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GEOMETRIC INEQUALITIES FOR PLANE HEDGEHOGS

Abstract. We define and study an algebraic area for plane hedgehogs (envelopes
parametrized by their Gauss map). In particular, we study the extension to hedgebogs of
the Minkowski inequality for plane convex bodies.

I. Introduction and statement of results
Let C be a convex curve of class C! in the Euclidean plane E2. We may
consider C as the envelope of the family of support lines given by

1) zcosf + ysinf = p(h),

where the support function p(@) = h(cos8,sin ) is defined as the signed dis-
tance of the support line to C with exterior normal vector u(#)=(cos 6, sin 8)
from the origin.

Given any h € C%(S!;R), we may always consider the envelope Hj, of
the family of lines given by (1). Partial differentiation of (1) yields

2) — zsinf + ycosé = p'(d),

and from (1) and (2), the parametric representation of Hj, is

{ z = p(0) cos@ — p/'(0) sin 6

(3) - ) :
y = p(60)sin @ + p'(0) cos 6.

We say that Hj; is the hedgehog defined by the support function h. In
general, Hj, is not a convex curve of class C*. Since (3) implies

dr " . dy
= (p+p")(0)sind and pT]

we see that the condition that H is a convex curve of class C? is simply that
p+ p" (which may be identified with the radius of curvature) has no zero.
However, if Hp, is not too singular (i.e. if Hy, has a well-defined tangent line
at every point), then H; is a curve that has exactly one oriented tangent
line in each direction (see Fig. 1.a).

= (p+ p")(6) cos ¥,
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For a study of hedgehogs (envelopes parametrized by their Gauss map) in
E"*!, we refer to the paper of R. Langevin, G. Levitt and H. Rosenberg [2].
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When h € C?(S';R) is the support function of a convex curve C, it is
well-known (see for example [5]) that

27 2T

i(h) = | p(6) s = | 2 “2’(0 +7) 49
0 0
and
1 2 1 2
a(h) = = | p(6)(p(6) +p"(0))d8 = = | (p(6)* - p(6)%) db
2 0 2 0

are respectively the perimeter and the area of the convex body with bound-
ary C. But for any h € C?(S';R), a(h) (resp. I(h)) may be interpreted as an
algebraic area (resp. length) of the hedgehog Hjy. More precisely, a(h) can
be viewed as the integral over E2 —Hj, of the index i,(p) defined as algebraic
intersection number of an oriented half-line with origin p with M}, equipped
with its transverse orientation (this number is independent of the oriented
half-line for an open dense set of directions). For example, if p(8) = sin 360
(see Fig. 1.b) the algebraic area of the hedgehog M} is equal to —4m, i.e.
~2area(D), where D is the domain delimited by Hp. The minus sign comes
from the fact that D is concave at the regular points of its boundary and the
factor 2 from the fact that the parametrization describes the curve twice.

In this paper, we prove the following results.

PROPOSITION 1. Let V be the real vector space of plane hedgehogs defined
up to a translation. The map a : V — R, h — a(h) is a nondegenerate
quadratic form.
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REMARK 1. The symmetric bilinear form a(h, k) obtained by polarizing a
may be interpreted as an algebraic mixed area of Hp and Hy:

2 2n
a(h, k) = 3 | p(6)(a(6) +¢"(6)) 46 = 5 § (6(6)a(0) — P (6)<'(6)) b,
0 0

where p(0) = h(cos8,sin ) and ¢(f) = k(cosf,sin8).
The following lemma can be viewed as a geometrical interpretation of
Wirtinger’s lemma.

LEMMA 1. Let F be the subspace of V defined by the condition I(h) = 0.
Then, we have:

(i) Yhe F,a(h) <0
(i) Vh € F, a(h) =0 <= h = 0y.

REMARK 2. We define the (signed) width wx(6) of Hp, in the direction u(6) =
(cos@,sinf) by

wy(0) = p(6) + p(0 + 7), where p(@) = h(cosb,sinf),

which is the (signed) distance between the two support lines of H}, orthog-
onal to u(#).

Thus, elements of F' may be interpreted as plane hedgehogs of zero mean
width. Of course, plane hedgehogs of constant width zero are in F: such
hedgehogs are said to be projective for, if they are not too singular, they
have exactly one nonoriented tangent line in each direction (see Fig.1.b).
Note that a plane hedgehog C of constant width 2r can be seen as the
sum of a circle with radius 7 with a projective hedgehog (which may be
interpreted as the locus of the middles of C’s diameters). For a study of
projective hedgehogs in E**!, see [3]. A survey of convex bodies of constant
width is given by Chakerian and Groemer [1].

As a corollary, we have the following result.

PROPOSITION 2. The map /—a : F — Ry, h —— +/—a(h) is a norm
associated with a scalar product. In particular, for any (h, k) € F2, we have
the following inequalities

(4) y—a(h+ k) < y/=a(h) + y/—a(k),
(5) a(h, k) < a(h) a(k),
with equalities if and only if Hy, and Hy, are homothetic.

REMARK 3. For convenience, in this paper “MHp and H; are homothetic”
means “there exists (A, u) € R? — {(0,0)} such that Ak + pk = Oy”.

REMARK 4. Inequality (4) (resp. (5)) has to be compared with the Brunn-
Minkowski inequality (resp. Minkowski inequality) in the plane E? (see for
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example [4]): for any pair (H, K) of plane convex bodies, we have

(6) Va(H + K) > \Ja(H) + /a(K)
and
(7) a(H,K)? > a(H) a(K),

where a(L) (resp. a(H, K)) is the area (resp. the mixed area) of L (resp.
(H, K)).

The following result extends the Minkowski inequality to a pair of plane
hedgehogs provided that one of them has a positive area.

THEOREM 1. Let (h,k) € V2 be such that a(h) > 0 or a(k) > 0. Then, we
have

(8) a(h, k)? > a(h) a(k),

with equality if and only if Hy and Hy, are homothetic.

The following corollary extends the classical isoperimetric inequality to
hedgehogs.

COROLLARY 1. For any hedgehog h € V, we have a(h) < £I(h)?, with
equality if and only if Hy is a circle or a point. ‘

For a convex curve whose support function is of class C2, we can sharpen
this result as follows.

PROPOSITION 3. Let C be a convez curve in E2. If its support function
p(0) = h(cos8,sin ) is of class C3, then we have

(9) 0 < I(h)? — 4wa(h) < —4ma(h'),
where h'(cos0,sin8) = p'(8), and a(h’) is the area of the evolute curve of C.

The following corollary generalizes Lemma 1 (and therefore Wirtinger’s
lemma).

COROLLARY 2. Let g € V' be such that a(g) > 0 and let F; be the subspace
orthogonal (relatively to the nondegenerate quadratic form a) to the subspace
spanned by g : Fy = {h € V' | a(g, h) = 0}. Then, we have

(1) Vh € Fy, a(h) <0

(i) Yh € Fy, a(h) =0 <= h = 0y.
In particular, any hedgehog orthogonal to a convexr one has a nonpositive
area.

Thus, we have the following generalization of Proposition 2.

THEOREM 2. Let g € V be a hedgehog such that a(g) > 0. The map v/—a :
Fy — Ry, h — /—a(h) is a norm associated with a scalar product. In
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particular, inequalities (4) and (5) hold for any (h, k) € (F,)?, with equalities
if and only if Hy and Hy are homothetic.

The following proposition relates plane hedgehogs of zero relative mean
width to subspaces Fy. Consider an arbitrary norm ||| on E? and denote
by q(8) = k(cos8,sin6) the support function of K = {v € E?||jv|| = 1}. We
define the (signed) width of H), relative to K, or simply the K-width of Hy,
in direction of u(#) = (cos6,sin @) by
wn(f) _ wa(f)

wi(6) ~ q(6)
which is the (signed) distance (relatively to ||-||) between the two support
lines of H}, orthogonal to u(6).

wp(K,0) =2

PROPOSITION 4. There exists a convex hedgehog g such that Fy is the sub-
space of V' constituted by plane hedgehogs of zero mean K-width, which is
defined by the condition

2n 2m
| wi(K,0)d0=0ie | PO) 4y 0,
0 o 4(6)

where p(6) = h(cos@,sinb).

I1. Further remarks and proof of results
Proof of Proposition 1. Obviously, the map a is a quadratic form on
V. Though the nondegenaracy of a comes from Lemma 1, we give a direct
proof of it. For any h € V — {0y}, consider the Fourier expansion of p(8) =
h(cos,sin @), namely

+00

p(8) =ap + Z(an cosné + by, sinnb),

n=1

and let k(cos6,sinf) = p(6) — ag. We get easily

T iR
a’(h’ k) = —5 Z(n2 - 1)(0’1?), + b?l,)’
n=2
so that a(h, k) < 0 unless p(6) = ag + (a1 cosd + by sinf) with ag # 0, but
in this case H}, is a circle so that a(h) = a(h,h) > 0. This completes the
proof.0

REMARK 5. Note that any hedgehog H, has a unique representation of the
form

Hg = Hp + Hi,
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where H}, is projective and Hy, centred (i.e. centrally symmetric with center
at the origin), given by

g=h+k, where h(u) = %(g(u) — g(—u)) and k(u) = %(g(u) + g(—u)).

Using Proposition 2, we see easily that the nondegenerate quadratic form
a defines a notion of orthogonality for which P+ = Q, where P (rep. Q)
denotes the subspace of projective (resp. centred) hedgehogs. So V = P &
Q=PogPL.

Proof of Theorem 1. Suppose for example that a(k) > Oandlet A: R — R
be the quadratic function defined by

A(t) = a(h + tk) = a(h) + 2ta(h, k) + t?a(k).
Since a(k) > 0, we have A(t) > 0 for large t. Moreover, from Lemma 1

I(k) # 0 and we can consider t = — i for which h+tk € F so that A(t) < 0
unless h + tk = Oy. Therefore, the discriminant of A(t), namely

A = 4(a(h, k)? — a(h)a(k)),

must satisfy A > 0 unless h + tk = Oy. To conclude, note that we have
obviously A = 0 when Hj and Hy are homothetic.O

Proof of Corollary 1. Take & = 1 in inequality (8).0

Proof of Proposition 3. By the Cauchy-Schwarz inequality, we have
27
I(h)? < 27 § (p+p")(6)" db = 4n(a(h) - a(I')),
0
and thus (9) considering Corollary 1. Moreover, it is easy to check that the
support function of the evolute curve of C is given by ¢(8) = p(8 — %). This
completes the proof.O

REMARK 6. It follows immediately from Lemma 1 that evolute curves (i.e.
the locus of centers of curvature) of hedgehogs are hedgehogs with nonpos-
itive area.

Corollary 2 is an immediate consequence of Theorem 1.

Proof of Proposition 4. By the fact that ¢(6) = k(cos6,sin@) is the
support function of a centred hedgehog (see Remark 5), the general solution
of the differential equation y + ¢’ = %, namely

sin

sf .
y(0) = (Sf;;—e)da) sinf — (Smdt‘i) cos b,
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is a 27-periodic function, and thus defines a hedgehog g (up to a translation)
which is convex since y + y" = % > 0. The hedgehog g has the desired
property.O
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