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GEOMETRIC INEQUALITIES FOR P L A N E HEDGEHOGS 

Abstract. We define and study an algebraic area for plane hedgehogs (envelopes 
parametrized by their Gauss map). In particular, we study the extension to hedgehogs of 
the Minkowski inequality for plane convex bodies. 

I. Introduction and statement of results 
Let C be a convex curve of class C 1 in the Euclidean plane E2. We may 

consider C as the envelope of the family of support lines given by 

(1) x cos 0 y sin 0 = p(0), 

where the support function p(0) = h(cos6, sin0) is defined as the signed dis-
tance of the support line to C with exterior normal vector u(6) = (cos 0, sin 9) 
from the origin. 

Given any h € C2(S1;R), we may always consider the envelope Hh of 
the family of lines given by (1). Partial differentiation of (1) yields 

(2) - xsin0 + ycos0 = p'(0), 

and from (1) and (2), the parametric representation of Hh is 

f x = p(0) cos 0 - p'{0) sin 0 
\y = p(0)sm0 + p'(0)cos9. 

We say that Hh is the hedgehog defined by the support function h. In 
general, Hh is not a convex curve of class C 1 . Since (3) implies 

% = - ( P + P")(0)sin0 and ^ = (p + p")(0) cos0, 

we see that the condition that Hh is a convex curve of class C 1 is simply that 
p + p" (which may be identified with the radius of curvature) has no zero. 
However, if Hh is not too singular (i.e. if Hh has a well-defined tangent line 
at every point), then Hh is a curve that has exactly one oriented tangent 
line in each direction (see Fig. l.a). 
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For a study of hedgehogs (envelopes parametrized by their Gauss map) in 
E71"1"1, we refer to the paper of R. Langevin, G. Levitt and H. Rosenberg [2], 
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Fig. 1 

When h £ C2(§1; R) is the support function of a convex curve C, it is 
well-known (see for example [5]) that 

dO 

and 
1 2ir 1 27r 

= - J p(d)(p(e) + p"(e))do = - \ {P{e?-v'{e?)do 

are respectively the perimeter and the area of the convex body with bound-
ary C. But for any h € C2(S1;R), a(h) (resp. 1(h)) may be interpreted as an 
algebraic area (resp. length) of the hedgehog Tih• More precisely, a(h) can 
be viewed as the integral over E2 — Tth of the index ih(p) defined as algebraic 
intersection number of an oriented half-line with origin p with Tih equipped 
with its transverse orientation (this number is independent of the oriented 
half-line for an open dense set of directions). For example, if p(6) = sin 3d 
(see Fig. l.b) the algebraic area of the hedgehog Hh is equal to —47r, i.e. 
—2area(D), where D is the domain delimited by Tih- The minus sign comes 
from the fact that D is concave at the regular points of its boundary and the 
factor 2 from the fact that the parametrization describes the curve twice. 

In this paper, we prove the following results. 

PROPOSITION 1. Let V be the real vector space of plane hedgehogs defined 
up to a translation. The map a : V —> R, h \—> a(h) is a nondegenerate 
quadratic form. 
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REMARK 1. The symmetric bilinear form a(h,k) obtained by polarizing a 
may be interpreted as an algebraic mixed area of Hh and Hk' 

2ir -J 
a(h, k) = - \ p(9)(q(d) + q"(9)) d9 = - J (p(6)q(6) - p'(9)q'(9)) d9, 

z o z o 
where p(9) = /i(cos 0, sin 0) and q(9) = k(cos9, sin#). 

The following lemma can be viewed as a geometrical interpretation of 
Wirtinger's lemma. 

LEMMA 1. Let F be the subspace of V defined by the condition 1(h) = 0. 
Then, we have: 

(i) V/i € F, a{h) < 0 
(ii) V/i e F, a(h) = 0 h = 0V. 

REMARK 2. We define the (signed) width Wh{9) of Hh in the direction u(0) = 
(cos 9, sin 9) by 

wh(9) =p (0 ) + p ( 0 + 7r), where p{9) = /i(cos^,sin^), 

which is the (signed) distance between the two support lines of Hh orthog-
onal to u{9). 

Thus, elements of F may be interpreted as plane hedgehogs of zero mean 
width. Of course, plane hedgehogs of constant width zero are in F: such 
hedgehogs are said to be projective for, if they are not too singular, they 
have exactly one nonoriented tangent line in each direction (see Fig.l.b). 
Note that a plane hedgehog C of constant width 2r can be seen as the 
sum of a circle with radius r with a projective hedgehog (which may be 
interpreted as the locus of the middles of C's diameters). For a study of 
projective hedgehogs in E"+ 1 , see [3]. A survey of convex bodies of constant 
width is given by Chakerian and Groemer [1], 

As a corollary, we have the following result. 

PROPOSITION 2. The map - / - O : F —• 1R+, h i—> y/-a(h) is a norm 
associated with a scalar product. In particular, for any (/i, k) 6 F2, we have 
the following inequalities 

(4) y/—a(h + k) < yj—a(h) + yj-a(k), 

(5) a(h,k)2 <a(h)a(k), 

with equalities if and only if Hh and Hk are homothetic. 

REMARK 3. For convenience, in this paper "Hh and Hk are homothetic" 
means "there exists (A, fi) E R2 - {(0,0)} such that Xh + fik = 0y". 

REMARK 4. Inequality (4) (resp. (5)) has to be compared with the Brunn-
Minkowski inequality (resp. Minkowski inequality) in the plane E2 (see for 
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example [4]): for any pair (H,K) of plane convex bodies, we have 

(6) + + 

and 
(7) a(H,K)2 >a(H)a(K), 

where a(L) (resp. a(H, K)) is the area (resp. the mixed area) of L (resp. 
(.H,K)). 

The following result extends the Minkowski inequality to a pair of plane 
hedgehogs provided that one of them has a positive area. 

THEOREM 1. Let (h,k) € V2 be such that a(h) > 0 or a(k) > 0. Then, we 
have 
(8) a(h,k)2 >a(h)a(k), 

with equality if and only if Tin and 7ik are homothetic. 

The following corollary extends the classical isoperimetric inequality to 
hedgehogs. 

COROLLARY 1. For any hedgehog h e V, we have a(h) < l(h)2, with 
equality if and only if Hh is a circle or a point. 

For a convex curve whose support function is of class C3 , we can sharpen 
this result as follows. 

PROPOSITION 3. Let C be a convex curve in E 2 . If its support function 
p(6) = /i(cos 0, sin 0) is of class C3 , then we have 

(9) 0 < 1(h)2 - 4tta(h) < -4tta(h'), 

where h'(cos 6, sin 0) =p'(9), anda(h') is the area of the evolute curve ofC. 

The following corollary generalizes Lemma 1 (and therefore Wirtinger's 
lemma). 

COROLLARY 2. Let g 6 V be such that a(g) > 0 and let Fg be the subspace 
orthogonal (relatively to the nondegenerate quadratic form a) to the subspace 
spanned by g : Fg = {h E V | a(g, h) — 0}. Then, we have 

(i) Vh G Fg, a(h) < 0 
(ii) V/i € Fg, a(h) = 0 h = 0y. 

In particular, any hedgehog orthogonal to a convex one has a nonpositive 
area. 

Thus, we have the following generalization of Proposition 2. 

THEOREM 2. Let g €.V be a hedgehog such that a(g) > 0. The map yf^a : 
Fg —y IR+, h i—y y/—a(h) is a norm associated with a scalar product. In 
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particular, inequalities (4) and (5) hold for any (h, k) € {Fg)2, with equalities 
if and only if Hh and Hk are homothetic. 

The following proposition relates plane hedgehogs of zero relative mean 
width to subspaces Fg. Consider an arbitrary norm ||-|| on E2 and denote 
by q{@) = A;(cos0,sin0) the support function of K = {u e E2| ||u|| = 1}. We 
define the (signed) width of Hh relative to K, or simply the X-width of Hh, 
in direction of u(9) = (cos 9, sin 9) by 

which is the (signed) distance (relatively to ||-||) between the two support 
lines of Hh orthogonal to u{6). 

PROPOSITION 4. There exists a convex hedgehog g such that Fg is the sub-
space of V constituted by plane hedgehogs of zero mean K-width, which is 
defined by the condition 

\ wh(K,9)d9 = 0 i.e. \ = 
o o 9(0) 

where p(9) = h(cos 9, sin 9). 

II. Further remarks and proof of results 
Proof of Proposition 1. Obviously, the map a is a quadratic form on 
V. Though the nondegenaracy of a comes from Lemma 1, we give a direct 
proof of it. For any h G V — {Oy} , consider the Fourier expansion of p(9) — 
h(cos9,sm9), namely 

+oo 
p(9) = ao + (an cos n9 + bn sin n9), 

n=1 
and let A;(cos 9, sin9) = p{9) — ao. We get easily 

+00 

^ n=2 

so that a(h, k) < 0 unless p(9) = ao + (ai cos 9 + bi sin0) with ao ^ 0, but 
in this case Hh is a circle so that a(h) = a(h, h) > 0. This completes the 
proof. • 

REMARK 5. Note that any hedgehog Hg has a unique representation of the 
form 

Hg = Hh + Hk, 
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where Hh is projective and Hk centred (i.e. centrally symmetric with center 
at the origin), given by 

g = h + k, where h(u) = g(u) - g(-u)) and k(u) = ^(g(u) + g(-u)). 

Using Proposition 2, we see easily that the nondegenerate quadratic form 
a defines a notion of orthogonality for which PL = Q, where P (rep. Q) 
denotes the subspace of projective (resp. centred) hedgehogs. So V — P © 
Q = P®P±. 

Proof of Theorem 1. Suppose for example that a(k) > 0 and let A : R —> R 
be the quadratic function defined by 

A(t) = a(h + tk) = a(h) + 2ta(h, k) + t2a(k). 

Since a(k) > 0, we have A(t) > 0 for large t. Moreover, from Lemma 1 
l(k) 0 and we can consider t = — f o r which h+tk € F so that A(t) < 0 
unless h + tk = 0y Therefore, the discriminant of A(t), namely 

A = 4(a(h,k)2 - a(h)a(k)), 

must satisfy A > 0 unless h + tk = (V. To conclude, note that we have 
obviously A = 0 when Hh and Hk are homothetic.D 

Proof of Corollary 1. Take k = 1 in inequality (8).D 

Proof of Proposition 3. By the Cauchy-Schwarz inequality, we have 
2?r 

1(h)2 < 2vr \(P + p")(9)2 de = 4tt(a(h) - a(h')), 
o 

and thus (9) considering Corollary 1. Moreover, it is easy to check that the 
support function of the evolute curve of C is given by q(6) = p'(6 — f )• This 
completes the proof.• 

REMARK 6. It follows immediately from Lemma 1 that evolute curves (i.e. 
the locus of centers of curvature) of hedgehogs are hedgehogs with nonpos-
itive area. 

Corollary 2 is an immediate consequence of Theorem 1. 

Proof of Proposition 4. By the fact that q{6) — &(cos0,sin0) is the 
support function of a centred hedgehog (see Remark 5), the general solution 
of the differential equation y + y" = ^, namely 
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is a 27r-periodic function, and thus defines a hedgehog g (up to a translation) 
which is convex since y + y" = ^ > 0. The hedgehog g has the desired 
property. • 

References 

[1] G. D. Chakerian and H. Groemer, Convex bodies of constant width, in: Convexity 
and its applications, Birkhäuser, Basel, 1983, p. 49-96. 

[2] R. Langevin, G. Levi t t et H. Rosenberg, Hérissons et Multihérissons, (Enveloppes 
paramétrées par leur application de Gauss), Singularities, Warsaw (1985) 245-253. 
Banach Center Pubi. 20, PWN Warsaw (1988). 

[3] Y. Mart inez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur 
application de Gauss), Bull. Sei. Math. 121 n°8 (1997), 585-601. 

[4] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. 
Press, 1993. 

[5] F. A. Valent ine , Convex Sets, McGraw-Hill, New-York, 1964. 

Yves Martinez-Maure 
E. S. I. E. A. 
9, rue Vésale 
75005 PARIS, FRANCE 

Private address: 
1, rue Auguste Perret 
92500 RUEIL-MALMAISON, FRANCE 

Received December 10, 1997. 




