

Valeriu Popa

SOME FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS SATISFYING AN IMPLICIT RELATION

1. Introduction

Let S and T be two self mappings of a metric space (X, d) . Sessa [2] defines S and T to be weakly commuting if $d(STx, TSx) \leq d(Tx, Sx)$ for all x in X . Jungck [1] defines S and T to be compatible if $\lim_{n \rightarrow \infty} (STx_n, TSx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = x$ for some x in X . Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible, but neither implications is reversible [3, Ex. 1] and [1, Ex. 2.2].

LEMMA 1 [4]. *Let f and g be two self mappings of the set $X = \{x, y\}$ with any metric d . If the range of g contains the range of f , then the following statements are equivalent:*

- 1) *f and g commute,*
- 2) *f and g weakly commute,*
- 3) *f and g are compatible.*

By Lemma 1, we suppose that X contains at least three points.

LEMMA 2 [1]. *Let f and g be compatible self mappings on a metric space (X, d) . If $f(t) = g(t)$, then $fg(t) = gf(t)$.*

The purpose of this paper is to prove some fixed point theorems for compatible mappings satisfying an implicit relation.

2. Implicit relations

Let \mathcal{F} be the set of all real continuous functions $F(t_1, \dots, t_6) : R_+^6 \rightarrow R$ satisfying the following conditions:

F_1 : F is non-increasing in variables t_5 and t_6 ,

F_2 : there exists $h \in (0, 1)$ such that for every $u, v \geq 0$ with

(F_a) : $F(u, v, v, u, u + v, 0) \leq 0$ or

(F_b) : $F(u, v, u, v, 0, u + v) \leq 0$

we have $u \leq h \cdot v$.

F_3 : $F(u, u, 0, 0, u, u) > 0, \forall u > 0$.

EXAMPLE 1. $F(t_1, \dots, t_6) = t_1 - k \cdot \max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}$, where $k \in (0, 1)$. F_1 : Obviously.

(F_a) : Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u - k \cdot \max\{v, v, u, \frac{1}{2}(u + v)\} \leq 0$. If $u \geq v$, then $u \leq k \cdot u < u$, a contradiction. Thus $u < v$ and $u \leq k \cdot v = h \cdot v$, where $h = k \in (0, 1)$.

(F_b) : Let be $u > 0$ and $F(u, v, u, v, 0, u + v) \leq 0$, then $u \leq h \cdot v$. If $u = 0$, then $u \leq h \cdot v$.

F_3 : $F(u, u, 0, 0, u, u) = u - k \cdot u = (1 - k)u > 0, \forall u > 0$.

EXAMPLE 2. $F(t_1, \dots, t_6) = t_1^2 - c_1 \cdot \max\{t_2^2, t_3^2, t_4^2\} - c_2 \cdot \max\{t_3 t_5, t_4 t_6\} - c_3 t_5 t_6$, where $c_1 > 0, c_2, c_3 \geq 0, c_1 + 2c_2 < 1$, and $c_1 + c_3 < 1$.

F_1 : Obviously.

(F_a) : Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u^2 - c_1 \cdot \max\{u^2, v^2\} - c_2 v(u + v) \leq 0$. If $u \geq v$, then $u^2(1 - c_1 - 2c_2) \leq 0$ which implies $c_1 + 2c_2 \geq 1$, a contradiction. Thus $u < v$ and $u \leq \sqrt{(c_1 + 2c_2)v} = hv$, where $h = \sqrt{c_1 + 2c_2} < 1$.

(F_b) : Let be $u > 0$ and $F(u, v, u, v, 0, u + v) \leq 0$, then $u \leq h \cdot v$. If $u = 0$, then $u \leq hv$.

F_3 : $F(u, u, 0, 0, u, u) = u^2(1 - (c_1 + c_3)) > 0, \forall u > 0$.

EXAMPLE 3. $F(t_1, \dots, t_6) = t_1^2 - t_1(at_2 + bt_3 + ct_4) - dt_5 t_6$, where $a > 0, b, c, d \geq 0, a + b + c < 1$ and $a + d < 1$.

F_1 : Obviously.

(F_a) : Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u^2 - u(av + bv + cu) \leq 0$. Then $u \leq (\frac{a+b}{1-c}) \cdot v = h_1 \cdot v$, where $h_1 = \frac{a+b}{1-c} < 1$.

(F_b) : Let be $u > 0$ and $F(u, v, u, v, 0, u + v) = u^2 - u(av + bu + cv) \leq 0$.

Then $u \leq (\frac{a+c}{1-b})v = h_2 v$, where $h_2 = \frac{a+c}{1-b} < 1$. Therefore, $u \leq h \cdot v$ where $h = \max\{h_1, h_2\}$.

If $u = 0$ then $u \leq hv$.

F_3 : $F(u, u, 0, 0, u, u) = u^2(1 - (a + d)) > 0, \forall u > 0$.

EXAMPLE 4. $F(t_1, \dots, t_6) = t_1^3 - at_1^2 t_2 - bt_1 t_3 t_4 - ct_5^2 t_6 - dt_5 t_6^2$, where $a > 0, b, c, d \geq 0, a + b < 1$ and $a + c + d < 1$.

F_1 : Obviously.

(F_a): Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u^3 - au^2v - bu^2v \leq 0$, then $u \leq (a + b)v = hv$, where $h = a + b < 1$.

(F_b): Let be $u > 0$ and $F(u, v, u, v, 0, u + v) \leq 0$, then $u \leq hv$. If $u = 0$, then $u \leq hv$.

$$F_3: F(u, u, 0, 0, u, u) = u^3(1 - (a + d + c)) > 0, \forall u > 0.$$

EXAMPLE 5. $F(t_1, \dots, t_6) = t_1^3 - c \cdot \frac{t_3^2 t_4^2 + t_5^2 t_6^2}{t_2 + t_3 + t_4 + 1}$, where $c \in (0, 1)$.

F_1 : Obviously.

(F_a): Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u^3 - \frac{cu^2v^2}{u+2v+1} \leq 0$ which implies $u \leq \frac{cv^2}{2v+u+1}$. But $\frac{cv^2}{2v+u+1} \leq cv$ is equivalent to $u + v + 1 > 0$ an evident relation. Thus $u \leq cv = hv$, where $h = c < 1$.

(F_b): Let be $u > 0$ and $F(u, v, u, v, 0, u + v) \leq 0$, then $u \leq hv$. If $u = 0$ then $u \leq hv$.

$$F_3: F(u, u, 0, 0, u, u)u^3 - \frac{cu^4}{v+1} = u^3 \cdot \frac{(1-c)u+1}{u+1} > 0, \forall u > 0.$$

REMARK. There exists a function $F \in \mathcal{F}$ which is increasing in variables t_3 or t_4 .

EXAMPLE 6. $F(t_1, t_2, \dots, t_6) = t_1^2 - at_2^2 - \frac{bt_5 t_6}{t_3^2 + t_4^2 + 1}$, where $a > 0$, $b \geq 0$ and $a + b < 1$.

F_1 : Obviously.

(F_a): Let be $u > 0$ and $F(u, v, v, u, u + v, 0) = u^2 - av^2 \leq 0$ which implies $u \leq a^{\frac{1}{2}}v = hv$, where $h = a^{\frac{1}{2}} < 1$.

(F_b): Let $u > 0$ be and $F(u, v, u, v, 0, u + v) \leq 0$, then $u \leq hv$. If $u = 0$, then $u \leq hv$.

$$F_3: F(u, u, 0, 0, u, u) = u^2(1 - a - b) > 0, \forall u > 0.$$

3. Common fixed point theorems

THEOREM 1. Let (X, d) be a metric space and $S, T, I, J : (X, d) \rightarrow (X, d)$ four mappings satisfying the inequality

(1) $F(d(Sx, Ty), d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx)) \leq 0$ for all x, y in X , where F satisfies property (F_3) . Then S, T, I, J have at most one common fixed point.

Proof. Suppose that S, T, I, J have two common fixed point z and z' with $z \neq z'$. Then by (1) we have

$$\begin{aligned} F(d(Sz, Tz'), d(Iz, Jz'), d(Iz, Sz), d(Jz', Tz'), d(Iz, Tz'), d(Jz', Sz)) \\ = F(d(z, z'), d(z, z'), 0, 0, d(z, z'), d(z, z')) \leq 0, \end{aligned}$$

a contradiction to (F_3) .

THEOREM 2. *Let S, T, I, J be mappings from a complete metric space (X, d) into itself satisfying the conditions:*

- (a) $S(X) \subset J(X)$ and $T(X) \subset I(X)$,
- (b) one of S, T, I, J is continuous,
- (c) S and I as well as T and J are compatible,
- (d) the inequality (1) holds for all x, y in X , where $F \in \mathcal{F}$. Then S, T, I, J have a unique common fixed point.

Proof. Suppose x_0 an arbitrary point in X . Then, since (a) holds, we can define inductively a sequence

$$(2) \quad \{Sx_0, Tx_1, Sx_2, \dots, Sx_{2n}, Tx_{2n+1}, \dots\}$$

such that $Sx_{2n} = Jx_{2n+1}, Tx_{2n+1} = Ix_{2n+2}$ for $n = 0, 1, 2, \dots$. Using inequality (1), we have successively

$$\begin{aligned} & F(d(Sx_{2n}, Tx_{2n+1}), d(Ix_{2n}, Jx_{2n+1}), d(Ix_{2n}, Sx_{2n}), \\ & \quad d(Jx_{2n+1}, Tx_{2n+1}), d(Ix_{2n}, Tx_{2n+1}), d(Jx_{2n+1}, Sx_{2n})) \leq 0, \\ & F(d(Sx_{2n}, Tx_{2n+1}), d(Tx_{2n-1}, Sx_{2n}), d(Tx_{2n-1}, Sx_{2n}), \\ & \quad d(Sx_{2n}, Tx_{2n+1}), d(Tx_{2n-1}, Sx_{2n}), d(Sx_{2n}, Tx_{2n+1}), 0) \leq 0. \end{aligned}$$

By (F_a) , we have

$$d(Sx_{2n}, Tx_{2n+1}) \leq h \cdot d(Tx_{2n-1}, Sx_{2n}).$$

Similarly, by (F_b) , we have

$$d(Sx_{2n}, Tx_{2n-1}) \leq h \cdot d(Sx_{2n-2}, Tx_{2n-1})$$

and so

$$d(Sx_{2n}, Tx_{2n-1}) \leq (h)^{2n} d(Sx_0, Tx_1) \quad \text{for } n = 0, 1, 2, \dots$$

By a routine calculation it follows that (2) is a Cauchy sequence. Since X is complete, the sequence (2) converges to a point z in X . Hence, z is also the limit of the subsequences $\{Sx_{2n}\} = \{Jx_{2n+1}\}$ and $\{Tx_{2n-1}\} = \{Ix_{2n}\}$ of (2).

Let us now suppose that I is continuous, so that the sequence $\{ISx_{2n}\}$ converges to $\{Iz\}$. We have

$$d(SIx_{2n}, Iz) \leq d(SIx_{2n}, ISx_{2n}) + d(ISx_{2n}, Iz).$$

Since I is continuous and S and I are compatible, letting n tend to infinity, we state that the sequence $\{SIx_{2n}\}$ also converges to Iz . Using (1), we have

$$\begin{aligned} & F(d(SIx_{2n}, Tx_{2n+1}), d(I^2x_{2n}Jx_{2n+1}), d(I^2x_{2n}, SIx_{2n}), \\ & \quad d(Jx_{2n+1}, Tx_{2n+1}), d(I^2x_{2n}, Tx_{2n+1}), d(Jx_{2n+1}, SIx_{2n})) \leq 0. \end{aligned}$$

Letting n tend to infinity we have, by the continuity of F ,

$$F(d(Iz, z), d(Iz, z), 0, 0, d(Iz, z), d(z, z)) \leq 0,$$

a contradiction to (F_3) , if $d(Iz, z) \neq 0$. Thus $Iz = z$. Further, by (1), we have

$$\begin{aligned} & F(d(Sz, Tx_{2n+1}), d(Iz, Jx_{2n+1}), d(Iz, Sz), \\ & \quad d(Jx_{2n+1}, Tx_{2n+1}), d(Iz, Tx_{2n+1}), d(Jx_{2n+1}, Sz)) \leq 0 \end{aligned}$$

and letting n tend to infinity we get

$$F(d(Sz, z), 0, d(z, Sz), 0, 0, d(z, Sz)) \leq 0$$

which implies, by (F_b) , that $z = Sz$. This means that z is in the range of S and, since $S(X) \subset J(X)$, there exists a point u in X such that $Ju = z$. Using (1), we have successively

$$\begin{aligned} & F(d(Sz, Tu), d(Iz, Ju), d(Iz, Sz), d(Ju, Tu), d(Iz, Tu), d(Ju, Sz)) \\ & \quad = F(d(z, Tu), 0, 0, d(z, Tu), d(z, Tu), 0) \leq 0 \end{aligned}$$

which implies by (F_a) , that $z = Tu$.

Since $Ju = Tu = z$, by Lemma 2, it follows that $TJu = JTu$ and so $Tz = TJu = JTu = Jz$. Thus, from (1) we have

$$\begin{aligned} & F(d(Sz, Tz), d(Iz, Jz), d(Iz, Sz), d(Jz, Tz), d(Iz, Tz), d(Jz, Sz)) \\ & \quad = F(d(z, Tz), d(z, Tz), 0, 0, d(z, Tz), d(z, Tz)) \leq 0, \end{aligned}$$

a contradiction to (F_3) , if $z \neq Tz$. Thus $z = Tz = Jz$. We have therefore proved that z is a common fixed point of S, T, I, J . The same result holds, if we assume that J is continuous instead of I .

Now suppose that S is continuous. Then the sequence $\{SIx_{2n}\}$ converges to Sz . We have

$$d(ISx_{2n}, Sz) \leq d(ISx_{2n}, SIx_{2n}) + d(SIx_{2n}, Sz).$$

Since S is continuous and S and T are compatible, letting n tend to infinity, we state that $\{ISx_{2n}\}$ converges to Sz . Using the inequality (1), we have

$$\begin{aligned} & F(d(S^2x_{2n}, Tx_{2n+1}), d(ISx_{2n}, Jx_{2n+1}), d(ISx_{2n}, S^2x_{2n}), \\ & \quad d(Jx_{2n+1}, Tx_{2n+1}), d(ISx_{2n}, Tx_{2n+1}), d(Jx_{2n+1}, S^2x_{2n})) \leq 0. \end{aligned}$$

Letting n tend to infinity, we have, by continuity of F ,

$$F(d(Sz, z), d(Sz, z), 0, 0, d(Sz, z), d(Sz, z)) \leq 0,$$

a contradiction to (F_3) if $z \neq Sz$. Thus $z = Sz$. This means that z is in the range of S and, since $S(X) \subset J(X)$, there exists a point v in X such that $Jv = z$. Thus, by (1), we have

$$F(d(s^2x_{2n}, Tv), d(Isx_{2n}, Jv), d(Isx_{2n}, S^2x_{2n}), \\ d(Jv, Tv), d(Isx_{2n}, Tv), d(Jv, S^2x_{2n})) \leq 0.$$

Letting n tend to infinity we get

$$F(d(z, Tv), 0, 0, d(z, Tv), d(z, Tv), 0) \leq 0$$

and, by (F_a) , it follows that $z = Tv$. Since $Jv = Tv = z$, by Lemma 2, it follows that $Tz = TJv = JTv = Jz$. Thus, from (1) we have

$$F(d(Sx_{2n}, Tz), d(Ix_{2n}, Jz), d(Ix_{2n}, Sx_{2n}), \\ d(Jz, Tz), d(Ix_{2n}, Tz), d(Jz, Sx_{2n})) \leq 0.$$

Letting n tend to infinity, we obtain

$$F(d(z, Tz), d(z, Tz), 0, 0, d(z, Tz), d(z, Tz)) \leq 0$$

and, by (F_3) , it follows that $z = Tz = Jz$. This means that z is in the range of T and, since $T(X) \subset I(X)$ there exists $w \in X$ such that $Iw = z$. Thus, from (1) we have

$$F(d(Sw, Tz), d(Iw, Jz), d(Iw, Sw), d(Jz, Tz), d(Iw, Tz), d(Jz, Sw)) \\ = F(d(Sw, z), 0, d(z, Sw), 0, 0, d(z, Sw)) \leq 0$$

and, by (F_b) , we have $z = Sw = Iw$. Since $Sw = Iw = z$, by Lemma 2, it follows that $z = Sz = SIw = Iz$ and thus $z = Iz$. We have therefore proved that z is a common fixed point of S, T, I and J .

The same result holds, if we assume that T is continuous instead of S . By Theorem 1, z is the unique common fixed point of S, T, I, J .

For a function $f : (X, d) \rightarrow (X, d)$ we denote $F_f = \{x \in X : x = f(x)\}$.

THEOREM 3. *Let I, J, S, T be mappings from a metric space (X, d) into itself. If the inequality (1) holds for all x, y in X then $(F_I \cap F_J) \cap F_S = (F_i \cap F_J) \cap F_T$.*

Proof. Let $x \in (F_I \cap F_J) \cap F_S$. Then, by (1), we have

$$F(d(Sx, Tx), d(Ix, Jx), d(Ix, Sx), d(Jx, Tx), d(Ix, Tx), d(Jx, Sx)) \\ = F(d(x, Tx), 0, 0, d(x, Tx), d(x, Tx), 0) \leq 0$$

which implies, by (F_a) , that $x = Tx$. Thus $(F_I \cap F_J) \cap F_S \subset (F_I \cap F_J) \cap F_T$. Similarly, we have by (F_b) , that $(F_I \cap F_J) \cap F_T \subset (F_I \cap F_J) \cap F_S$.

The Theorems 2 and 3 imply the following one.

THEOREM 4. *Let I, J and $\{T_i\}_{i \in N^*}$ be mappings from a complete metric space into itself such that*

- (a) $T_2(X) \subset I(X)$ and $T_1(X) \subset J(X)$,
- (b) one of I, J, T_1 and T_2 is continuous,
- (c) the pairs (T_1, I) and (T_2, J) are compatible,

(d) *the inequality*

$$F(d(T_i x, T_{i+1} y), d(Ix, Jy), d(Ix, T_i x), \\ d(Jy, T_{i+1} y), d(Ix, T_{i+1} y), d(Jy, T_i x)) \leq 0$$

holds for each x, y in X , $\forall i \in N^*$ and $F \in \mathcal{F}$. Then I, J , and $\{T_i\}_{i \in N^*}$ have a unique common fixed point.

References

- [1] G. Jungck, *Compatible mappings and common fixed points*, Internat. J. Math. Math. Sci. 9 (1986), 771–779.
- [2] S. Sessa, *On a weak commutativity condition in a fixed point consideration*, Publ. Inst. Math. 32 (46) (1986), 149–153.
- [3] S. Sessa and B. Fisher, *Common fixed points of weakly commuting mappings*, Bull. Polish. Acad. Sci. Math. 36 (1987), 341–349.
- [4] K. Taş, M. Telci and B. Fisher, *Common fixed point theorems for compatible mappings*, Internat. J. Math. Math. Sci. 19 (1996), 451–456.

DEPARTMENT OF MATHEMATICS AND PHYSICS
 UNIVERSITY OF BACĂU
 5500- BACĂU, ROMANIA

Received January 16, 1998.

