

Henryk Orszczyszyn

INVERSIVE CLOSURE OF METRIC AFFINE SPACE
 AND ITS AUTOMORPHISMS

1. Basic notions and constructions

Let \mathfrak{F} be a commutative field and \mathbb{W} be a vector space over \mathfrak{F} . Then the projective space $\mathfrak{P} = \mathbf{P}(\mathbb{W})$ over \mathbb{W} is the structure $\langle X, \mathcal{L} \rangle$ with points (X) being 1-dimensional subspaces of \mathbb{W} and lines (\mathcal{L}) being 2-dimensional subspaces (cf [1]). Let \mathcal{P} be the set of planes in \mathfrak{P} .

Let μ be a nondegenerate symmetric bilinear form on \mathbb{W} . Then μ determines a quadric

$$Q = Q(\mu) = \{ \langle u \rangle : \mu(u, u) = 0, u \neq \theta_{\mathbb{W}} \},$$

where $\theta_{\mathbb{W}}$ is the zero-vector of \mathbb{W} . Let $p \in Q(\mu)$; The structure

$$\mathfrak{P}_p = \langle \{k \in \mathcal{L} : p \in k\}, \{S \in \mathcal{P} : p \in S\}, \subset \rangle$$

is a projective space, canonically isomorphic to $\mathbf{P}(\mathbb{V}/p)$. The set

$$T_p(Q) = \{q \in X : \mu(p, q) = 0\}$$

is the tangent hyperplane of $Q(\mu)$ in p . Then the structure $\mathbf{A}_p(Q)$ obtained by removing from \mathfrak{P}_p elements contained in $T_p(Q)$ is an affine space (cf. [2]). Its horizon, i.e. the projective space $\mathfrak{L}_p(Q)$, defined on directions, can be identified with the restriction of \mathfrak{P}_p to elements contained in $T_p(Q)$.

Note that every point x of $Q(\mu) \setminus T_p(Q)$ can be identified with the line $L_{\mathfrak{P}}(p, x) = \overline{p, x}$ of \mathfrak{P} joining p and x . Thus there is a natural one-to-one correspondence given by the map

$$\pi : Q \setminus T_p \ni x \mapsto \overline{p, x}$$

between points of $Q \setminus T_p$ and points of $\mathbf{A}_p(Q)$.

Moreover, we can consider a correlation ω_{μ} given by the condition

$$\langle w_1 \rangle \omega_{\mu} \langle w_2 \rangle : \Leftrightarrow \mu(w_1, w_2) = 0$$

for $\langle w_1 \rangle, \langle w_2 \rangle \in X$. For l being a line of $\mathbf{A}_p(Q)$, l is a plane in \mathfrak{P} through p ; we denote $\tilde{l} = l \cap T_p(Q)$. Note that \tilde{l} can be considered as the direction of l .

The correlation ω_μ defines a (restricted) correlation in \mathfrak{T}_p , which enables us to define orthogonality of lines of $\mathbf{A}_p(Q)$ as follows. Let l_1, l_2 be lines of $\mathbf{A}_p(Q)$, we define

$$l_1 \perp_{Q,p} l_2 : \Leftrightarrow \tilde{l}_1 \omega_\mu \tilde{l}_2.$$

So in fact $\mathbf{A}_p(Q)$ should be considered as a metric affine space,

$$\mathbf{M}_p(Q) = (\mathbf{A}_p(Q), \perp_{Q,p});$$

we call it a *derived space of a quadric* in the point p .

Quite frequently the derived affine space is defined as a coimage of $\mathbf{A}_p(Q)$ under π (cf. [3]). Then lines of this space are obtained by deleting from the set of all generators and all conics on Q through p all the elements contained in $[p]_Q = Q \cap T_p$, while $[p]_Q$ can be defined as the union of all generators of Q passing through p . An explicit definition of the orthogonality on $\pi^{-1}(\mathbf{A}_p(Q))$ formulated entirely in terms of the geometry on the quadric Q is much more complicated and will not be cited here.

2. Inversive closure and “sterographical co-projection”

The affine space $\mathbf{A}(\mathbb{V})$ over a vector space $\mathbb{V} = \langle V, +, \theta_V, \cdot \rangle$ over \mathfrak{F} is defined in a natural way. Then every nondegenerate bilinear symmetric form ξ on \mathbb{V} determines the orthogonality \perp_ξ of lines of $\mathbf{A}(\mathbb{V})$ (cf. [4]). Let $\mathfrak{M} = (\mathbf{A}(\mathbb{V}), \perp_\xi)$ be a metric affine space defined as above. We will construct a quadric Q contained in a projective space so as $\mathfrak{M} \cong \mathbf{M}_p(Q)$ for some point $p \in Q$.

Let $\mathbb{W} := \mathfrak{F} \oplus \mathbb{V} \oplus \mathfrak{F}$. \mathbb{W} is a vector space over \mathfrak{F} . A subspace $\langle [\alpha, u, \beta] \rangle$ spanned by a vector $[\alpha, u, \beta]$ of \mathbb{W} will be denoted by $\langle \alpha, u, \beta \rangle$. In the projective space $\mathbf{P}(\mathbb{W})$ we consider a form μ given by the formula

$$\mu([\alpha_1, u_1, \beta_1], [\alpha_2, u_2, \beta_2]) = \alpha_1 \alpha_2 + \xi(u_1, u_2) - \beta_1 \beta_2.$$

Let $Q = Q(\mu)$, $p = \langle 1, \theta, 1 \rangle$; of course $p \in Q$. We easily calculate

$$T_p = T_p(Q) = \{ \langle \alpha, u, \beta \rangle : \alpha = \beta \}.$$

First we consider the map $\psi : V \rightarrow \mathbf{P}(\mathbb{W})$ defined by

$$\psi(u) = \langle 1, u, 0 \rangle \quad \text{for } u \in V.$$

Set $S^\psi = \{ [\alpha, u, 0] : \alpha \in \mathfrak{F}, u \in V \}$. Then S^ψ is a hyperplane of $\mathbf{P}(\mathbb{W})$ and $S^\psi \setminus \text{Im } \psi = T_p$. Then the map

$$\psi^* : V \ni u \mapsto \overline{(p, \psi(u))},$$

where $\overline{(p, \psi(u))}$ is the line joining in $\mathbf{P}(\mathbb{W})$ points $p, \psi(u)$, maps points of $\mathbf{A}(\mathbb{V})$ onto points of $\mathbf{A}_p(Q)$. It is seen that ψ^* also maps lines onto lines in

the sense explained below. We find a point $\hat{\psi}(u) = \pi^{-1}(\psi(u))$ of intersection of the line through $\psi(u)$ and p with the quadric Q . Then we obtain a transformation $\hat{\psi} : V \rightarrow Q$ given by the formula

$$\hat{\psi}(u) = \langle 1 - \xi(u, u), 2u, -1 - \xi(u, u) \rangle.$$

Then, clearly, if l is a line of \mathfrak{M} , then $\hat{\psi}(l)$ corresponds to the intersection of Q with the plane $\psi^*(l) = \overline{\psi(l), p}$ of $\mathbf{P}(\mathbb{W})$ joining p and $\psi(l)$, being a line of $\mathbf{A}_p(Q)$. Formally

$$\hat{\psi}(l) = (\psi^*(l) \cap Q) \setminus T_p(Q).$$

If l is a line of \mathfrak{M} we put $l_\infty := \psi(l) \cap T_p$. It is seen that $\widetilde{\psi^*(l)} = \overline{p, l_\infty}$. One easily calculates that for $l = u + \langle v \rangle$ being a line of \mathfrak{M} , $l_\infty = \langle 0, v, 0 \rangle$.

PROPOSITION 2.1. *If l is an isotropic line of \mathfrak{M} then $\hat{\psi}(l)$ is a generator of Q .*

Proof. Let $l = u + \langle v \rangle$ and $v \perp_\xi u$, then $l_\infty = [0, v, 0]$; hence $p\omega_\mu l_\infty$ and $l_\infty \in Q$. Therefore $\overline{p, l_\infty}$ is contained in $\psi^*(l) \cap Q$ and thus $\psi^*(l) \cap Q$ is a sum of two lines intersecting in p . This yields $\hat{\psi}(l)$ is a line contained in Q . ■

PROPOSITION 2.2. *If $m, n \in \mathfrak{M}$ then $m \perp_\xi n \Leftrightarrow \psi^*(m) \perp_{Q,p} \psi^*(n)$.*

Proof. It is seen that $m \perp_\xi n$ iff $m_\infty \omega_\mu n_\infty$. On the other hand $m_\infty, n_\infty \in Q$, so we have

$$m \perp_\xi n \Leftrightarrow L(p, m_\infty) \omega_\xi L(p, n_\infty) \Leftrightarrow \widetilde{\psi^*(m)} \omega_\mu \widetilde{\psi^*(n)} \Leftrightarrow \psi^*(m) \perp_{Q,p} \psi^*(n). \blacksquare$$

As a corollary we get

THEOREM 2.3. *The map $\psi^*(\hat{\psi})$ is an isomorphism between \mathfrak{M} and derived space of Q in p .*

3. Extending of automorphisms

We know that every automorphism of \mathfrak{M} is a superposition of a translation and a semilinear bijection of \mathbb{V} . We will prove that every automorphism of \mathfrak{M} can be extended to an automorphism of quadric Q "closing" this space, constructed in the previous section.

LEMMA 3.1. *Let σ be an automorphism of \mathfrak{F} and let φ be a σ -semilinear map of \mathbb{V} . If $\varphi \in \text{Aut}(\mathfrak{M})$ then there exists a σ -semilinear map ϕ of \mathbb{W} preserving Q such that*

$$\varphi^\psi = \phi|_{Q \setminus T_p}.$$

Proof. Suppose φ preserves the relation \perp_ξ , i.e. $u \perp_\xi v \Leftrightarrow \varphi(u) \perp_\xi \varphi(v)$ for all $u, v \in V$. It is known that then there exists a constant c such that $\xi(\varphi(u), \varphi(v)) = c\sigma(\xi(u, v))$. We are going to find $\varphi^\psi = \hat{\psi} \circ \varphi \circ \hat{\psi}^{-1}$.

First we find $\hat{\psi}^{-1}(\langle \alpha, u, \beta \rangle) = \frac{u}{\alpha - \beta}$. Then one may calculate that $\varphi^{\hat{\psi}} : (Q \setminus T_p) \rightarrow (Q \setminus T_p)$ has the form

$$\begin{aligned} & \varphi^{\hat{\psi}}(\langle \alpha, u, \beta \rangle) \\ &= \langle \sigma^2(\alpha - \beta) - \xi(\varphi(u), \varphi(u)), 2\sigma(\alpha - \beta)\varphi(u), -\sigma^2(\alpha - \beta) - \xi(\varphi(u), \varphi(u)) \rangle. \end{aligned}$$

Clearly, the map ϕ defined on \mathbb{W} by

$$\phi([\alpha, u, \beta]) = [\sigma(\alpha - \beta) + c\sigma(\alpha + \beta), 2\varphi(u), -\sigma(\alpha - \beta) + c\sigma(\alpha + \beta)]$$

is σ -semilinear. For $\langle \alpha, u, \beta \rangle \in Q$ it holds

$$\xi(u, u) = \beta^2 - \alpha^2.$$

Moreover, if $\langle \alpha, u, \beta \rangle \notin T_p$, then $\alpha \neq \beta$. This together with the condition

$$\xi(\varphi(u), \varphi(v)) = c\sigma(\xi(u, v))$$

yields for $\langle \alpha, u, \beta \rangle \in Q \setminus T_p$:

$$\varphi^{\hat{\psi}}(\langle \alpha, u, \beta \rangle) = \phi(\langle \alpha, u, \beta \rangle). \blacksquare$$

The map ϕ constructed above will be denoted by $\tilde{\varphi}$. Note that φ is linear iff $\tilde{\varphi}$ is so.

LEMMA 3.2. *If φ is a translation on \mathbb{V} , then there is a linear map $\phi = \tilde{\varphi}$ of \mathbb{W} , preserving Q , such that*

$$\varphi^{\hat{\psi}} = \phi|_{Q \setminus T_p}.$$

Proof. By the assumption, there is a vector a such that $\varphi(u) = a + u$ for all $u \in V$. Then, calculating as in the proof of 3.1 we get for $\langle \alpha, u, \beta \rangle \in Q \setminus T_p$

$$\begin{aligned} & \varphi^{\hat{\psi}}(\langle \alpha, u, \beta \rangle) \\ &= \langle (\alpha - \beta)(2\alpha - (\alpha - \beta)\xi(a, a)) + 2\xi(a, u), 2(\alpha - \beta)(a(\alpha - \beta) + u), \\ & \quad (\alpha - \beta)(2\beta - (\alpha - \beta)\xi(a, a)) - 2\xi(a, u) \rangle. \end{aligned}$$

Consider the map ϕ defined by

$$\begin{aligned} \phi([\alpha, u, \beta]) &= [(2\alpha - (\alpha - \beta)\xi(a, a)) + 2\xi(a, u), 2(a(\alpha - \beta) + u), \\ & \quad (2\beta - (\alpha - \beta)\xi(a, a)) - 2\xi(a, u)]. \end{aligned}$$

The map ϕ is linear and $\phi(\langle \alpha, u, \beta \rangle) = \varphi^{\hat{\psi}}(\langle \alpha, u, \beta \rangle)$ for $\langle \alpha, u, \beta \rangle \in Q \setminus T_p$. \blacksquare

Gathering together 3.1 and 3.2 we obtain

COROLLARY 3.3. *Let Q be a quadric in a projective space \mathfrak{P} closing \mathfrak{M} , as constructed above, let $p \in Q$. (Note that $\mathfrak{M} \cong \mathbf{M}_p(Q)$). For every $f \in$*

$\text{Aut}(\mathfrak{M})$ there exists an automorphism $g = \tilde{(f)}$ of \mathfrak{P} such that

$$f^{\hat{\psi}} = g|_{Q \setminus T_p}.$$

The map f is affine iff \tilde{f} is projective.

Taking into account the fact that $\mathfrak{M} = \mathbf{M}_p(Q)$ is definable in $(\mathbf{P}(\mathbb{W}), Q)$ we can state that the map

$$\text{Aut}(\mathfrak{M}) \ni f \mapsto \Psi(f) \in \text{Aut}(\mathbf{P}(\mathbb{W}))$$

defined by the condition: $\Psi(f)$ is an extension of $f^{\hat{\psi}}$, is a (well defined) isomorphism between $\text{Aut}(\mathfrak{M})$ and $\text{Aut}(\mathbf{P}(\mathbb{W}), Q)_{(p)}$.

References

- [1] E. Artin, *Geometric Algebra*, New York, Interscience 1957.
- [2] W. Benz, *Vorlesungen ueber Geometrie der Algebren*, Springer 1973.
- [3] P. Dembowski, *Finite Geometries*, Ergebnisse der Mathematik, Band 44., Springer.
- [4] H. Lenz, *Grundlagen der Elementarmathematik*, VEB Deutscher Verlag der Wissenschaften, Berlin 1961.

INSTITUTE OF MATHEMATICS
UNIVERSITY IN BIAŁYSTOK
Akademicka 2
15-267 BIAŁYSTOK, POLAND

Received December 8, 1997.

