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SOME F I X E D POINT THEOREMS FOR COMPATIBLE 
MAPPINGS SATISFYING AN IMPLICIT RELATION 

1. Introduction 
Let S and T be two self mappings of a metric space (X , d) Sessa [2] defines 

S and T to be weakly commuting if d(STx, TSx) < d(Tx, Sx) for all x in X 
Jungck [1] defines S and T to be compatible if l imn_ > 0 0(5Txn ,T5xn) = 0 
whenever { x n } is a sequence in X such that limn_njo Sxn = l im^oo Txn = 
x for some x in X. Clearly, commuting mappings are weakly commuting 
and weakly commuting mappings are compatible, but neither implications 
is reversible [3, Ex. 1] and [1, Ex. 2.2]. 

LEMMA 1 [4]. Let f and g be two self mappings of the set X = {x,y} with 
any metric d. If the range of g contains the range of /, then the following 
statements are equivalent: 

1) / and g commute, 
2) / and g weakly commute, 
3) / and g are compatible. 

By Lemma 1, we suppose that X contains at least three points. 

LEMMA 2 [1]. Let f and g be compatible self mappings on a metric space 
(X,d). If f{t) = g(t), then fg(t) = gf(t). 

The purpose of this paper is to prove some fixed point theorems for 
compatible mappings satisfying an implicit relation. 

2. Implicit relations 
Let T be the set of all real continuous functions F(ti,..., t^) : —> R 

satisfying the following conditions: 
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F\: F is non-increasing in variables ¿5 and tg, 
F2: there exists h € ( 0 , 1 ) such t h a t for every u, v > 0 with 
(.Fa): F(u, v, v,u,u + v, 0) < 0 or 
(F&): F(u, v, u, v, 0, u + v) < 0 

we have u < h • v. 

F 3 : F ( U , U , 0 , 0 , u , U ) > 0 , V u > 0 . 

EXAMPLE 1. F ( T I , ...,t6) - ¿1 - k • m a x { f 2 , I 3 , F 4 , l(t5 + I 6 ) } , where k e 
( 0 , 1 ) . F i : Obviously. 

( F a ) : Let be u > 0 and F(u,v,v,u,u + v,0) — u — k • m a x {i>, 11,11, + 
u ) } < 0. If u > v, then u < k • u < u, a contradiction. Thus u < v and 
u < k • v = h • v, where h = k G ( 0 , 1 ) . 

(Fb): Let be u > 0 and F(u,viu,v,0,u+ v) < 0, then u < h-v. If u — 0, 
then u < h • v. 

F 3 : F ( U , U, 0 , 0 , u, u) = u - k • u = (1 - k)u > 0 , Vu > 0. 

EXAMPLE 2 . F(ti,..., = t\ - CI • max{tl, ¿4} - C2 • m a x { I 3 I 5 , t^te} — 
C z h U , where Ci > 0, C2, C3 > 0, c i + 2c2 < 1, and Ci + C3 < 1. 

F\\ Obviously. 
(Fa): Let be u > 0 and F(u, v, v,u,u + v, 0 ) = u2 — c\ • m a x { u 2 , u 2 } -

C2v(u + v) < 0. If u > v, then u 2 ( l — ci — 2C2) < 0 which implies c i + 
2C2 > 1, a contradiction. T h u s u < v and u < \/(ci + 2c2)v = hv, where 
h = y/ci + 2c2 < 1. 

(FB) Let be u > 0 and F(u, v,u, v,0,u+v) < 0, then u < h • v. If u = 0, 
then u < hv. 

F 3 : F ( U , U , 0 , 0 , U . U ) = u2( 1 - ( c i + c 3 ) ) > 0 , V u > 0 . 

EXAMPLE 3 . F(ti,..., tG) = t\ - ti(at2 + bt3 + c i 4 ) - dt5t6, where a > 0 , 
b, c, d. > 0, a + b + c < 1 and a + d < 1. 

F i : Obviously. 
(F0); Let be u > 0 and F(u,v,v,u,u + v, 0) = u2 — u(av + bv + cu) < 0. 

T h e n u < ( f ± | ) -v = hi-v, where hi = f ± | < 1. 

(Fb): Let be u > 0 and F(u, v, u, v,0,u + v) = u2 — u(av + bu + cv) < 0. 

T h e n u < ( f ^ f ) v = h2v, where h2 = f ^ f < 1. Therefore, u < h,v where 
h = m a x { h i , h2}. 

If u = 0 then u < hv. 

F 3 : F ( U , U , 0 , 0 , U , U ) = n 2 ( l — ( a + d)) > 0 , V u > 0 . 

EXAMPLE 4 . F ( I I , ...,t6) = tl~ at\t2 - btitzU - ct\ts ~ ¿Wl, where a > 0 , 
b, c, d > 0, a + b < 1 and o + c + d < 1. 

FX: Obviously. 
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(F a) : Let be u > 0 and F(u, v, v,u,u + v, 0) = u3 — au2v — bu2v < 0, 
then u < (a + b)v = hv, where h = a + b < 1. 

(jFt): Let be u > 0 and F(u, v, u, v, 0, u + v) < 0, then u < hv. If u = 0, 
then u < hv. 

F3: F(U,U,0,0,U,U) = U3( 1 - (A + D + c)) > 0, Vu > 0. 

EXAMPLE 5 . F(ti,... ,t6) = t? - c • ¿ ^ ¿ ^ , where c 6 ( 0 , 1 ) . 

F i : Obviously. 
(Fa): Let be u > 0 and F(u,v,v,u,u + v, 0) = u3 - uc+2v+i - 0 

2 2 

implies u < 2v+u+\ • 2v+u+i — cv equivalent to u + iJ + 1 > 0 ail 
evident relation. Thus u < cv — hv, where h = c < 1. 

(Fb) : Let be u > 0 and F(u, v, u, v, 0, u + v) < 0, then u < hv. If u = 0 
then u < hv. 

F 3 : F(U,U,0,0,U,U)U3 - ^ = u3 • > 0, Vu > 0. 

REMARK. There exists a function F € T which is increasing in variables 
or ¿4. 

EXAMPLE 6. F(ti,t2,..., te) = I? - atk - , where a > 0, b > 0 and 
a + b < 1. 

F i : Obviously. 
( F a ) : Let be u > 0 and F(u,v,v,u,u + v, 0) = u2 — av2 < 0 which implies 

u < a^v = vh, where h — a* < 1. 
(Fb): Let u > 0 be and F(u, v, u, v,0,u + v) < 0, then u < hv. If u = 0, 

then u < hv. 
F3: F(U, U, 0 ,0 , u, u) = u2( 1 - a - b) > 0, Vu > 0. 

3. Common fixed point theorems 

THEOREM 1. Let (X,d) be a metric space and S,T,I,J : (X,d) —• (X,d) 
four mappings satisfying the inequality 

(1) F(d(Sx, Ty),d(Ix, Jy), d(Ix, Sx),d(Jy, Ty),d(Ix, Ty),d(Jy, Sx)) < 0 

for all x,y in X, where F satisfies property (F3). Then S,T,I,J have at 
most one common fixed point. 

P r o o f . Suppose that S, T, I, J have two common fixed point z and z' with 
z ^ z'. Then by (1) we have 

F(d(Sz, Tz'),d(Iz, Jz'), d(Iz, Sz),d(Jz', Tz'), d(Iz, Tz'), d(Jz', Sz)) 
= F(d{z, z'), d(z, z'), 0,0, d(z, z'), d(z, z')) < 0, 

a contradiction to (F3). 
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THEOREM 2. Let S, T, I, J be mappings from a complete metric space (X, d) 
into itself satisfying the conditions-. 

(a) S(X) C J(X) and T(X) C I(X), 
(b) one of S,T, I, J is continuous, 
(c) S and I as well as T and J are compatible, 
(d) the inequality (1) holds for allx,y in X, where F £ T. Then S, T, I, J 

have a unique common fixed point. 

P r o o f . Suppose XQ an arbitrary point in X. Then, since (a) holds, we can 
define inductively a sequence 

(2) {Slo, Sx2> •••> Sx2n, Tx2n+1, • • •} 

such that Sx2n — Jx2n+i>Tx2n+i = Ix2n+2 for n = 0 ,1 ,2 , . . . . Using in-
equality (1), we have succesively 

F(d(Sx2n, Tx 2n+l). d(IX2n, Jx^n+l) > d(IX2n, Sx2n), 
d(JX2n+l,Tx2n+l), d(IX2n,TX2n+l), d(Jx2n+l, Sx2n)) < 0, 

F(d(Sx2n, Tx2n+l), d{Tx2„_l, Sx2n), d(Tx2n-l, Sx2n), 

d(Sx2n,TX2n+l),d(Tx2n-l,Sx2n),d(Sx2n,Tx2n+l),0) < 0. 

By (Fa), we have 

d(Sx2n, Tx2n+1) < h • d(Tx2 n-1, Sx2n)-

Similarly, by (Fb), we have 

d(Sx2n,TX2n-l) < h • d(Sx2n-2,TX2n-l) 

and so 

d(Sx2„, Tx2n-i) < (h)2nd(Sx0, Txi) for n = 0 , 1 , 2 , . . . . 

By a routine calculation it follows that (2) is a Cauchy sequence. Since X 
is complete, the sequence (2) converges to a point z in X. Hence, z is also 
the limit of the subsequences {5x2 n } = {J%2n-1-1} and {Ta^n-i} = {I%2n\ 
of (2). 

Let us now suppose that I is continuous, so that the sequence {ISx2n} 
converges to {Iz} . We have 

d{SIX2n,Iz) < d(SIX2n,ISx2n) + d(ISx2n, Iz). 

Since I is continuous and S and I are compatible, letting n tend to infinity, 
we state that the sequence { S I x 2 n } also converges to Iz. Using (1), we have 

F(d(SIX2n. TX2n+l),d(I2X2nJx2n+l), d(I2X2n, SIX2n), 

d(JX2n+l,Tx2n+l),d(I2X2n,TX2n+l),d(JX2n+l,SIX2n)) < 0. 
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Letting n tend to infinity we have, by the continuity of F, 

F(d(Iz, z), d(Iz, z), 0,0, d(Iz, z), d(z, z)) < 0, 

a contradiction to (F3), if d(Iz,z) ^ 0. Thus Iz = z. Further, by (1), we 
have 

F(d(Sz, Tx2n+l), d(Iz, Jx2n+l), d(Iz, Sz), 

d(JX2n+l,Tx2n+l), d(Iz, Tx2n+l), d(Jx2n+l, Sz)) < 0 

and letting n tend to infinity we get 

F{d(Sz, z), 0, d(z, Sz), 0,0, d{z, Sz)) < 0 

which implies, by (Fb), that z = Sz. This means that 2 is in the range of 
S and, since S(X) C J(X), there exists a point u in X such that Ju = z. 
Using (1), we have successively 

F(d(Sz, Tu), d(Iz, Ju), d(Iz, Sz), d(Ju, Tu), d(Iz, Tu), d(Ju, Sz)) 
= F(d(z, Tu), 0,0, d(z, Tu), d(z, Tu), 0) < 0 

which implies by (-Fa), that z = Tu. 
Since Ju = Tu = z, by Lemma 2, it follows that TJu = JTu and so 

Tz = TJu = JTu = Jz. Thus, from (1) we have 

F(d(Sz, Tz),d(Iz, Jz),d(Iz, Sz),d(Jz, Tz),d(Iz, Tz),d(Jz, Sz)) 
= F(d(z,Tz),d(z,Tz),0,0,d(z,Tz),d(z,Tz)) < 0, 

a contradiction to (F3), if z ^ Tz. Thus z — Tz — Jz. We have therefore 
proved that z is a common fixed point of S, T, I, J. The same result holds, 
if we assume that J is continuous instead of I. 

Now suppose that S is continuous. Then the sequence {Six2n} converges 
to Sz. We have 

d(ISx2n, Sz) < d{ISx2n, SIx2n) + d{SIx2n, Sz). 

Since S is continuous and S and T are compatible, letting n tend to infinity, 
we state that {ISx2n} converges to Sz. Using the inequality (1), we have 

F{d{S2 X2n, Tx2n+l), d(ISx2n, Jx2n+l),d(ISx2n, S2X2n), 

d(Jx2n+l ) Tx2n+l) ,d(ISx2n,Tx2n+l) ,d(Jx 2 n+l ,S 2 X2n)) < 0. 

Letting n tend to infinity, we have, by continuity of F, 

F(d(Sz, z), d(Sz, z), 0,0, d(Sz, z),d(Sz, z)) < 0, 

a contradiction to (F3) if z ^ Sz. Thus z = Sz. This means that z is in the 
range of S and, since S(X) C J(X), there exists a point v in X such that 
Jv = z. Thus, by (1), we have 
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F(d(s2x2n, Tv),d(ISx2n, Jv), d(ISx2n, S2x2n), 

d(Jv,Tv),d(ISx2n,Tv),d(Jv,S2x2n)) < 0. 

Letting n tend to infinity we get 

F(d(z, Tv), 0,0, d(z, Tv), d(z, Tv), 0) < 0 

and, by (F a ) , it follows that z = Tv. Since Jv = Tv = z, by Lemma 2, it 
follows that Tz = TJv = JTv = Jz. Thus, from (1) we have 

F(d(Sx2n, Tz), d(Ix2n, Jz), d(Ix2n, Sx2n), 

d(Jz,Tz),d(Ix2n,Tz),d(Jz,Sx2n)) < 0. 

Letting n tend to infinity, we obtain 

F(d(z, Tz),d(z, Tz), 0,0, d(z, Tz), d(z, Tz)) < 0 
and, by (Fz), it follows that z = Tz — Jz. This means that z is in the range 
of T and, since T(X) C I(X) there exists w G X such that Iw = z. Thus, 
from (1) we have 

F{d(Sw, Tz),d(Iw, Jz),d(Iw, Sw),d(Jz, Tz),d{Iw, Tz),d(Jz, Sw)) 

= F(d(Sw, z), 0, d(z, Sw), 0,0, d(z, Sw)) < 0 

and, by ( ) , we have z - Sw = Iw. Since Sw = Iw = z, by Lemma 2, it 
follows that z — Sz — SIw = Iz and thus z = Iz. We have therefore proved 
that 2 is a common fixed point of S, T, I and J . 

The same result holds, if we assume that T is continuous instead of S. 
By Theorem 1, z is the unique common fixed point of S, T, I, J. 

For a function / : (X, d) —> (X, d) we denote Ff = {x G X : x = f(x)}. 

T H E O R E M 3 . Let I, J, S, T be mappings from a metric space (X, d) into 
itself. If the inequality (1) holds for all x,y in X then (Fi D Fj) f) Fs = 

(FinFj)nFT. 

P r o o f . Let x G ( F j D Fj) n Fs. Then, by (1), we have 

F(d(Sx, Tx), d{Ix, Jx), d{Ix, Sx),d(Jx, Tx), d{Ix, Tx), d{Jx, Sx)) 
= F(d(x, Tx), 0,0, d(x, Tx), d(x, Tx), 0)) < 0 

which implies, by (F a ) , that x = Tx. Thus (FIr\Fj)f\Fs C (Fj C\ Fj) C[ FT• 
Similarly, we have by (Fb), that (Fr n Fj) n FT C (Fj n Fj) n Fs. 

The Theorems 2 and 3 imply the following one. 

T H E O R E M 4 . Let I, J and be mappings from a complete metric 
space into itself such that 

(a) T2(X) C I{X) and T^X) C J(X), 
(b) one ofI,J,Ti andT2 is continuous, 
(c) the pairs (T\,I) and (T2,J) are compatible, 
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(d) the inequality 

F(d(TiX, Ti+iy), d(Ix, Jy), d(Ix, %x), 

d( Jy, Ti+ly),d(Ix, Ti+1y), d( Jy, TiX)) < 0 

holds for each x, y in X, Vi € N* and F G T. Then I, J , and {Tj}iejv* have 
a unique common fixed point. 
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