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Agnieszka Pluciniska

SOME PROPERTIES
OF POLYNOMIAL-NORMAL DISTRIBUTIONS
ASSOCIATED WITH HERMITE POLYNOMIALS

This paper considers a class of densities formed by taking the prod-
uct of nonnegative polynomials and normal densities. We investigate some
relations of these densities with Hermite polynomials. We construct a set
of polynomials orthogonal with respect to the polynomial-normal density
(PND). We invesigate the distribution of sums of independent random vari-
ables (r.v.) with PND. We construct a stochastic process such that the
one-dimensional density of this process is PND.

1. Introduction

We consider a class of densities formed by taking the product of non-
negative polynomials and normal densities. This class is called by Evans
and Swartz {1] polynomial-normal densities (PND). For abbreviation we use
the symbol PND not only for densities but also for the class containing the
r.v.’s. with densities PND. We shall investigate the class PND using Her-
mite polynomials. It is known that every polynomial can be represented as
a linear combination of Hermite polynomials. Thus we will consider the r.v.
X with the density given by one of the following equivalent forms

2l
(11) €)= Y- oy hnEin(a/e) expl-222¢)

n=0
= pa(z) exp(—z?/2¢?),

where pg; is a nonnegative polynomial of the degree 2l (I > 0); ¢ and h,
are parameters (¢ > 0) and H, is the Hermite polynomial defined by the
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formula
2 /oy 4" 2
Hn(z) = exp(z®/2)— exp(~2"/2).
We are going to extend some properties of the normal distribution to the
polynomial-normal distribution. In particular, we will extend the following

properties: the expectation of the Hermite polynomial in a centered normal
r.v. X is equal zero; i.e.

(1.2) E[H,(X)]=0, n>1.

The set (H,(X), n > 0) forms a sequence of the orthogonal r.v’s if X is a
centred normal r.v., that means

(1.3) E(Hn(X)Ho(X)) =0 for n# m.

We will also prove that the sum of independent r.v.’s with PND densities
has also a PND density with suitably added parameters.

In the last chapter we construct a stochastic process such that the one-
dimensional densities of this process are polynomial- normal densities.

Hermite polynomials in Gaussian r.v.’s and in Gaussian processes are im-
portant tools in various probability problems; see for example monographs:
Kallianpur [4], Hida et al. [2].

Conditions (1.2), (1.3) have the following statistical aspects: If condition
(1.2) holds for n > mg then the Gram-Charlier series reduces to the ng
components; therefore the difficult problem of the convergence of this series
automaticly disapears. The orthogonality condition (1.3) expresses the fact
that H,(-), Hn(-) are uncorrelated random variables.

A wide discussion concerning the applications, the theoretical properties,
the statistical inference and the comparisons with Gram-Charlier approx-
imation of the polynomial-normal densities is given by Ewans and Swartz
[1]. These densities provide a rich class of distributions that can be used in
modeling when faced with non-normal characteristics such as the skewness
and the multimodality.

The general problems connected with the Gram—Charlier series, its con-
vergence, the approximations by the “truncated” Gram-Charlier expansions
are widely discussed in various statistical books; see for example Jonson,
Kotz, Balakrishnan [3]. The present paper yields some new slight contribu-
tion to the applications of Gram—Charlier expansions.

In chapter 5 we construct an example of a conditionally-Gaussian pro-
cess. This construction is based on the results of the previous chapter. The
application of conditionally-Gaussian processes in the optimal non-linear
filtering is presented for example by Liptser and Shiryayew [5].

In the present paper we investigate some properties of Hermite poly-
nomials in r.v.’s. In some sense the converse problem was considered by



Some properties of polynomial-normal distributions 197

Plucidska [7]. In this paper Hermite polynomials are characterized by the
probabilistic methods, more precisely by the martingale property. Thus this
paper gives an example of an application of probabilistic methods to a de-
terministic problem.

2. The orthogonality .
We suppose that the r.v. X has the PND distribution given by (1.1). We
are going to prove the following propositions.

PRrROPOSITION 1. Let ny,ng,l be given natural numbers such that ny > 0,
ng > 0,1 >0 and X has the density (1.1). Then

H = (Hn 1 (214na)n(X/c), n 2 0)
is a sequence of orthogonal r.v.’s and
(2.1) E((H, (X)) =0 forn>2l.
PROPOSITION 2. If for a random variable Y
(2.2) E(Hn(Y)) = E(Ha(X)), n21,
then Y ~ X(Y, X are tdentically distributed).

Proof of Proposition 1. Without the loss of the generality we put
c=1. Let n > m, k, > ky,. For every elements Hy_, Hy, of the sequence
H the difference of their indices satisfies the inequality &k, — k,, = n1 + (21 +
n2)n+ —(n1 + (20 + n2)m) > 2. Then by formula (6.4) we have

(23)  E(Hi,,(X)H, (X))
400
= | He,(2)Hy,(2)f(z) dz
+o0 2!
= (2m)"1/2 S Hy (z)Hg, (z) Z h.H,(z) exp(~z%/2)dz = 0
— o0 r=0
since kyy, +7 < Ky + 21 < kys.
Formula (2.1) follows from (2.3) for k,, = 0. m

Proof of Proposition 2. We must only to show that the moment
problem has the unique solution (see for example Shiryaew [10]). Without
the loss of the generality we put ¢ = 1. For given ! and for » < [ all the
moments E(X?") are bounded by a constant ¢;. Then by formulas (2.1),
(6.1) (6.4) we get for r > 1
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(24) E(X*)= E(Z r_k), % )
1
_ (2r)!
- ,czzo (r— k)!(zk)zzr—kE(sz(X))
1
= 1)%(2k)! o
B kz=0 (’I‘ k |(2k)|21‘ k Z Zk 25 193 (X2k 2 )
(27‘
= Z < (r — k)!(2k)12r—F Z 31 ,2k
- Z (r— k) (2k)'2r = S a2’ (@2r -1l
By (2.4)

— 1\11or 1/2r
2ry\\1/2r < (2T 1) <
Th_{go TE(X ) rl__’oo (————(2T)2T c <2.

Then the moment problem has the unique solution. =

It is well known that the orthogonality measure (the weight function)
for the set of Hermite polynomials is unique. But even for infinite subsets of
this set the orthogonality measure may not be unique; for such subsets the
Three Term Reccurence Formula does not hold. By Proposition 1 we get
various weight functions for given subset (for given l) of the set of Hermite
polynomials.

Special case of Propositions 1 - 2 was considered by Plucinska (1998) for
the Generalized Maxwell distribution (Genaralized Maxwell distribution is
a special case of (1.1) where po;(z) = cz?, ¢ is a constant).

3. Characteristic functions. Sums

Ewans and Swartz (1994) have shown that the sum of independent r.v.’s
with polynomial-normal distributions has also PND. We are going to give
more explicit formulas for the distribution of sums using methods of char-
acteristic functions and Hermite polynomials. Moreover Proposition 4 can
be treated as a generalization of the addition property of Gaussian r.v.’s
(generalization if we put in (3.4) Iy = ... =1y > 0).

First we are going to find the characteristic function.



Some properties of polynomial-normal distributions 199

PROPOSITION 3. If the distribution is given by (1.1) then the characteristic
function has the following form

21
(3.1) $(€) = Y hn(ic)" exp(—£2c?/2).
n=0

Proof. First let us notice that for every r >0, n >0

+o00 +o0
(32) | v* Hanp1(y) exp(—y?/2)dy = | y* ' Hap 1 (y) exp(—y*/2) dy = 0.

—o0 —~00
In virtue of (6.2) and the orthogonality of Hermite polynomials with
respect to the Gaussian measure we have for r < n

+o0
(3.3) | v Hn(y) exp(-y?/2)dy = 0.

— o0

Taking into account the evaluation (2.4) and formulas (3.1)-(3.3) and
(6.2) we get

#6)= Y. & pixr

r=0 (lgc)r oo N
= Z S Zh Ha(y)[1/v2n] exp(—y2/2) dy
r=0

= thnz z§c)! _S y?" Hon(y)[1/V27] exp(~y*/2) dy

DN ’fc):r;. | 4 Han ) VER o -22)
= thngj(zac)z’ ,2, _ +Zh2nz i€c) 2r+1(771)!27__ﬁ _
- ey B

-1 an+1 (ZEC 2r—-2n
§ : n E :
+n=0 h2"+1 166) ( 'QT "

21
= ) hn(ibc)" exp(—£2c?/2). m
n=0
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The coefficients h,, can be found by the well known method of expanding
a function in series of Hermite polynomials

17 1
hn = — | Hu(z/c)f(z)dz = —E(Hn(X]c)).

The distribution given by (1.1) depends on 2! + 2 parameters: [, c,
hi,...,hs. The parameters h, can be evidently expressed by the moments
of X. Then we can say that the distribution (1.1) depends on parameters:
Le, E(X™),n <2l

The distribution given by (1.1) will be denoted by PND(l, ¢, E(X™);
n < 21) or equivalently PND(l, ¢, h,; n < 21).

When we will consider some sets of r.v’s we will write double indices Ay, ,
instead of h,,.

PROPOSITION 4. If X;,..., XN are independent r.v.’s and the distribution
of X; is PND(lj,cj, E(X]);r < 2l;),5 = 1.,,,.N then the distribution of
SNn=X1+...+ Xy is
(3.4) PND(li + ...+ Iy, (S + ...+ B)VELE(SY); r <2(Li + ...+ In)).
The distribution of Sy can be written in an equivalent form

PND(ly +...+In, (S + ...+ )Y sy <2+ ...+ 1))
where h, sy = LE[H,((c3+,...+c&)~/2Sy)].
Proof. Let ¢x; be the characteristic function of the r.v. X;. We shall use
the method of the mathematical induction. First let us consider N = 2.
Then by Proposition 3 and formula (6.6) the product of the characteristic
functions has the following form

21,

6x, (§)8x:(8) =( (1) he,x, exp(~€23/2))
r=0

21,

x (3 (iea) hex, exp(—€23/2))
r=0
2(11+12) T ‘ 1
= (2 Gy e by beys) x| - 3626k + )
r=c 7j=0
2(l1+l12) r c1cs
= ZO (iﬁ)rE(ZomHj(Xl/cl)Hr—j(Xz/cz)>
r= J:

xexp | - €+ D)
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2(ll+12)
_ 1., 2 ovi/or X1+ X2
- go ﬁ[’l{(cl-{-cz) /2] E{H,(——(C%H%)l/2
1
<o | - (6 + )|
2(l1+lz) 1
= Y B+ D e | - (€ + )]

r=cC

Thus we have shown that X; + X, has the distribution
(3.5) PND(l; + lo, (2 4+ c2)Y 2 hy x4 x5 7 < 2(11 + 12)).
Now we consider arbitrary N. Let
Sv=X1+..+Xn=(X1+...+ Xn_1)+ XN =Sn_1+ Xn.
We assume that the distribution of Sy_1 is
PND(ly + ...+ Iv_1,(E 4.+ DY b it 4 X
r<2(l+...+1n-1))

We repeat the reasoning of the first part of the proof, now for the sum
of the two components: Sy_; + Xn. This sum has the distribution of the
form (3.5) with suitable parameters. These parameters are evidently such
that we get the distribution of the form (3.4). m

4. Examples

ExaMPLE 1. We are going to find the distribution of the sum X; + X, of
independet r.v.’s Xy, X2 when l; = l; = 1. Let us put C% = ¢ + c%.
By Proposition 4

4
$x:4%:(6) = D hr x, 4%, (iC)" exp(—~£2C?/2)).

r=0
By Proposition 2 we get h,x, = 0 for r > 2,5 = 1,2. Therefore by
formula (6.6) we have
Chy, x,+x, = c1h1,x, + c2hy x,,
C?ha,x,4x, = ctha x, + G3ha, x,2 + 2c102hy x, b1 X,
C3h3,x,+x, = c1cihy x, ha x, + cEcaha x,he x4,
C*ha,x,+x, = C2ha x,C3ha X,
Thus the characteristic function is given by the following formula
Ox1+%:(€) = [exp(~€2C?/2)][1 + i€(crhy,x, + cab1,x,)
+ E%(cFha,x, + Bha,x, + 2c102h1, x, b1 x, )+
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+ (i€)*(c163h1, x, P, x, + cicah x; ha x,)
+ £4(ctha,x, C3ha x,)].

Evidently
bx,+x, (&) = Px,(6)Px,(€).

EXAMPLE 2. In the beginning of the present paper we assumed that py
is a nonnegative polynomial. There are various methods of the choice of
parameters of the polynomial ps; which ensure this fact. We give here a
very short statistical condition.
Let us consider PND(1,1, hy, hy). Then the density has the following
form
f(z) = (2m)7M*[1 + haz + hyHa(z)] exp(—2*/2)

1
= (27) Y ?[hoz?® + hyz + 1 - ho} exp ( - 5:1:2)

Therefore the polynomial is nonnegative iff
(4.1) 0<hy <1, hf < 4ho(l —hy),
In other words by (4.1) and the definition of hy, he the moments must satisfy
the inequalities
(42) 1<EX% <3, [BX)P<[BX?)-1B-EX?)

These intervals for the moments ensure that the polynomial is non-

negative. Moreover it could be interesting to mention that for the arbitrary
moment of the even order we have the following evaluation

2n-DI<EBX*™ < @2n+ 1), n>1.

Now we are going to find a nonnegative polynomial ps. We use the results
of Example 1. Therefore the polynomial

4
pa(z) = —Wll/% ;hnﬂn(x/m
is nonnegative if
Chy = c1hy x, + cah1,x,,

C2h2 = C%hzyxl -+ Cghz’x,z + 201C2h1,X1 hl,ng

C3hs = c163hy, x, ho,x, + cic2hy X, b X,

C*hy = c3ho,x,cah2,x,
and the parameters have arbitrary values satisfying the conditions:
c1>0, ¢ >0, 02 = c%+c§, 0< hg,xi <1, h%,Xi < 4h2,X,-(1—h2,X,-),

i=1,2.
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We can continue our reasoning and find a nonnegative polynomial po
for arbitrary ! by considering the sum X; + ...+ X, where Xy,...,X; are
independent r.v.’s and X; has the distribution PND(1, ¢;, hy x,, ke x,) with
parameters satisfying the above given conditions.

5. An example of Conditionally-Gaussian process
A stochastic process X = (X;, t > to) is a Conditionally-Gaussian
process if all the conditional distributions of the type:

(Xt | Xty oy Xty) fortg<ti <...<tp; n>1

are Gaussian. Conditionally-Gaussian processes are considered for examlpe
by Liptser and Shiryaew [5].

Now we will construct a Conditionally-Gaussian process X =(X;, t>to)
such that the one-dimensional densities of X are PND.

First let us take [ = 1. Let Xy, be ar.v. such that E(Xy) = o, E(X2) =
to + B and X, has the distribution

PND(la \/%a «, tO + ﬁ)

where either « = 8 = 0, to > 0 or 28 — a? > 0, ty > (28 — o?)~152%. The
density of X,, is given by the formula
(5.1)  f(to,z) = (21te) "Y2[1 — B/2t0 + az/to + Bz?/2ty] exp(—z?/2t,).

The characteristic function has the following form
(5.2) P(€,t0) = (1 + il — £2B3/2) exp(—£2ty /2).

Let (W, t > tp) be a Wiener process and X, (W, t > t) be indepen-
dent.

PROPOSITION 5. The stochastic process X = (Xy, t > to) = (Wi — Wy + Xy,
t > to) has the following properties:

1° X has independent Gaussian increments,
2% X is a Conditionally-Gaussian process,
30 the one-dimensional densities of X are

(5.3) PND(1, V%, a,t + B).

Proof. Properties 1° and 2° are evident. The r.v. W; — Wi, has the density
PND(0, vt — 0,0, t — tp).

Thus by formula (3.4) the density of X; is (5.3). m

Now let us denote the conditional density of (Wy, | Wi, ) by feona(t2, z2 |
t1,21). Then evidently function (5.1) satisfies the equation

§ £(t1, 1) feona(t2, 22 | 1, 71)dm1 = f(t2, T2).
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The problem of finding a process X such that the one-dimensional den-
sities of X are arbitrary PND’s even for [ = 1 is not an easy one.

ExaMPLE 3. It is impossible to find a Conditionally-Gaussian process such
that the one-dimensional distributions are Maxwell distributions with the
density

(5.4) f(t,2) = (2mt)"V2[2% /1] exp(=2® /22).

This statement follows easily from the fact that the equation
} f(t1, 1) feona(t2, 72 | t1, 21)dz1 = f(t2, 72)

has no solution fcond(tz, za | t1,21), which is a Guassian density.

EXAMPLE 4. It is impossible to find a stochastic process with independent
increments such that the the one-dimensional densities are Maxwell densities

(5.4).
Characteristic function corresponding to (5.4)
(5.5) #(t,€) = (1 - t€?) exp(~t£?/2)

is indecomposable one (see Lukacs [6]). Then X, can not be represented as
the sum if two independent components

Xi, = (Xt — Xt) + Xty

Thus for the Maxwell distribution the above mentioned problem is
not an easy one.lt is impossible to find a stochastic process with a Maxwell
one-dimensional distribution neither in the class of Conditionally-Gaussian
processes nor in the class of independent increments prcesses.

Now we are going to construct a stochastic process such that the one-
dimensional distributions are PND for arbitrary I.

By Proposition 5 we get immediately the following Proposition.

PROPOSITION 6. Let the characteristic function of X:, be the product of |
functions &

(56) dsl (tO) €) = Ql (t07 E),
where & is given by (5.2).Then X = (Xy, t > tg) = (We— Wiy + Xio, t 2 1)
is a stochastic process satisfying Properties 1°, 20 from Proposition 5 and

with one-dimensional densities corresponding to the characteristic function
(5.6).

Evidently instead of function (5.6) we can consider more general case:
&, is the product of ! functions ¢ and every function ¢ depends on various
parameters «;, 3; (o? < 286;),7 < l. Then for suitably choosen T (depending
on a;,3;) there exists a Conditionally-Gaussian process X = (X;,t € T)
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such that the one-dimensional distributions of this process have the form
(1.1) for arbitrary {. For | = 2 we can use the results of Example 2.

6. Appendix
For the convenience of the reader we give some formulas taken (after
some easy transformations) from the book of Prudnikov et al. (1983)
[n/2] k

n!
(6.1) H,(z) = Z k'(n 2k)'2’° g2k

n

2n+e __ (2n + 6)' _
(6'2) z - Z (n _ k)'(2k + e)!2n_kH2k+€(m)7 €= 07 L.
k=0

If the segments with lenghts I, m, n form a triangle (it can be degenerate)
andl4+m+n=2,4,6,... then

(6.3) (27r)‘1/ZSHl( VH o (z)Hy () exp(—2z2/2) dz

l!'m!n!
= l+m-—n l+n—-—m m+n-—1
(=) () ()
in other cases
(6.4) (2m)~Y/2{ Hy(z) Hp(z) Hp () exp(—2?/2) dz = 0

For arbitrary real ¢,u,v

(6.5) (1+t2)"/2H"< (1:;)1)1 /2)) i( )tka ().

k=0
LEMMA 1. For arbitraryc; > 0,¢2>0,n >0

n
2 2yn2g (XY ) _ kan—kpr [ v
69 @+t () = 2 (})desm ()

Lemma 1 follows from (5.5) when we put u = z/c1, v = y/cg, t =
01(62)_1.
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