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1. Introduction

In this paper we consider the relations between immersions of recurrent
type with the immersions having certain planar properties. Namely, we in-
vestigate the weak recurrent immersions f : M — R™*¢ of m-dimensional
Riemannian manifolds M into (m + d)-dimensional Euclidean space R™+¢.
We show that if the immersion f (or the submanifold M) has P2-PNS prop-
erty then it is weak 1-recurrent. We also show that if M is an isotropic
submanifold in R™*¢ then M is of AW(3) type if and only if M is weak
2-recurrent. Finally we consider the isotropic immersions with PP3-PNS
property. We show that the isotropic submanifold has PP3-PNS property if
and only if it is generalized weak 2-recurrent.

Let f: (M,g) — (N, §) be an isometric immersion from an m-dimen-
sional Riemannian manifold (M, g) into (m + d)-dimensional Riemannian
manifold (N, §). Immersions satisfying certain conditions imposed on the
second fundamental form h were investigated by many authors. For instance,
if the tensor field Vh vanishes on M then the immersion f is said to be a
parallel immersion. A parallel immersion is sometimes called extrinsically
locally symmetric ([12]). Further if VA is recurrent (see Section 3) then
the immersion is called a recurrent immersion ([10]). Recurrent immersions
are special semi-parallel immersions. We recall that the immersion f is a
semi-parallel immersion if the tensor field R-h vanishes on M. Semi-parallel
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immersions have been studied intensively by J. Deprez, F. Dillen, U. Lu-
miste, V. Mirzoyan and K. Riives. For more information see [9] and [14] and
the literature cited there.

2. Planar normal sections

Let f : (M,9) — (N,g) be an isometric immersion from an m-
dimensional Riemannian manifold (M, g) into (m + d)-dimensional Rieman-
nian manifold (N, §), m > 2,d > 1. Let V, V and D denote the covariant
derivatives in T(M), T+(M) and N, respectively. Thus Dy is just the direc-
tional derivative in the direction X in N. For tangent vector fields X, Y and
Z and the normal vector field € over M we have DxY = VxY + h(X,Y)
and Dx¢ = —A¢X + Vx¢&, where h is the second fundamental form and
A¢ is the shape operator of M. We have also h(X,Y) = h(Y,X) and
g(h(X,Y),€) = g(A:X,Y). A submanifold M is called totally geodesic if
its second fundamental tensor h vanishes on M ([6]). We define VA and
VVh as usual by

(Vxh)(Y, Z) = Dx(h(Y, Z)) - h(VxY, Z) — h(Y,Vx Z),
(VwVxh)(Y, Z) = Dw((Vxh)(Y, Z)) — (Vxh)(VwY, Z)
—(Vxh)(Y,VwZ) - (Vyh)(Vw X, Z),

respectively, where X, Y, Z € T;(M). The equations of Gauss, Codazzi and
Ricci of M in N are the following

gR(X,VZ,W) = §(R(X,Y)Z, W)+ g(h(X,Y), h(Z, W))
—g(h(X, W)7 h(Y’ Z)))
I(R(X,Y)Z,v) = g(Vxh)(Y, Z) — (Vyh)(X, Z),v),
3(R(X,Y)¢,v) = g(RP(X,Y)¢, ) — g([Ae, Aq] X, Y),

where X, Y, Z, W € T,(M) and &,n,v € N (M).

From now on we assume that f : M — R™t9 is an isometric immersion
from an m-dimensional Riemannian manifold M into (m + d)-dimensional
Euclidean space R™*¢_ i.e. M is a submanifold of R™*¢. For z € M and a
non-zero vector X in Tp(M), we define the (d + 1)-dimensional affine sub-
space E(z, X) of R™*4 by E(z, X) = x + span{X, N;(M)}. In a neighbour-
hood of z, the intersection M N E(z, X) is a regular curve v : (—¢,e) — M.
We suppose that the parameter ¢ € (—¢,¢) is a multiple of the arc-length,
such that 4(0) = z and 4'(0) = X. Each choice of X € T(M) yields a curve
which is called the normal section of M at z in the direction od X, where
X € T(M) (7))

The immersion f (or the submanifold M) is said to have pointwise k-
planar normal sections (Pk-PNS) if for each normal section v the higher
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order derivatives {7 (0),7" (0),...,7**1)(0)} are linearly dependent as vec-
tors in R™+4 ([1] - [3], [8]).

The immersion f (or the submanifold M) is said to have proper pointwise
k-planar normal sections (PPk-PNS) if it has Pk-PNS property and if it does
not have pointwise (k—1)-planar normal sections (P(k-1)-PNS), where k > 1.

PROPOSITION 2.1 ([1]). M has P2-PNS if and only if for each z € M and
each X € T, M the vectors h(X, X) and (Vxh)(X, X) are linearly dependent
vectors in Nz (M).

PRrROPOSITION 2.2 ([2]). M has P3-PNS if and only if for each x € M and
each X € T, M the vectors h(X,X), (Vxh)(X,X) and (VxVxh)(X,X) +
3h(An(x,x)X, X) are linearly dependent vectors in Ny(M).

DEFINITION 2.3. A submanifold M of R™+% is said to be isotropic if for
each point z of M and each unit vector X € Ty M, |h(X, X)|| depends only
on z and not on X at z. M is isotropic if and only if (h(X, X),h(X,Y)) =0
for any X,Y € T, M with (X,Y) =0 ([15)]).

THEOREM 2.4 ([13]). Let M be an isotropic submanifold in R™*%. Then M
has P3-PNS if and only if for each x € M and each X € T, M the vectors
(X, X), (Vxh)(X,X) and (VxVxh)(X, X) are linearly dependent vectors
in Ny(M).

THEOREM 2.5 ([1]). Let M be an m-dimensional submanifold of R™+2. Then
M has P2-PNS if and only if

“h(X7 X)Hz(th)(Xa X)= (h(XaX)’ (th)(X) X)>h(X’ X).

DEFINITION 2.6. A submanifold M is called spherical if M lies in a hyper-
sphere of R™+¢ ([7]).

THEOREM 2.7 ([7]). Let M be an m-dimensional spherical submanifold of
R™td, Thev_z M has P2-PNS if and only if M has parallel second fundamental
form, i.e. Vh = 0.

THEOREM 2.8 ([1]). Let M be an m-dimensional submanifold of R™+% with
P2-PNS property. If M does not have parallel second fundamental form (i.e.
Vh # 0) then M must be hypersurface.

THEOREM 2.9 ([8]). Let M be a surface of R**%. Then M has P2-PNS
property if and only if M is one of the following surfaces:

(i) a surface which lies locally in an affine 3-space R® of R2t4 d > 1,
or

(ii) an open portion of the product of two plane circles, i.e. S'(a) x
S(b) c R* (flat torus) or
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2+9ﬁ) an open portion of Veronese surface V2 in an affine 5-space R® of
R“7% d > 3.

COROLLARY 2.10 ([2]). Let M be a surface of R**¢. Then M has P2-PNS
property if and only if M is one of the following surfaces:

(i) a surface which lies locally in an affine 3-space R® of R4, d > 1,
(a) Vh # 0 (quadrics, etc. ),
(b) Vh = 0 (sphere or cylinder) or
(ii) S'(a) x S1(b) C R* (flat torus) or
(iii) V2 C R® (Veronese surface).
THEOREM 2.11 ([2]). Let M be a m-dimensional submanifold of R™¢. Then
M has P3-PNS property if and only if
{IR(X, DIPNVxh) (X, X)II* = (h(X, X), (Vxh)(X, X))}
{(VxVxh)(X,X) + 3h(Apx,x)X, X)}
= {(A(X, X), (VxVxh)(X, X) + 3h(Anx, )X, X)I(VxR)(X, X)|I?
— (Vxh)(X, X),(VxVxh)(X, X) + 3h(Anx,x)X, X))
(R(X, X), (Vxh)(X, X)) }h(X, X)
+ {IA(X, XV Vxh)(X, X) + 3h(Anx,x) X, X), (Vxh)(X, X))
= (h(X, X), (VxVxh)(X, X) + 3h(4Anx,x)X, X))
(R(X, X), (Vxh)(X, X))HVxh)(X, X).
REMARK 2.12. Every hypersurface has Pk-PNS property for arbitrary k > 1
and every surface of codimension r has Pk-PNS property for arbitrary & > r.

3. Immersions of recurrent type

We denote by VPT the covariant differential of the p*® order, p > 1,
of a (0, k)-tensor field T', k > 1, defined on a Riemannian manifold (M, g)
with the Levi-Civita connection V. According to [16], the tensor T is said
to be 1-recurrent, resp. 2-recurrent, if the following condition holds on M
(1) (VI)(Xy,..., X; X)T(Y1, ..., Yy)

= (VT)(Yla ey Yk’ X)T(X17 ey Xk))
resp.
(VPT) (X1, ..., Xk X, Y)T(Y3, ..., Yi)
= (V2T)(Y3,..., Y X, V)T(X1, ..., Xx),

where X, Y, X1, Y1,..., X, Yy € E(M), E(M) being the Lie algebra of the
vector fields on M. From (1) it follows that at a point z € M if the tensor
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T is non-zero then there exists a unique 1-form ¢, resp. a (0,2)-tensor 1,
defined on a neighbourhood U of z, such that

(2) VI =T®¢, ¢ = d(logl|T}),
resp.
VT =T®¢1,

holds on U, where ||T'|| denotes the norm of T, ||T}{|> = g(T,T). The tensor
T is said to be generalized 2-recurrent if

((VzT)(Xl, ey Xka X7 Y) - (VT ® ¢)(X1’ ey Xk) X: Y))T(y'lv sy Yk)
= ((VZT)(YD e Yy X, Y) - (VT ® d’)(Yla o Y X, Y))T(Xh .- an:)
holds on M, where ¢ is a 1-form on M. From this it follows that at a point

z € M if the tensor T is non-zero then there exists unique a (0, 2)-tensor ¥,
defined on a some neighbourdood U of z such that

VI =VTQR¢+TQY,

holds on U. As an immediate consequence of (2) we have the following
relation

(3) R.-T =0,
i.e. T is a semi-symmetric tensor. We recall that the (0, & + 2)-tensor R - T
is defined by
(R-T)(X1,...,X; X,Y) = (R(X,Y) -T)(Xq,...,Xk)

=-T(R(X,Y)X1,Xa,..., Xi) — ... - T(X1, X2, ..., Xp-1, R(X,Y) Xy),

where the curvature operator R(X,Y’) is defined by
R(X,Y)Z = [Vx,Vy|Z - Vixy|Z,

and [X,Y] is the Lie bracket of X and Y. If the tensor VT vanishes on M
then T is called parallel. Evidently, every parallel tensor 7" fulfils (3).

We adopt the above definitions to define weak recurrent immersions.

Let f: M — R™*% be an isometric immersion from an m-dimensional
Riemannian manifold M into (m + d)-dimensional Euclidean space R™+9.
The immersion f (or the submanifold M) is called weak 1-recurrent if there
exists a 1-form 1 on M such that at every point z € M and for every vector
X € Ty(M) we have

(4) (Vxh)(X, X) = h(X, X)n(X),
whenever h(X, X) # 0 holds at z.
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REMARK. Every recurrent immersion is weak 1-recurrent. The converse
statement is not true.

LEMMA 3.1 ([6]). Let f : M — R™* be a recurrent immersion then f is
semiparallel.

DEFINITION 3.2. Let M be an m-dimensional submanifold of R™*¢. For
each point z € M, the first normal space N,}(M) at z is defined by (see
(7)): NY (M) = span{h(X,Y) : X,Y € T,(M)} C N.(M).

LEMMA 3.3 ([6]). Let f : M — R™+4 be o weak 1-recurrent immersion and
let z € M. Then (Vxh)(X,X) =0 or dim(N,}(M)) < 1 holds at .

THEOREM 3.4. Let f : M — R™t9 be an isometric immersion. Then M
has PP2-PNS property if and only if M (or f) is weak 1-recurrent.

Proof. Let X be a vector at a point z at which h(X, X) # 0. Suppose that
M has PP2-PNS property. Then by Theorem 2.5 we have at z

(Vxh)(X, X) = Ih(X, X)]1?

h(X, X).

We put
(X, X), (Vxh)(X, X))
1R(X, X2
If we consider ¢ as a 1-form then the immersion f must be weak 1-recurrent.
Conversely, suppose that if M (or f) is weak l-recurrent then by Theorem

2.5 we can deduce that M has PP2-PNS property. This completes the proof
of the theorem.

¢(X) =

DEFINITION 3.5. Let f : M — R™¢ be an isometric immersion. The
immersion f (or the submanifold M) is called AW(3) type if for each X €
Tx(M) the following equation holds ([3]):

(5) IA(X, XHP{(VxVxh)(X, X) + 3h(Anx,x) X, X)}
= (h(X, X),(VxVxh)(X, X) + 3h(Anx,x) X, X )h(X, X).
ExXAMPLE 3.6 ([5]). The helical cylinder H? embedded in R* by
z(0,¢9) = {(6,acosp,asing,bp) : 6,¢ € R,0 # 0}
is of type AW(3).

DEFINITION 3.7. Let f : M — R™*? be an isometric immersion. The
immersion f (or the submanifold M) is called weak 2-recurrent (or weak
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birecurrent) if there exists a 2-form ¢ on M such that at every point z € M
and for every vector X € T;(M) we have

whenever h(X, X) # 0 holds at z.

THEOREM 3.8. Let M be an isotropic submanifold in R™+¢. Then the fol-
lowing statements are equivalent:

(1) M is of AW(3) type and
(ii) M is weak 2-recurrent.

Proof Let X be a vector at a point z at which A(X,X) # 0. Suppose

that M is isotropic submanifold of AW(3) type. Then by Definition 3.5

(VxVxh)(X, X) + 3h(Apx,x)X, X) and h(X, X) are linearly dependent.

Since M is isotropic (VxVxh)(X, X) and h(X, X) are linearly dependent

too. This means that

(h(X1 X)’ (vxvxh)(X, X)>
|IR(X, X2

(VxVxh)(X,X) = r(X, X).

We put
(h(X,X)v(vaXh')('XaX))
lh (X, X)|12
If we consider ¢ as a 2-form then, by Definition 3.7, f is weak 2-recurrent.

Conversely, if M is weak 2-recurrent then, by (5) and (6), M is of AW(3)
type. This completes the proof of the theorem.

(X, X) =

DEFINITION 3.9. Let f : M — R™¢ be an isometric immersion. The
immersion f (or the submanifold M) is called generalized weak 2-recurrent
(or generalized weak birecurrent) if there exist a 2-form 3 and 1-form ¢ on
M such that at every point z € M and for every vector X € T,;(M) we have

(M) (VxVxh)(X, X) = h(X, X)p(X, X) + (Vxh)(X, X)$(X),
whenever A(X, X) # 0 and (Vxh)(X,X) # 0 hold at z.

THEOREM 3.10. Let f : M — R™*% be an isometric immersion. Then the
following statements are equivalent:

(i) M is isotropic submanifold with PP3-PNS property,
(i) M (or the immersion f) is generalized weak 2-recurrent.

Proof. Suppose that M is isotropic submanifold with PP3-PNS property.
Then by Theorem 2.4 the vectors h(X,X), (Vxh)(X,X) and
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(VxVxh)(X,X) are linearly dependent in N (M). So combining Propo-
sition 2.2 and Theorem 2.11 with Theorem 2.4 we have
{IIR(X, PNV xh)(X, XN = (X, X), (Vxh)(X, X))*HVx Vxh)(X, X)

= {(h(X, X), (VxVxh)(X, X)) |(Vxh)(X, X)|I?

- ((th)(X’ X), (vaXh)(X> X))(h(X’ X), (th)(X7 X))}h(X’ X)

+ {IR(X, )| (VxVxh)(X, X), (Vxh)(X, X))

— (M(X, X), (VxVxh)(X, X))(h(X, X), (Vxh)(X, X)) HV xh)(X, X).
Since M has PP3-PNS property then by definition it does not have P2-PNS.
Thus

1R, PV xh) (X, XN # (WX, X), (Vxh)(X, X))?
holds at every point z € M. Hence taking

D) = () (O X Tk X, X (T xh) K, X
1R(X, X)IIPI(Vxh)(X, X2 = (M(X, X), (Vxh)(X, X))?
: ((Vxh)(X,X),_(VxVxh)(X,X))(h(X, ), (Vxh)(X, X))
1R(X, OIPI(Vxh)(X, X)|12 = (h(X, X), (Vxh)(X, X))
and
B(X) = (Vxh)(X, X),(VxVxh)(X, X)X, X)|?

IA(X, X)2I(VxR)(X, X)|12 — (h(X, X), (Vxh)(X, X))?

_ (X, X), (VxVxh)(X, X)) (X, X), (Vxh)(X, X))
IA(X, XNV h)(X, X)) - (R(X, X), (Vxh)(X, X))*

we obtain (7), for each X € T (M). Conversely, if M is generalized weak

2-recurrent submanifold then by Definition 3.9 and Theorem 2.4, M must
be isotropic with P3-PNS property.
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