r)2r / 

Then the moment problem has the unique solution. • 

It is well known that the orthogonality measure (the weight function) 
for the set of Hermite polynomials is unique. But even for infinite subsets of 
this set the orthogonality measure may not be unique; for such subsets the 
Three Term Reccurence Formula does not hold. By Proposition 1 we get 
various weight functions for given subset (for given I) of the set of Hermite 
polynomials. 

Special case of Propositions 1 - 2 was considered by Plucinska (1998) for 
the Generalized Maxwell distribution (Genaralized Maxwell distribution is 
a special case of (1.1) where P2i(x) — cx11, c is a constant). 

3. Characteristic functions. Sums 
Ewans and Swartz (1994) have shown that the sum of independent r.v.'s 

with polynomial-normal distributions has also PND. We are going to give 
more explicit formulas for the distribution of sums using methods of char-
acteristic functions and Hermite polynomials. Moreover Proposition 4 can 
be treated as a generalization of the addition property of Gaussian r.v.'s 
(generalization if we put in (3.4) li — . . . = IN > 0). 

First we are going to find the characteristic function. 
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PROPOSITION 3. If the distribution is given by ( 1 . 1 ) then the characteristic 
function has the following form 

21 
(3.1) <l>(0 = £ hn(Hc)n exp(—£2c2/2). 

n=0 
P r o o f . First let us notice that for every r > 0, n > 0 

+oo +oo 
(3.2) J y2rH2n+1(y) exp(-y2/2) dy = j y2r+1 H2n+1(y) exp(-y 2 /2) dy = 0. 

—oo —oo 

In virtue of (6.2) and the orthogonality of Hermite polynomials with 
respect to the Gaussian measure we have for r < n 

+oo 
(3.3) J yrHn(y) exp(—i/2/2) dy = 0. 

— oo 

Taking into account the evaluation (2.4) and formulas (3.1)-(3.3) and 
(6.2) we get 

(iOT 

r=0 
oo , Y +00 21 

= E ^ S yr^2hnHn(y){l/V2^]exp(-y2/2)dy 
r=0 —oo n=0 

= E ^ n E i S r S y2rH2n(y)[i/V^]eM-y2/2)dy 
n=0 r=0 ^ ' ' -oo 

00 (itr\2r+\ + h2n+1 E T ^ T W J 3 / 2 r + 1 ^2n + i (3 / ) [ l /V / 2^]exp(- 3 / 2 /2)^ 
n=0 r=0 -oo 

I oo 1 l—l oo 1 

= E E ( ^ ) 2 ' t + £ = 

= E w ^ E ^ ' 
l oo \2r-2n 

L 

( ^ c ) 2 r " 2 " 

' (r — n ) ! 2 r - n 

n=0 r=n v ' 
i-1 oo 
n=0 j-=n v ' 

21 
= ^^ hn(i£c)n exp(—£2c2/2). . 

n=0 
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The coefficients hn can be found by the well known method of expanding 
a function in series of Hermite polynomials 

1 1 
hn = ~ \ Hn(x/c)f(x) dx — —E(Hn(X/c)). 

n J n! — oo 

The distribution given by (1.1) depends on 21 + 2 parameters: I, c, 

hi,..., h,2i • The parameters hn can be evidently expressed by the moments 
of X. Then we can say that the distribution (1.1) depends on parameters: 
l,c, E(Xn), n < 21. 

The distribution given by (1.1) will be denoted by P N D ( l , c , E ( X n ) ; 

n < 21) or equivalently PND(Z, c, hn\ n < 21). 

When we will consider some sets of r.v's we will write double indices hn>x 

instead of hn. 

PROPOSITION 4. If X I,...,XN are independent r.v.'s and the distribution 

of XJ is PND(lj,Cj, E(XJ);r < 2 lj),j = l.,,,.N then the distribution of 

SN — Xi + ... + XN is 

(3.4) PND(Zi + . . . + lN, (4 + ... + cl^^EiS^)-, r < 2 (h + ... + lN)). 

The distribution of Sjv can be written in an equivalent form 

PND (h + ... + lN,(cl + ... + cW2, hTtsN; r < 2(h + ... + lN)) 

where hT,sN = ^E[Hr{{c\+,... + c ^ ) - 1 ^ ) ] . 

P r o o f . Let (FIX, be the characteristic function of the r.v. XJ. We shall use 
the method of the mathematical induction. First let us consider N = 2. 
Then by Proposition 3 and formula (6.6) the product of the characteristic 
functions has the following form 

2 i i 

<t>xd0<t>x2(0 = ( E e x p ( - £ 2 c ? / 2 ) ) 
r=0 

212 

r=0 

2(h+h) r 

r=c j=0 2(!i+Î2) y r x 

= E r ^ ^ H i i X M H r ^ X M j 

- + 4 ) ) 

r=0 x j=0 

x exp -\(e(4+4)) 
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2(h+h) 

= E ^ 1 + 4)1/2YE 
r=0 

x exp 

rr , \ 

2(h+h) 

= E m c i + c D ^ r h r ^ ^ e x p ^ ( c i + 4)) 

Thus we have shown that Xi + X2 has the distribution 

(3.5) PND(/i + L2, (c? + c2)1 '2, K,XI+X2 ; r < 2 (H + /2)). 

Now we consider arbitrary N. Let 

SN — X-I + • • • + XN — (XX + ... + XN-I) + XN = SN-I + XFLF. 

We assume that the distribution of SN-I is 

PND(Zi + ... + l N - u (c? + ... + 4 _ ! ) 1 / 2 , hTtXl+...+xN.1\ 

r<2(h + ... + l N - i ) ) . 

We repeat the reasoning of the first part of the proof, now for the sum 
of the two components: SN-I + XN• This sum has the distribution of the 
form (3.5) with suitable parameters. These parameters are evidently such 
that we get the distribution of the form (3.4). • 

4. Examples 

EXAMPLE 1. We are going to find the distribution of the sum X\ + X2 of 
independet r.v.'s X\,X2 when li = l2 — 1. Let us put C2 = c\ + c2. 

By Proposition 4 
4 

<t>x1+x2(Z) = X > r , M 2 ( ^ C 7 e x p ( - £ 2 C 2 / 2 ) ) . 
r=0 

By Proposition 2 we get = 0 for r > 2, j = 1,2. Therefore by 
formula (6.6) we have 

Chltxt+x2 = Ci^i.Xi +c2hitx2, 

C2h2,X1+X2 = CLh2,XI + c2h2,x,2 + 2cic2/ii,xi^i,x2, 

Czhz,XI+x2 — cic\hifx1h2,x2 + CiC2/ii,x2^2)A-1, 

C4h4tx1+x2 = c\h2,x1c2h2^x2-

Thus the characteristic function is given by the following formula 

<t>x1+x2(0 = [exp(-e2C2/2)][l + i£(cifci>Jfl + c2hx,x2) 

+ i2(c\h2tXl + c\ h2,x2 + 2cic2hltXlhitx2)+ 
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+ (i03(cic2^x,x1/i2,x2 + clc2hitx2h2,x1) 

Evidently 

<f>x1+x2(0 = $xA0$x2(0-
EXAMPLE 2 . In the beginning of the present paper we assumed that p2i 
is a nonnegative polynomial. There are various methods of the choice of 
parameters of the polynomial p2i which ensure this fact. We give here a 
very short statistical condition. 

Let us consider PND(1,1, hi, h2). Then the density has the following 
form 

f ( x ) = (2TT)-1/2[1 + hix + h2H2{x)} exp(—:r2/2) 

= (2TT )~ 1 / 2 [h 2 x 2 + hix+ 1 - h2} e x p ^ - ^ x 2 ^ . 

Therefore the polynomial is nonnegative iff 

(4.1) 0 < / i 2 < l , hl<4h2(l-h2), 

In other words by (4.1) and the definition of hi, h2 the moments must satisfy 
the inequalities 

(4.2) 1 < E(X2) < 3, [E(X)}2 < [.E(X2) - 1][3 - E(X2)}. 

These intervals for the moments ensure that the polynomial is non-
negative. Moreover it could be interesting to mention that for the arbitrary 
moment of the even order we have the following evaluation 

( 2 n — 1)!! < E(X2n) < (2n + 1)!!, n > 1. 

Now we are going to find a nonnegative polynomial p±. We use the results 
of Example 1. Therefore the polynomial 

! 4 

is nonnegative if 

Chi = cihiiXl +c 2 / i i ,x 2 , 
C2h2 = c 2 h2tXi + c\h2,xa + 2cic2hi}Xlhitx2, 

Czh3 - ciclhiiXlh2,x2 + c2c2/ii,x2^2,x1, 
C hi = c1h2tx1c2h2tx2 

and the parameters have arbitrary values satisfying the conditions: 
c i > 0 , c 2 > 0 , C2

 = C\ + C2
2, 0 < / i 2 , x ; < l , hjtXi <4 /12 ,^(1- /12 ,^) , 

i= 1 ,2 . 
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We can continue our reasoning and find a nonnegative polynomial p î 
for arbitrary I by considering the sum X\ + . . . + Xi, where Xy,..., Xi are 
independent r.v.'s and Xi has the distribution PND(l,Ci,/ii )x i ,/i2,x i) with 
parameters satisfying the above given conditions. 

5. An example of Condit ional ly-Gaussian process 
A stochastic process X = (Xt, t > to) is a Conditionally-Gaussian 

process if all the conditional distributions of the type: 

(Xtn | -X"t„_i; • • -,Xtl) for i 0 < h < • • • < tn; n > 1 

are Gaussian. Conditionally-Gaussian processes are considered for examlpe 
by Liptser and Shiryaew [5]. 

Now we will construct a Conditionally-Gaussian process X = (Xt, t > to) 
such that the one-dimensional densities of X are PND. 

First let us take / = 1. Let Xto be a r.v. such that E(Xto) = a, E(X20) = 
to + ¡3 and XtQ has the distribution 

PND(l ) V /io ,Mo + /?) 
where either a = (3 = 0, i 0 > 0 or 2/3 - a2 > 0, t0 > (2/3 - a 2 ) - 1 /? 2 . The 
density of X t o is given by the formula 

(5.1) /(«„, x) = (27ri0)_ 1 / 2[l - /3/2to + ax/tQ + (3x2/2t0] exp(-x2/210) . 

The characteristic function has the following form 

( 5 . 2 ) t0) = (1 + i£a - ^ 0 / 2 ) e x p ( - e 2 i 0 / 2 ) . 

Let (Wt, t > to) be a Wiener process and X t o , (W t , t > to) be indepen-
dent. 

PROPOSITION 5 . The stochastic processX = (Xt, t>t0) = (Wt-Wto+Xto, 
t > to) has the following properties: 

1° X has independent Gaussian increments, 
2 ° X is a Conditionally-Gaussian process, 
3 ° the one-dimensional densities of X are 

( 5 . 3 ) P N D ( 1 ,Vi,a,t + (3). 

P r o o f . Properties 1° and 2° are evident. The r.v. Wt — Wto has the density 

PND(0, y/t^to,0,t — to). 

Thus by formula (3.4) the density of Xt is (5.3). • 

Now let us denote the conditional density of (Wt2 | W t i ) by /Cond(i2,^2 I 
< i , i i ) . Then evidently function (5.1) satisfies the equation 

j/( i l ,Xl )/ c o n d ( i 2 ,X2 | <l,Xi)dXi = /(<2>Z2)-
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The problem of finding a process X such that the one-dimensional den-
sities of X are arbitrary PND's even for I = 1 is not an easy one. 

E X A M P L E 3 . It is impossible to find a Conditionally-Gaussian process such 
that the one-dimensional distributions are Maxwell distributions with the 
density 

(5.4) f(t, x) = (2Tri)-"17 V / t ] exp(-x2/2t). 

This statement follows easily from the fact that the equation 

$/(il,Zl)/cond(i2,Z2 | ti,Xi)dXi = f(t2,X2) 

has no solution /c0nd(h,X2 | t\,x\), which is a Guassian density. 
E X A M P L E 4 . It is impossible to find a stochastic process with independent 
increments such that the the one-dimensional densities are Maxwell densities 
(5.4). 

Characteristic function corresponding to (5.4) 

(5.5) 4>(i,0 = ( l - i £ 2 ) e x p ( - i £ 2 / 2 ) 

is indecomposable one (see Lukacs [6]). Then Xt2 can not be represented as 
the sum if two independent components 

Xt2 — (Xt2 — -Xtj) + Xtl • 

Thus for the Maxwell distribution the above mentioned problem is 
not an easy one.It is impossible to find a stochastic process with a Maxwell 
one-dimensional distribution neither in the class of Conditionally-Gaussian 
processes nor in the class of independent increments prcesses. 

Now we are going to construct a stochastic process such that the one-
dimensional distributions are PND for arbitrary 1. 

By Proposition 5 we get immediately the following Proposition. 

PROPOSITION 6. Let the characteristic function of Xto be the product of I 
functions $ 

(5.6) $ i ( t o , 0 = * ' ( < o , 0 . 

where $ is given by (5.2).ThenX = (Xt, t>t0) = (Wt-Wto + Xto, t > t0) 
is a stochastic process satisfying Properties 1°, 2° from Proposition 5 and 
with one-dimensional densities corresponding to the characteristic function 
(5.6). 

Evidently instead of function (5.6) we can consider more general case: 
is the product of I functions $ and every function $ depends on various 

parameters ai,/3i (af < 2/3*), i < I. Then for suitably choosen T (depending 
on ai,Pi) there exists a Conditionally-Gaussian process X = (Xt) t 6 T) 
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such that the one-dimensional distributions of this process have the form 
(1.1) for arbitrary I. For I = 2 we can use the results of Example 2. 

6. Appendix 
For the convenience of the reader we give some formulas taken (after 

some easy transformations) from the book of Prudnikov et al. (1983) 

<6-2> * 2 " + < = £ e = 

If the segments with lenghts I, m, n form a triangle (it can be degenerate) 
and I + m + n = 2 , 4 , 6 , . . . then 

(6.3) (27T)-1/2 j Hi(x)Hm(x)Hn(x) exp(-x2/2) dx 

_ l\m\n\ 

( I 4- m — n V / I + n — \, / m + n — l\] 

2 J ' V 2 J ' V 2 J ' 
in other cases 

(6.4) (2tt)-1/2 \ffi(x)Iim(x)ffn(x)exp(-x2/2)dx = 0. 

For arbitrary real t,u,v 

(6.5) (1 + t r / 2 * n ( ( i ; y i / 2 ) ) = £ (£)tkHk(u)Hn-k(v). 

LEMMA 1. For arbitrary c\ > 0, c2 > 0, n > 0 

(6.6) 

Lemma 1 follows from (5.5) when we put u = x/ci, v — y/c2, t = 
ci(ca)-1. 
Acknowledgements. The autor wishes to express her gratitude to the 
Referee for valuable remarks and comments improving the previous version 
of this paper. 
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