

Mursaleen, Mushir A. Khan, Qamaruddin

DIFFERENCE SEQUENCE SPACES DEFINED
BY ORLICZ FUNCTIONS

Abstract. The idea of difference sequences was introduced by H. Kizmaz [1]. In this paper we define some difference sequence spaces by Orlicz Function and establish some inclusion relations.

1. Introduction

Let ℓ_∞, c, c_0 be the sequence spaces of bounded, convergent and null sequences $x = (x_k)$ respectively. Recently Kizmaz [1] has defined the following sequence spaces

$$\begin{aligned}\ell_\infty(\Delta) &= \{x = (x_k) : \Delta x \in \ell_\infty\}, \\ c(\Delta) &= \{x = (x_k) : \Delta x \in c\}, \\ c_0(\Delta) &= \{x = (x_k) : \Delta x \in c_0\},\end{aligned}$$

where $\Delta x = (\Delta x_k)_{k=1}^\infty = (x_k - x_{k+1})_{k=1}^\infty$.

An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$ which is continuous, non-decreasing and convex with $M(0) = 0$, $M(x) > 0$, for $x > 0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of u , if there exists a constant $K > 0$, such that

$$M(2u) \leq KM(u) \quad (u \geq 0).$$

The Δ_2 -condition is equivalent to $M(\ell u) \leq K \cdot \ell M(u)$, for all values of u and for $\ell > 1$.

An Orlicz function M can always be represented in the following integral form: $M(x) = \int_0^x q(t)dt$, where q known as the kernal of M , is right differentiable for $t \geq 0$, $q(0) = 0$, $q(t) > 0$ for $t > 0$, q is non-decreasing and $q(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz functions to construct Orlicz sequence space,

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\varrho}\right) < \infty, \text{ for some } \varrho > 0 \right\}.$$

The space ℓ_M with the norm

$$\|x\| = \inf \left\{ \varrho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\varrho}\right) \leq 1 \right\},$$

becomes a Banach space which is called an Orlicz sequence space.

In this paper, we define the following sequence spaces

$$\begin{aligned} c_0(\Delta, M) &= \left\{ x = (x_k) : \lim_{k \rightarrow \infty} M\left(\frac{|\Delta x_k|}{\varrho}\right) = 0, \text{ for some } \varrho > 0 \right\}; \\ c(\Delta, \ell) &= \left\{ x = (x_k) : \lim_{k \rightarrow \infty} M\left(\frac{|\Delta x_k - \ell|}{\varrho}\right) = 0, \text{ for some } \varrho > 0, \ell \in \mathbb{C} \right\}; \\ \ell_{\infty}(\Delta, M) &= \left\{ x = (x_k) : \sup_{k \geq 0} M\left(\frac{|\Delta x_k|}{\varrho}\right) < \infty, \text{ for some } \varrho > 0 \right\}; \end{aligned}$$

for an Orlicz function M .

It is easy to show that these sequence spaces are normed spaces with the norm

$$\|x\|_{\Delta} = \inf \left\{ \varrho > 0 : \sup_{k \geq 0} M\left(\frac{|\Delta x_k|}{\varrho}\right) \leq 1 \right\}.$$

2. Main results

THEOREM 2.1. $\ell_{\infty}(\Delta, M)$ is a Banach space with the norm

$$\|x\|_{\Delta} = \inf \left\{ \varrho > 0 : \sup_{k \geq 0} M\left(\frac{|\Delta x_k|}{\varrho}\right) \leq 1 \right\}.$$

P r o o f. Let (x^i) be any Cauchy sequence in $\ell_{\infty}(\Delta, M)$, where $x^i = (x_k^i) = (x_1^i, x_2^i, \dots) \in \ell_{\infty}(\Delta, M)$ for each $i \in \mathbb{N}$. Let $r, x_0 > 0$ be fixed. Then for each $\frac{\epsilon}{rx_0} > 0$ there exists a positive integer N such that

$$\|x^i - x^j\|_{\Delta} < \frac{\epsilon}{rx_0}, \quad \text{for all } i, j \geq N.$$

Using the definition of norm, we get

$$\sup_{k \geq 0} M\left(\frac{|\Delta x_k^i - \Delta x_k^j|}{\|x^i - x^j\|_{\Delta}}\right) \leq 1, \quad \text{for all } i, j \geq N,$$

$$M\left(\frac{|\Delta x_k^i - \Delta x_k^j|}{\|x^i - x^j\|_{\Delta}}\right) \leq 1, \quad \text{for each } k \geq 0$$

and for all $i, j \geq N$.

Hence we can find $r > 0$ with $M\left(\frac{rx_0}{2}\right) \geq 1$, such that

$$M\left(\frac{|\Delta x_k^i - \Delta x_k^j|}{\|x^i - x^j\|_{\Delta}}\right) \leq M\left(\frac{rx_0}{2}\right).$$

This implies that

$$|\Delta x_k^i - \Delta x_k^j| < \frac{x_0 r}{2} \cdot \frac{\epsilon}{rx_0} = \frac{\epsilon}{2}.$$

Hence (Δx_k^i) is a Cauchy sequence in \mathbb{R} . Therefore for each $\epsilon (0 < \epsilon < 1)$, there exists a positive integer N such that $|\Delta x^i - \Delta x^j| < \epsilon$, for all $i, j \geq N$.

Using the continuity of M , we can find that

$$\sup_{k \geq N} M\left(\frac{|\Delta x_k^i - \lim_{j \rightarrow \infty} \Delta x_k^j|}{\varrho}\right) \leq 1.$$

Thus

$$\sup_{k \geq N} M\left(\frac{|\Delta x_k^i - \Delta x_k|}{\varrho}\right) \leq 1.$$

Taking infimum of such ϱ 's we get

$$\inf \left\{ \varrho > 0 : \sup_{k \geq N} M\left(\frac{|\Delta x_k^i - \Delta x|}{\varrho}\right) \leq 1 \right\} < \epsilon,$$

for all $i \geq N$ and $j \rightarrow \infty$. Since $(x^i) \in \ell_{\infty}(\Delta, M)$ and M is an Orlicz function (hence continuous), it follows that $x \in \ell_{\infty}(\Delta, M)$.

This completes the proof of the theorem.

THEOREM 2.2. *Let M be an Orlicz function which satisfies Δ_2 -condition.*

Then

- (a) $c_0(\Delta) \subset c_0(\Delta, M)$;
- (b) $c(\Delta) \subset c(\Delta, M)$;
- (c) $\ell_{\infty}(\Delta) \subset \ell_{\infty}(\Delta, M)$.

Proof. (c) Let $x \in \ell_{\infty}(\Delta)$, this implies that $|\Delta x_k| \leq N$ for all k . So that

$$M\left(\frac{|\Delta x_k|}{\varrho}\right) \leq M\left(\frac{N}{\varrho}\right) \leq K \cdot \ell M(N), \quad \text{by } \Delta_2\text{-condition.}$$

Hence $\sup_{k \geq 0} M\left(\frac{|\Delta x_k|}{\varrho}\right) < \infty$. This shows that $\ell_{\infty}(\Delta) \subset \ell_{\infty}(\Delta, M)$. Proofs of (a) and (b) follow similarly.

3. Paranormed sequence spaces

Let $p = (p_k)$ be any sequence of positive real numbers. Then in the same way, we can also define the following sequence spaces for an Orlicz function M as c_0 , c and ℓ_∞ were extended to $c_0(p)$, $c(p)$ and $\ell_\infty(p)$ (cf. [4], [5]). For some $\varrho > 0$,

$$\begin{aligned} c_0(\Delta, M, p) &= \left\{ x = (x_k) : \lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} = 0 \right\}, \\ c(\Delta, M, p) &= \left\{ x = (x_k) : \lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k - \ell|}{\varrho} \right) \right)^{p_k} = 0 \right\}, \\ \ell_\infty(\Delta, M, p) &= \left\{ x = (x_k) : \sup_{k \geq 0} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} < \infty \right\}, \end{aligned}$$

when $p_k = \text{constant}$, for all k , then $c_0(\Delta, M, p) = c_0(\Delta, M)$, $c(\Delta, M, p) = c(\Delta, M)$ and $\ell_\infty(\Delta, M, p) = \ell_\infty(\Delta, M)$.

It is easy to show that these sequence spaces are paranormed spaces with

$$G(x) = \inf \left\{ \varrho^{p_n/H} : \left\{ \sup_{k \geq 0} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} \right\}^{1/H} \leq 1 \right\},$$

where $H = \max(1, \sup_{k \geq 0} p_k)$.

THEOREM 3.1. $\ell_\infty(\Delta, M, p)$ is a complete paranormed space with

$$G(x) = \inf \left\{ \varrho^{p_n/H} : \left\{ \sup_{k \geq 0} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} \right\}^{1/H} \leq 1 \right\}.$$

P r o o f. Let (x^i) be any Cauchy sequence in $\ell_\infty(\Delta, M, p)$. Let $r, x_0 > 0$ be fixed. Then for each $\frac{\epsilon}{rx_0} > 0$, there exists a positive integer N such that

$$G(x^i - x^j) < \frac{\epsilon}{rx_0}, \text{ for all } i, j \geq N.$$

Using the definition of paranorm, we get

$$\left\{ \sup_{k \geq 0} \left(M \left(\frac{|\Delta x_k^i - \Delta x_k^j|}{G(x^i - x^j)} \right) \right)^{p_k} \right\}^{1/H} \leq 1, \quad \text{for all } i, j \geq N.$$

Thus

$$\sup_{k \geq 0} \left(M \left(\frac{|\Delta x_k^i - \Delta x_k^j|}{G(x^i - x^j)} \right) \right)^{p_k} \leq 1, \quad \text{for all } i, j \geq N.$$

It follows that $M \left(\frac{|\Delta x_k^i - \Delta x_k^j|}{G(x^i - x^j)} \right) \leq 1$, for each $k \geq 0$ and for all $i, j \geq N$. For $r > 0$ with $M \left(\frac{rx_0}{2} \right) \geq 1$, we have

$$M \left(\frac{|\Delta x_k^i - \Delta x_k^j|}{G(x^i - x^j)} \right) \leq M \left(\frac{rx_0}{2} \right).$$

This implies that

$$|\Delta x_k^i - \Delta x_k^j| \leq \frac{rx_0}{2} \cdot \frac{\epsilon}{rx_0} = \frac{\epsilon}{2}.$$

Hence (Δx^i) is a Cauchy sequence in \mathbb{R} . Therefore for each $\epsilon (0 < \epsilon < 1)$, there exists a positive integer N such that

$$|\Delta x^i - \Delta x| < \epsilon, \quad \text{for all } i, j \geq N.$$

Using the continuity of M , we find that

$$\left\{ \sup_{k \geq N} \left(M \left(\frac{|\Delta x_k^i - \lim_{j \rightarrow \infty} \Delta x_k^j|}{\varrho} \right) \right)^{p_k} \right\}^{1/H} \leq 1.$$

Thus

$$\left\{ \sup_{k \geq N} \left(M \left(\frac{|\Delta x_k^i - \Delta x|}{\varrho} \right) \right)^{p_k} \right\}^{1/H} \leq 1.$$

Taking infimum of such ϱ 's we get

$$\inf \left\{ \varrho^{p_n/H} : \left\{ \sup_{k \geq N} \left(M \left(\frac{|\Delta x_k^i - \Delta x|}{\varrho} \right) \right)^{p_k} \right\}^{1/H} \leq 1 \right\} < \epsilon,$$

for all $i, j \geq N$ and $j \rightarrow \infty$. Since $(x^i) \in \ell_\infty(\Delta, M, p)$ and M is continuous. It follows that $x \in \ell_\infty(\Delta, M, p)$.

This completes the proof of the theorem.

THEOREM 3.2. *Let $0 < p_k \leq q_k < \infty$ for each k . Then*

$$c_0(\Delta, M, p) \subseteq c_0(\Delta, M, q).$$

P r o o f. Let $x \in c_0(\Delta, M, p)$. Then there exists some $\varrho > 0$ such that

$$\lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} = 0.$$

This implies that $M \left(\frac{|\Delta x_k|}{\varrho} \right) \leq 1$ for sufficiently large k , since M is non-decreasing. Hence we get

$$\lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{q_k} \leq \lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} = 0,$$

i.e. $x \in c_0(\Delta, M, q)$.

This completes the proof of the theorem.

THEOREM 3.3. (a) *Let $0 < \inf p_k \leq p_k \leq 1$. Then $c_0(\Delta, M, p) \subseteq c_0(\Delta, M)$,*
 (b) *Let $1 \leq p_k \leq \sup p_k < \infty$. Then $c_0(\Delta, M) \subseteq c_0(\Delta, M, p)$.*

P r o o f. (a). Let $x \in c_0(\Delta, M, p)$, that is $\lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} = 0$. Since $0 < \inf p_k \leq p_k \leq 1$,

$$\lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right) \leq \lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} = 0,$$

and hence $x \in c_0(\Delta, M)$.

(b). Let $p_k \geq 1$ for each k and $\sup_k p_k < \infty$. Let $x \in c_0(\Delta, M)$, then for each ϵ ($0 < \epsilon < 1$) there exists a positive integer N such that

$$\left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right) \leq \epsilon, \quad \forall k \geq N.$$

Since $1 \leq p_k \leq \sup_k p_k < \infty$, we have

$$\lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right)^{p_k} \leq \lim_{k \rightarrow \infty} \left(M \left(\frac{|\Delta x_k|}{\varrho} \right) \right) \leq \epsilon < 1.$$

Therefore $x \in c_0(\Delta, M, p)$.

This completes the proof of the theorem.

References

- [1] H. Kizmaz, *On certain sequence spaces*, Canad. Math. Bull. 24 (2) (1981), 169–176.
- [2] M. A. Krasnoselskii and Y. B. Rutitsky, *Convex function and Orlicz spaces*, Groningen, Netherlands 1961.
- [3] J. Lindenstrauss and L. Tzafriri, *On Orlicz sequence spaces*, Israel J. Math. 10 (1971), 345–355.
- [4] I. J. Maddox, *Some properties of paranormed sequence spaces*, J. London Math. Soc. 1 (1969), 316–322.
- [5] I. J. Maddox, *Continuous and Köthe-Toeplitz duals of certain sequence spaces*, Proc. Cambridge Phil. Soc. 65 (1969), 431–435.
- [6] I. J. Maddox, *Sequence spaces defined by a modulus*, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166.
- [7] S. D. Parashar and B. Choudhary, *Sequence spaces defined by Orlicz functions*, Indian J. Pure Appl. Math. 25 (4) (1994), 419–428.
- [8] S. Simons, *The sequence spaces $\ell(p_\nu)$ and $m(p_\nu)$* , Proc. London Math. Soc. 15 (1965), 422–436.

Mursaleen, Mushir A. Khan

DEPARTMENT OF MATHEMATICS

ALIGARH MUSLIM UNIVERSITY

ALIGARH-202002 INDIA;

Qamaruddin

DEPARTMENT OF APPLIED MATHEMATICS

Z.H. COLLEGE OF ENGG. AND TECHNOLOGY

ALIGARH MUSLIM UNIVERSITY

ALIGARH-202002 INDIA

Received November 7, 1998.