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SOME FIXED POINT THEOREMS FOR COMPATIBLE
MAPPINGS SATISFYING AN IMPLICIT RELATION

1. Introduction

Let S and T be two self mappings of a metric space (X, d) Sessa [2] defines
S and T to be weakly commuting if d(STz,TSz) < d(Tz,Sz) for all z in X
Jungck [1] defines S and T to be compatible if limy,—, 0o (STzp, TSz,) = 0
whenever {z,} is a sequence in X such that lim, o Szp = limpoo T2n =
z for some z in X. Clearly, commuting mappings are weakly commuting
and weakly commuting mappings are compatible, but neither implications
is reversible 3, Ex. 1] and [1, Ex. 2.2].

LEMMA 1 [4]. Let f and g be two self mappings of the set X = {z,y} with
any metric d. If the range of g contains the range of f, then the following
statements are equivalent:

1) f and g commute,
2) f and g weakly commute,
3) f and g are compatible.

By Lemma 1, we suppose that X contains at least three points.

LEMMA 2 [1]. Let f and g be compatible self mappings on a metric space

(X,d). If £(¢) = g(t), then fg(t) = gf(2).

The purpose of this paper is to prove some fixed point theorems for
compatible mappings satisfying an implicit relation.

2. Implicit relations

Let F be the set of all real continuous functions F(?y,...,%s) : Rﬁ — R
satisfying the following conditions:
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Fy: F is non-increasing in variables t5 and g,

Fy: there exists h € (0,1) such that for every u,v > 0 with
(F,): F(u,v,v,u,u+v,0) <0 or

(Fp): F(u,v,u,v,0,u+v) <0

we have u < h - v.
" F3: F(u,u,0,0,u,u) > 0,Vu > 0.

EXAMPLE 1. F(t1,...,t) = t1 — k- max{tz,tg,t4,%(t5 + tg)}, where k €
(0,1). Fy: Obviously.

(Fy): Let be u > 0 and F(u,v,v,u,u+v,0) =u— k-max{v,v,u,%(u-{-
v)} <0.Ifu>w, thenu < k-u < u, a contradiction. Thus u < v and
u<k-v=h-v, where h=k € (0,1).

(Fp): Let be v > 0 and F(u,v,u,v,0,u+v) <0,thenu < h-v.Ifu=0,
then u < h - v.

Fs: F(u,%,0,0,u,u)=uv—k-u=(1—-k)u>0, Vu>0.

EXAMPLE 2. F(ty,...,t6) = t¥ — ¢ - max{t3, 3,13} — c2 - max{tsts, tats} —
catst, where ¢; > 0, ¢2,¢c320,¢1 +2¢c2 < 1,and ¢; +¢3 < 1.

Fy: Obviously.

(F,): Let be u > 0 and F(u,v,v,u,u+v,0) = u? — ¢; - max{u? v?} -
cov(u+ v) < 0. If w > v, then u%(1 — ¢; — 2¢2) < 0 which implies ¢; +
2¢q > 1, a contradiction. Thus v < v and u < /(c1 + 2¢2)v = hv, where
h=+c1+2c<1.

(Fy) Let be u > 0 and F(u,v,u,v,0,u+v) <0,then u < h-v. Ifu=0,
then v < hu.

F3: F(u,u,0,0,u,u) = u%(1 — (¢; +¢3)) > 0,Vu > 0.

EXAMPLE 3. F(ty,...,ts) = t2 — t1(aty + btz + cts) — dists, where a > 0,
b,c,d>0,a+b+c<landa+d<1.

Fy: Obviously.

(F,); Let be u > 0 and F(u,v,v,u4,u+v,0) = u? —u(av + bv + cu) < 0.
Then u < (-i‘—iLf:) -v = hy - v, where h; = ‘1’—}2 <1.

(Fy): Let be u > 0 and F(u,v,u,v,0,u+v) = u? —u(av + bu + cv) < 0.
Then u < ($£f)v = hgv, where hy = $£ < 1. Therefore, u < h,v where
h= ma,x{hl,hg}.

If u = 0 then v < hv.

Fs: F(u,u,0,0,u,u) = v}(1 — (a + d)) > 0,Yu > 0.

EXAMPLE 4. F(ty,...,tg) = t3 — at?ty — bt taty — ctite — dtst2, where a > 0,
bc,d>0,a+b<landa+c+d<1.

Fy: Obviously.
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(F,): Let be w > 0 and F(u,v,v,u,u+ v,0) = v — au?v — bu?v < 0,
then u < (a 4+ b)v = hv, where h=a+ b < 1.

(Fb): Let be u > 0 and F(u,v,u,v,0,u+v) <0, then u < hv. If u =0,
then u < hv.

F3: F(u,u,0,0,u,u) = uv®(1 — (a+d+¢)) >0, Vu > 0.
1212 41242

. tatgttsts
LTy, where c € (0,1).

EXAMPLE 5. F(ty,...,ts) =t — ¢

Fy: Obviously.

(F,): Let be u > 0 and F(u,v,v,u,u + v,0) = u® — u‘i‘;ﬁ}’il < 0 which

implies v < %j_”: +7- But 201”: +7 < cv is equivalent to u+v +1 > 0 an
evident relation. Thus v < cv = hv, where h=c¢c < 1.

(Fy): Let be u > 0 and F(u,v,u,v,0,u+v) <0, then u < hv. If u =0
then u < hv.

F3: F(u,u,0,0,u,u)u:’*—,ﬁ‘% =u3-(l;u°r{—+l- >0, Vu > 0.

REMARK. There exists a function F' € F which is increasing in variables t3
or ty4.
EXAMPLE 6. F(ty,ts,...,t5) = t3 — at3 — ;3%?5, where a > 0, b > 0 and
a+b< 1.

Fy: Obviously.

(F,): Let be u > 0 and F(u,v,v,u,u+v,0) = u?—av? < 0 which implies
u<aly= vh, where h = a? < 1.

(Fb): Let u > 0 be and F(u,v,u,v,0,u+v) <0, then u < hv. f u =0,
then u < hv.

F3: F(u,u,0,0,u,u) = u%(1 —a—5) >0, Yu > 0.

3. Common fixed point theorems

THEOREM 1. Let (X,d) be a metric space and S,T,I1,J : (X,d) — (X,d)
four mappings satisfying the inequality

(1) F(d(Sz,Ty),d(Iz,Jy),d(Iz,Sz),d(Jy, Ty),d(Iz,Ty),d(Jy,Sz)) < 0

for all z,y in X, where F satisfies property (F3). Then S,T,I,J have at
most one common fized point.

Proof. Suppose that S,T,I,J have two common fixed point z and 2’ with
z # Z'. Then by (1) we have

F(d(Sz,Tz2"),d(1z,J2"),d(1z,8z),d(JZ,T2"),d(Iz,T2"),d(J2', Sz))
= F(d(z,2),d(z,2'),0,0,d(z,2"),d(z, 2')) <0,

a contradiction to (F3).
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THEOREM 2. Let S,T, I,J be mappings from a complete metric space (X, d)
into itself satisfying the conditions:

(a) S(X) C J(X) and T(X) C I(X),
(b) one of S,T,1,J is continuous,
(c¢) S and I as well as T and J are compatible,

(d) the tnequality (1) holds for allz,y in X, where F € F. Then S,T,1,J
have a unigue common fized point.

Proof. Suppose zg an arbitrary point in X. Then, since (a) holds, we can
define inductively a sequence

(2) {S.’Eo,T:El,S(L'g,...,Szzn,Tz2n+1,. }

such that Szon = JZan+1, TZ2n+1 = [Zan4e for n = 0,1,2,.... Using in-
equality (1), we have succesively

F(d(Szon, Tran+1),d(Iz2n, JZon+1), d(IZ2n, STon),
d(Jz2n41, Ton+1), d(IZ2n, TT2n11), d(JT2n41, ST20)) <0,
F(d(Szan, Tz2n+1), d(TT2n-1, ST2n), A(TT2n-1, ST2n),
d(Szan, Tzant1), d(TTon—1,ST2s),d(SZ2n, TZ2n+1),0) < 0.
By (F,), we have
d(Szon, Txon+1) < h-d(Tzon—1,STon).
Similarly, by (F3), we have
d(Szon, Txon—1) < h-d(Szon—2,TTon-1)
and so
d(Szon, Tzon-1) < (h)2"d(.5':c0,T:1;1) forn=0,1,2,....

By a routine calculation it follows that (2) is a Cauchy sequence. Since X
is complete, the sequence (2) converges to a point z in X. Hence, 2 is also
the limit of the subsequences {Szan} = {Jzant+1} and {Tz2n_1} = {Iz2,}
of (2).

Let us now suppose that I is continuous, so that the sequence {ISza,}
converges to {Iz}. We have

d(SIzon, [2) < d(SIzapn,ISzey,) + d(ISzan, I2).

Since I is continuous and S and I are compatible, letting n tend to infinity,
we state that the sequence {SIz2,} also converges to Iz. Using (1), we have

F(d(SIzan, TT2n+1), d(I*T2nJT2n+1), d(I*T2n, STz2n),
d(Jz2n+1, TZan+1), (12220, TT2n+1), A(JT2nt1, STzan)) < 0.
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Letting n tend to infinity we have, by the continuity of F,
F(d(Iz,z),d(1z,2),0,0,d(Iz,z2),d(z,2)) L0,
a contradiction to (F3), if d(Iz,2) # 0. Thus Iz = z. Further, by (1), we
have
F(d(Sz,Tzan+1),d(I1z, Jzon+1),d(l2, Sz),
d(Jzon+1, Tx2n+1), d(12, T2 +1), d(JZ2n+1,52)) L0
and letting n tend to infinity we get
F(d(Sz,z2),0,d(z,52),0,0,d(z,52)) <0
which implies, by (Fp), that z = Sz. This means that z is in the range of
S and, since S(X) C J(X), there exists a point u in X such that Ju = z.
Using (1), we have successively
F(d(Sz,Tu),d(Iz,Ju),d(1z,Sz),d(Ju,Tu),d(Iz,Tu),d(Ju, Sz))
= F(d(z,Tu),0,0,d(z,Tu),d(z,Tu),0) <0
which implies by (Fy), that z = Tu.

Since Ju = Tu = 2, by Lemma 2, it follows that TJu = JTu and so
Tz=TJu= JTu = Jz. Thus, from (1) we have

F(d(Sz,Tz),d(Iz,Jz2),d(1z,52),d(Jz,Tz),d(I12,Tz),d(Jz,Sz))
= F(d(z,Tz2),d(z,Tz),0,0,d(z,Tz),d(z,Tz)) <0,
a contradiction to (F3), if 2 # Tz. Thus z = Tz = Jz. We have therefore
proved that z is a common fixed point of S, T, I, J. The same result holds,

if we assume that J is continuous instead of I.

Now suppose that S is continuous. Then the sequence {SIz3,} converges
to Sz. We have

d(IS:an, Sz) < d(IS:Ezn, SI:Bgn) + d(SI:l:zn, Sz).

Since S is continuous and S and T are compatible, letting n tend to infinity,
we state that {ISz2,} converges to Sz. Using the inequality (1), we have

F(d(S*2n, TT2n+1), A1 ST2n, JT2n41), A(IST2n, S?T2n),
d(Jzon+1, TZon+1), d(ISTon, TTon11), d(JZ2nt1, S°22,)) < 0.
Letting n tend to infinity, we have, by continuity of F,
F(d(Sz,2z),d(Sz,2),0,0,d(Sz,z),d(Sz,z2)) <0,

a contradiction to (F3) if z # Sz. Thus z = Sz. This means that z is in the
range of S and, since S(X) C J(X), there exists a point v in X such that
Jv = z. Thus, by (1), we have
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F(d(s*zan, Tv), d(I1Szon, Jv), d(ISzan, S*zay),
d(Jv, Tv), d(ISz2n, Tv), d(Jv, S%z2,)) < 0.
Letting n tend to infinity we get
F(d(z2,Tv),0,0,d(z,Tv),d(z,Tv),0) <0
and, by (Fy), it follows that z = Tw. Since Jv = Tw = 2, by Lemma 2, it
follows that Tz = TJv = JTv = Jz. Thus, from (1) we have
F(d(Szan,Tz),d(Izen, J2),d(ITon, STayn),
d(J2,Tz),d(Izan, Tz),d(Jz,Szapn)) < 0.
Letting n tend to infinity, we obtain
F(d(2,Tz),d(2,Tz),0,0,d(z,Tz),d(z,Tz)) < 0

and, by (F3), it follows that 2 = Tz = Jz. This means that z is in the range
of T and, since T(X) C I(X) there exists w € X such that Jw = z. Thus,
from (1) we have

F(d(Sw,Tz),d(Iw, Jz),d(Iw, Sw),d(Jz,Tz),d(Iw, Tz),d(J z, Sw))
= F(d(Sw, 2),0,d(z, Sw),0,0,d(z, Sw)) <0
and, by (Fp), we have z = Sw = Jw. Since Sw = Jw = 2, by Lemma 2, it
follows that z = Sz = SIw = Iz and thus z = Iz. We have therefore proved
that z is a common fixed point of S,T,I and J.
The same result holds, if we assume that T is continuous instead of S.

By Theorem 1, z is the unique common fixed point of S, 7,1, J.

For a function f: (X,d) — (X,d) we denote Fy = {z € X : z = f(z)}.
THEOREM 3. Let I,J,S,T be mappings from a metric space (X,d) into
itself. If the inequality (1) holds for all z,y in X then (Fr N Fj)N Fg =
(Fi N FJ) N Fr.

Proof. Let z € (F1 N F;) N Fg. Then, by (1), we have

F(d(Sz,Tz),d(Iz,Jz),d(Iz,Sz),d(Jz,Tz),d(Iz, Tz),d(Jz, Sz))

= F(d(z,Tz),0,0,d(z,Tz),d(z,Tz),0)) < 0
which implies, by (Fy), that z = Tz. Thus (FiNF;)NFs C (F1NF;)NFr.

Similarly, we have by (F3), that (FrNFy)NFr C (FrNFy)N Fs.

The Theorems 2 and 3 imply the following one.
THEOREM 4. Let I,J and {T;}icn- be mappings from a complete metric
space into itself such that

(a) To(X) c I(X) and T1(X) C J(X),

(b) one of I, J, T\ and T5 is continuous,

(c) the pairs (T1,1) and (T3, J) are compatible,
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(d) the inequality
F(d(ﬂ.’l}, Tz+1y): d(I:lI, Jy)a d(I:l:, Tzz)>

d(Jy> Ti+1y), d(I.’L‘, Ti+1y)’ d(in T'tx)) S 0

holds for each z,y in X,Vi € N* and F € F. Then I,J, and {T;};en+ have
a unique common fized point.

(1]
(2l
(3l
4
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