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R E C U R R E N T IMMERSIONS 

Dedicated to Professor Dr. Alan West on his 65th birthday 

1. Introduction 
In this paper we consider the relations between immersions of recurrent 

type with the immersions having certain planar properties. Namely, we in-
vestigate the weak recurrent immersions / : M —> R m + d of m-dimensional 
Riemannian manifolds M into (m + <i)-dimensional Euclidean space R m + d . 
We show that if the immersion / (or the submanifold M) has P2-PNS prop-
erty then it is weak 1-recurrent. We also show that if M is an isotropic 
submanifold in Rm+d then M is of AW(3) type if and only if M is weak 
2-recurrent. Finally we consider the isotropic immersions with PP3-PNS 
property. We show that the isotropic submanifold has PP3-PNS property if 
and only if it is generalized weak 2-recurrent. 

Let / : (M, g) —• (N, g) be an isometric immersion from an m-dimen-
sional Riemannian manifold (M, g) into (m + d)-dimensional Riemannian 
manifold (N,g). Immersions satisfying certain conditions imposed on the 
second fundamental form h were investigated by many authors. For instance, 
if the tensor field V/i vanishes on M then the immersion / is said to be a 
parallel immersion. A parallel immersion is sometimes called extrinsically 
locally symmetric ([12]). Further if V/i is recurrent (see Section 3) then 
the immersion is called a recurrent immersion ([10]). Recurrent immersions 
are special semi-parallel immersions. We recall that the immersion / is a 
semi-parallel immersion if the tensor field R h vanishes on M. Semi-parallel 
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immersions have been studied intensively by J. Deprez, F. Dillen, U. Lu-
miste, V. Mirzoyan and K. Riives. For more information see [9] and [14] and 
the literature cited there. 

2. Planar normal sections 
Let / : ( M , g ) —• (N,g) be an isometric immersion from an Tri-

dimensional Riemannian manifold (M, g) into (m + d)-dimensional Rieman-
nian manifold (N,g ) , m > 2,d > 1. Let V, V and D denote the covariant 
derivatives in T(M), TX(M) and N, respectively. Thus Dx is just the direc-
tional derivative in the direction X in N. For tangent vector fields X, Y and 
Z and the normal vector field £ over M we have DxY = VxY + h(X, Y) 
and DxC = —A^X + where h is the second fundamental form and 
A£ is the shape operator of M. We have also h(X,Y) = h(Y,X) and 
g(h(X,Y),£) = g(A^X,Y). A submanifold M is called totally geodesic if 
its second fundamental tensor h vanishes on M ([6]). We define V/i and 
VV/i as usual by 

(Vxh)(Y, Z) = Dx(h(Y, Z)) - h(VxY, Z) - h(Y, VXZ), 
(VwVxh)(Y, Z) = Dw((Vxh){Y, Z)) - (Vxh)(VwY, Z) 

-(Vxh)(Y,VwZ) - (VYh)(VwX,Z), 

respectively, where X, Y, Z € TX(M). The equations of Gauss, Codazzi and 
Ricci of M in N are the following 

g(R(Xt Y)Z, W) - g(R(X, Y)Z, W) + g(h(X, Y), h{Z, W)) 
-g(h(X, W), h(Y, Z)), 

g(R(X, Y)Z, v) = g((Vxh)(Y, Z) - (VYh)(X, Z), u), 
g(R(X, v) - g(RD(X, Y)t, r,) - A,]X, Y), 

where X, Y,Z,We TX(M) and rj, v G NX(M). 
From now on we assume that / : M —> Rm+d is an isometric immersion 

from an m-dimensional Riemannian manifold M into (m + d)-dimensional 
Euclidean space Mm+d , i.e. M is a submanifold of R m + d . For x € M and a 
non-zero vector X in TX(M), we define the ( d + l)-dimensional affine sub-
space E(x, X) of Rm+d by E(x, X) = x + span{X, NX(M)}. In a neighbour-
hood of x, the intersection MC\E(x, X) is a regular curve 7 : (—e, e) —> M. 
We suppose that the parameter t E (—£, s) is a multiple of the arc-length, 
such that 7(0) = x and 7 (0) = X. Each choice of X € T(M) yields a curve 
which is called the normal section of M at x in the direction od X, where 
X e TX{M) ([7]). 

The immersion / (or the submanifold M) is said to have pointwise k-
planar normal sections (Pk-PNS) if for each normal section 7 the higher 
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order derivatives (7 ( 0 ) , 7 " ( 0 ) , . . . , are linearly dependent as vec-
tors in R m + d ([1] - [3], [8]). 

The immersion / (or the submanifold M) is said to have proper pointwise 
k-planar normal sections (PPk-PNS) if it has Pk-PNS property and if it does 
not have pointwise (k-l)-planar normal sections (P(k-l)-PNS), where k > 1. 

PROPOSITION 2 .1 ([1]). M has P2-PNS if and only if for each x € M and 
each X 6 TXM the vectors h(X, X) and (Vxh)(X, X) are linearly dependent 
vectors in Nx (M). 

PROPOSITION 2 .2 ([2]). M has P3-PNS if and only if for each x £ M and 
each X E TXM the vectors h(X,X), (Vxh)(X,X) and (VxVxh)(X,X) + 
3h(Ah(Xlx)X,X) are linearly dependent vectors in NX(M). 

DEFINITION 2 .3 . A submanifold M of R M + D is said to be isotropic if for 
each point x of M and each unit vector X € TXM, \\h(X, X)|| depends only 
on x and not on X at x. M is isotropic if and only if (h(X, X), h(X, V)) = 0 
for any X,Y 6 TXM with (X, Y) = 0 ([15]). 

THEOREM 2 . 4 ([13]). Let M be an isotropic submanifold in R M + D . Then M 
has P3-PNS if and only if for each x 6 M and each X G TXM the vectors 
h(X,X), (Vxh)(X,X) and (Vx^xh)(X,X) are linearly dependent vectors 
in NX(M). 

THEOREM 2 .5 ([1]). Let M be an m-dimensional submanifold ofRm+d. Then 
M has P2-PNS if and only if 

IIh{X, X)||2(Vxfc)(X, X) = (h(X, X), (yxh)(X, X))h(X, X). 

DEFINITION 2 .6 . A submanifold M is called spherical if M lies in a hyper-
sphere of R m + d ([7]). 

THEOREM 2 .7 ([7]). Let M be an m-dimensional spherical submanifold of 
Rm+d. Then M has P2-PNS if and only if M has parallel second fundamental 
form, i.e. V/i = 0. 

THEOREM 2 .8 ([1]). Let M be an m-dimensional submanifold ofRm+d with 
P2-PNS property. If M does not have parallel second fundamental form (i.e. 
V/i / 0) then M must be hypersurface. 

THEOREM 2 .9 ([8]). Let M be a surface ofR2+d. Then M has P2-PNS 
property if and only if M is one of the following surfaces: 

(i) a surface which lies locally in an affine 3-space R3 of R2+d, d > 1, 
or 

(ii) an open portion of the product of two plane circles, i.e. S1(a) x 
S1(b) C R4 (flat torus) or 
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(iii) an open portion of Veronese surface V2 in an affine b-space R5 of 
R 2 + d , d > 3 . 

COROLLARY 2 . 10 ([2]). Let M be a surface ofR2+d. Then M has P2-PNS 
property if and only if M is one of the following surfaces: 

(i) a surface which lies locally in an affine 3-space R3 o/R 2 + d , d > 1, 
(a) V/i 0 (quadrics, etc. ), 
(b) V/i = 0 (sphere or cylinder) or 

(ii) S1(a) x S1(b) C R4 ( f la t torus) or 
(iii) V2 C R5 (Veronese surface). 

THEOREM 2 . 11 ([2]). LetM be am-dimensional submanifold of Rm+d. Then 
M has P3-PNS property if and only if 

{\\h(X,X)\\2\\(Vxh)(X,X)\\2 - (h(X,X),(Vxh)(X,X))2} 
{(VxVxh)(X, X) + 3 h ( A H X t X ) X , X ) } 

- ((Vxh)(X, X), (VxVxh)(X, X) + 3h(Ah{XtX)X, X)) 
(h(X,X),(Vxh)(X,X))}h(X,X) 

+ {\\h(X, X)\\2((VxVxh)(X, X) + 3h(AhiXiX)X, X), (Vxh)(X, X ) ) 
- (h(X, X) , ( V x V x h ) ( X , X ) + 3h(Ah ( x > x )X, X) ) 

(h(X, X) , (V x h) (X , X ) ) } ( V x h ) ( X , X) . 

REMARK 2.12. Every hypersurface has Pk-PNS property for arbitrary k > 1 
and every surface of codimension r has Pk-PNS property for arbitrary k > r. 

3. Immersions of recurrent type 
We denote by V P T the covariant differential of the pth order, p > 1, 

of a (0, A;)-tensor field T, k > 1, defined on a Riemannian manifold (M ,g) 
with the Levi-Civita connection V. According to [16], the tensor T is said 
to be 1 -recurrent, resp. 2-recurrent, if the following condition holds on M 

(1) ( V r ) ( X i , . . . , X f c ; X)T(YI, ...,YK) 
= (VT)(Y1,...,Yk'X)T(X1,...,Xk), 

resp. 

(V2T)(X1,...,Xk;X,Y)T(Y1,...,Yk) 
= (V2R)(YI,..., YK-x, Y)T(Xu ...,xk), 

where X,Y,Xi,Yi,.. .,Xk,Yk 6 H(M), E(M) being the Lie algebra of the 
vector fields on M. From (1) it follows that at a point x € M if the tensor 
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T is non-zero then there exists a unique 1-form <f>, resp. a (0,2)-tensor tp, 
defined on a neighbourhood U of x, such that 

(2) VT = T ®<j>, <f> = d(\og ||T||), 

resp. 

v 2 r = T ® V, 

holds on U, where ||T|| denotes the norm of T, \\T\\2 = g(T, T). The tensor 
T is said to be generalized 2-recurrent if 

((V2T)(X1 ; . . . , X k ] X , Y ) ~ (VT ® <j>)(Xu ...,XK;X, Y))T(Ylt ...,Yk) 

= ( ( V 2 r ) ( y 1 ) . . . ,Y k ]x,Y) - ( v r ® < / > ) ( Y 1 ; . . . ,x,y ) ) T ( X u...,x k) 

holds on M, where <f> is a 1-form on M. From this it follows that at a point 
x G M if the tensor T is non-zero then there exists unique a (0,2)-tensor ip, 
defined on a some neighbourdood U of x such that 

v 2 r = v r ® <J> + T ® 

holds on U. As an immediate consequence of (2) we have the following 
relation 

(3) R T = 0, 

i.e. T is a semi-symmetric tensor. We recall that the (0, k + 2)-tensor R • T 
is defined by 

( R - T ) ( X 1 , . . . , X k ; X , Y ) = (K(X, Y ) • T ) ( X l t . . . , Xk) 

= - T ( K ( X , Y)X1,X2, . . . , X k ) - . . . - T(X1,X2,..., Xk^, K(X, Y)Xk), 

where the curvature operator TZ(X, Y) is defined by 

n(x,Y)z = [vx,vy]z- v[XX]zt 
and [X, Y] is the Lie bracket of X and Y. If the tensor VT vanishes on M 
then T is called parallel. Evidently, every parallel tensor T fulfils (3). 

We adopt the above definitions to define weak recurrent immersions. 
Let / : M —> R m + d be an isometric immersion from an m-dimensional 

Riemannian manifold M into (m + d)-dimensional Euclidean space R m + d . 
The immersion / (or the submanifold M) is called weak 1-recurrent if there 
exists a 1-form 77 on M such that at every point x € M and for every vector 
X € TX{M) we have 

(4) (Vxh)(X,X) = h(X,X)ri(X), 

whenever h(X,X) ^ 0 holds at x. 
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(Vxh)(X,X) = ''KX^X). 

REMARK. Every recurrent immersion is weak 1-recurrent. The converse 
statement is not true. 

LEMMA 3.1 ([6]). Let f : M —• R M + D be a recurrent immersion then f is 
semiparallel. 

DEFINITION 3.2. Let M be an m-dimensional submanifold of Rm+d. For 
each point x € M, the first normal space NX(M) at x is defined by (see 
[7]): NX\M) = s p a n { h ( X , Y ) : X,Y e TX(M)} C NX(M). 

LEMMA 3.3 ([6]). Let f : M —• RM + D be a weak 1-recurrent immersion and 
let x e M. Then (Vxh)(X,X) = 0 or dim(iV I

1(M)) < 1 holds at x. 

THEOREM 3.4. Let f : M —> Rm+d be an isometric immersion. Then M 
has PP2-PNS property if and only if M (or f ) is weak 1-recurrent. 

P r o o f . Let X be a vector at a point x at which h(X,X) / 0. Suppose that 
M has PP2-PNS property. Then by Theorem 2.5 we have at x 

(h(X,X),(Vxh)(X,X)} 
|\h{XtX)f 

We put 

_ (h(X,X),(Vxh)(X,X)) - m^w • 

If we consider ^ as a 1-form then the immersion / must be weak 1-recurrent. 
Conversely, suppose that if M (or / ) is weak 1-recurrent then by Theorem 
2.5 we can deduce that M has PP2-PNS property. This completes the proof 
of the theorem. 

DEFINITION 3.5. Let / : M — • Rm+d be an isometric immersion. The 
immersion / (or the submanifold M) is called AW(3) type if for each X € 
TX(M) the following equation holds ([3]): 

(5) | | h ( X , X ) | | 2 { ( V x V x ^ ) ( X , X) + 3 h ( A h { X i X ) X , X)} 

= (h(X, X), (VxVxh)(X, X) + 3h(Ah{XiX)X, X))h(X, X). 

EXAMPLE 3.6 ([5]). The helical cylinder H 2 embedded in K4 by 

x(0,<f>) = {(6, a cos <fi, a sin <f>, b<f>) : 6, <p e R, 9 ^ 0} 

is of type AW(3). 

DEFINITION 3.7. Let / : M —> MM+CI be an isometric immersion. The 
immersion / (or the submanifold M) is called weak 2-recurrent (or weak 
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birecurrent) if there exists a 2-form <fi on M such that at every point x € M 
and for every vector X G TX(M) we have 

(6 ) (VxVxh)(X, X ) = h(X, X)i>(X, X ) , 

whenever h ( X , X ) ^ 0 holds at x. 

THEOREM 3.8. Let M be an isotropic submanifold in Rm+d. Then the fol-
lowing statements are equivalent: 

(i) M is of AW{3) type and 
(ii) M is weak 2-recurrent. 

P r o o f . Let X be a vector at a point x at which h ( X , X ) / 0. Suppose 
that M is isotropic submanifold of AW(3) type. Then by Definition 3.5 
(VxVxh)(X,X) + 3h(Ah(X,x)X,X) and h{X,X) are linearly dependent. 
Since M is isotropic (Vx^xh)(X, X ) and h ( X , X ) are linearly dependent 
too. This means that 

(VxVxh)(X,X) = m x , x w h { x ' x ) -

We put 

M y y , ( h ( X , X ) , ( V x y x h ) ( X , X ) } 
^ x - x > = • 

If we consider ip as a 2-form then, by Definition 3.7, / is weak 2-recurrent. 
Conversely, if M is weak 2-recurrent then, by (5) and (6), M is of AW(3) 
type. This completes the proof of the theorem. 

DEFINITION 3.9. Let / : M — • R M + D be an isometric immersion. The 
immersion / (or the submanifold M) is called generalized weak 2-recurrent 
(or generalized weak birecurrent) if there exist a 2-form ^ and 1-form <f> on 
M such that at every point x 6 M and for every vector X G TX(M) we have 

(7) (VxVxh)(X, X ) = h(X, X)i/>(X, X ) + (Vxh)(X, X)<f>(X), 

whenever h(X,X) / 0 and ( V x h ) ( X , X ) / 0 hold at x. 

THEOREM 3.10. Let f : M —• Rm+d be an isometric immersion. Then the 
following statements are equivalent: 

(i) M is isotropic submanifold with PPS-PNS property, 
(ii) M (or the immersion f ) is generalized weak 2-recurrent. 

P r o o f . Suppose that M is isotropic submanifold with PP3-PNS property. 
Then by Theorem 2.4 the vectors h(X,X), ( V x h ) { X , X ) and 
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( V x ^ x h ) ( X , X ) are linearly dependent in NX(M). So combining Propo-
sition 2.2 and Theorem 2.11 with Theorem 2.4 we have 

{\\h(X, X ) | | 2 | | ( V x / 0 ( X , X ) II2 - (h(X, X ) , (Vxh)(X, X ) ) 2 } ( V x V x h ) ( X , X ) 

= {(h(X,X),(VxVxh)(X,X))\\(Vxh)(X,X)\\2 

- ( ( V x h ) ( X , X ) , ( V x V x h ) ( X , X ) ) ( h ( X , X ) , ( V x h ) ( X , X))}h(X, X ) 

+ X ) | | 2 ( ( V x V x / i ) ( X , X ) , (Vxh)(X, X ) ) 

- (h(X, X ) , ( V x V x h ) ( X , X ) ) ( h ( X , X ) , ( V x h ) ( X , X ) ) } ( V x h ) ( X , X ) . 

Since M has PP3-PNS property then by definition it does not have P2-PNS. 
Thus 

IW^^OlPlKVx^X^,*)!!2 # { h ( X , X ) , ( V x h ) ( X , X ) ) 2 

holds at every point x € M. Hence taking 
(h(X, X ) , ( V x V x h ) ( X , X ) ) II(Vxh)(X, X)||2 

\\h(X, X)||2||(Vx/l)(X, X)\\* - (h(X, X ) , ( V x h ) ( X , X)}2 

((VxhXX, X ) , ( V x V x h ) ( X , X ) ) (h(X, X ) , (Vxh)(X, X ) ) 

\\h{X, JOIPIKVjrMX, *)ll2 - (h(X, X ) , (Vxh)(X, X))* 

((Vxh)(X, X ) , ( V x V x h ) ( X , X))||/t(X, X)||2 

\\h(x,xm(vxh)(x,x)\\*-(h(x,x),(yxh)(x,x))* 
(h(X, X ) , ( V x V x h ) ( X , X ) ) ( h ( X , X ) , ( V x h ) ( X , X ) ) 

IIh(X,X)\m(Vxh)(X,XW - (h(X,X),(Vxh)(X,X))* 
we obtain (7), for each X € TX(M). Conversely, if M is generalized weak 
2-recurrent submanifold then by Definition 3.9 and Theorem 2.4, M must 
be isotropic with P3-PNS property. 
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