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A FIXED POINT THEOREM IN BANACH SPACES OVER
TOPOLOGICAL SEMIFIELDS AND AN APPLICATION

Abstract: A fixed point theorem for three mappings on a Banach space X over
a topological semifield is proved. An application is given for the solvability of certain
non-linear functional equations in X.

1. Introduction

The notion of a topological semifield has been introduced by M. Anto-
novskii, V. Boltyanskii and T. Sarymsakov in [1].

Let E be a topological semifield and K be the set of all its positive ele-
ments. Take any two elements z,y in E. If y—z isin K (in K ), this is denoted
by z < y (z < y). As proved in [1], every topological semifield E contains
a subsemifield, called the axis of E, which is isomorphic to the field R of
real numbers. Consequently by identifying the axis and R, each topological
semifield can be regarded as a topological linear space over the field R.

The ordered triple (X, d, F) is called a metric space over the topological
semifield if there exists a mapping d : X x X — FE satisfying the usual
axioms for a metric (see [1],[2] and [4]).

Linear spaces considered in this paper are defined on the field R. Let X
be a linear space. The ordered triple (X, ||.||, E) is called a feeble normed
space over the topological semifield if there exists a mapping ||.|| : X — E
satisfying the usual axioms for a norm (see [1] and [3]).

2. Main result
We use the following definition:

DEFINITION 1. Let (X, ||.||, E) be a feeble normed space over a topological
semifield E and let d(x,y) = ||z —y|| for all z,y in X. A space (X, ||.]|, E) is

1 Research partially supported by U.G.C. grant, New Delhi, INDIA.
1991 AMS Mathematics Subject Classification: 54H25, 4TH10.
Key words and phrases: Banach space, common fixed points, topological semifield.



140 H. K. Pathak, V. V. 8. N. Lakshmi, K. Tag, B. Fisher

said to be a Banach space over the topological semifield F if (X,d,E) is a
sequentially complete metric space over the topological semifield E.

Now we prove the following result.

THEOREM 1. Let X be a Banach space over a topological semifield E and let
F,G and H be three continuous self mappings of X satisfying the following
conditions:

(1) (1-1)G(X)+tF(X) c G(X), Vte(0,1),
2) (1-HG(X)+tH(X) C G(X), Vte(0,1),
(3) FG=GF, HG=GH,

(4) pllGz — Gy|™ + |Gy - Hy||™ < q||Gz —- Fz|™,
(5) plGz — Gy|™ + |Gy — Fy|™ < q||Gz ~ Hz||™

for all z,y in X, where p,m > 0, and 0 < g < 1. Then the sequence {Gz,}
defined by

(6) Gropi1 = (1 - t)G:lJQn + tFxoy,,
(7) Gzopis = (1 - t)GZ2n+1 +tHzon41

where zg is a point in X, 0 <t <1 and 0 < g— pt™ < 1, converges to the
common fized point of F,G and H in X.

Proof. Note that the points z,, in the theorem exist because of conditions
(1) and (2). Let ¢ in X be an arbitrary point. From (6) and (7), we obtain

(8) |Gzant1 — Gzon|| = t|| Fzon — Gzanl,
9) Gzont2 — Goon+1ll = t| Hzont1 — Gzonta |-
If we put z = 22, and y = 2,41 in (4), we then have from (8) and (9)

p||Gron — Gzonsa||™ +t7™||Gzans2 — Grong1||™
<L qt™™||Gzang1 — Gzon||™

and hence
1
(10) IGz2n+1 — Gantall K (g — pt™) ™ ||Gzant1 — Gzonl]
for all n. Putting £ = z2,41 and y = Zap+2 in (5) and using (8), we get

" (pt™||Gzon+1 — Gxany2||™ + ||Gronts — Groantal|™)
< qt7"||Gzans2 — Gzons1ll™.
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Hence
(11) 1GZan+3 — Goansall < (g = pt™) ™ | Geansz — Goanll
for all n. From (10) and (11) we then obtain
|G2n ~ Gonsall < (@ — pt™) 7| Gen-1 — Gaal
which implies that
|Gzn — Gznyi| < (g — pt™)m||Gxo — G-

Since 0 < ¢ — pt™ < 1, it follows that {Gz,} is a Cauchy sequence. Since X
is complete, it then follows that the sequence {Gz,} converges to a point u
in X. Using (6) and (7), we see that {Fzo,} and {Hz2n+1} also converge
to u. Since F, G and H are continuous, we have

(12) F(Gzop) — Fu, H(Gzapy1) — Hu.
Since G commutes with F' and H, we have
F(Gzap) = G(Fzo,), H(Gzant1) = G(Hzon+1)
forn=0,1,2,.... Letting n tend to infinity, we have
Fu=Gu= Hu
and then
(13) G(Gu) = G(Fu) = F(Gu) = F(Fu) = F(Hu)
= G(Hu) = H(Gu) = H(Hu).

Now if Fu # H(Fu), then by (4), (12) and (13) we have

pl|Gu - G(Hu)|™ + ||G(Hu) — H(Hu)|™ < ¢||Gu — Fu|™,

pliFu— H(Fu)||™ + |G(Hu) — H(Fu)|" < q||Fu — Fu|™.
Hence
(14) Fu= H(Fu)
and by (4), (13) and (14), we have

Fu = H(Fu) = G(Fu) = F(Fu)

which implies that Fu is a common fixed point of F,G and H.

Now to prove the uniqueness. Suppose that v and v are two common
fixed points of F,G and H in X. Then by (4), we have

p||Gu — Gv||™ + ||Gv — Hv|™ < ¢||Gu — Ful|™
pllu =™ + llv — v||™ < gllu ~ u||™
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and so ||u—v||™ <« 0. This implies the uniqueness of the common fixed point
of F,G and H.

We next investigate the solvability of certain non-linear functional equa-
tions in a Banach space over a topological semifield.

THEOREM 2. Let X be a Banach space over a topological semifield E and
let F,G and H be three continuous self-mappings on X satisfying conditions
(2), (3), (4) and (5) of Theorem 1, let {gy}, {fp} and {hy} be sequences
of elements in X and let wy be the unique solution of the system of equa-
tions

(15) u—-Gu=gy, Gu—Fu=fy, Gu—Hu=hy.

If limy oo ||9p || = limpy o0 || fprl] = limpoo ||y || = O, then the sequence
{wp} converges to the solution of the equations

u = Gu=Fu= Hu.

Proof. Suppose that ||[wy — Gwy| # 0, ||Gwy — Fwy|| # 0 and ||Gwy —
Hwy|| # 0. Then by (4), we have for p’ > ¢/,

lwp — well < lhwy = Guyll + [Guy — Guy | + | Guy — wy|
< g ll + 27 {4l Guy ~ Fup|™
~||Gwy — qu'“m]l/m + |l g¢|l
= llgyll + 2~ gl fr ™ — g ™1™ + gl

Letting p’, ¢’ tend to infinity, it follows that ||wy — wy || — 0, which implies
that {wy} is a Cauchy sequence in X. Since X is complete, it then follows
that the sequence {wp } converges to a point w in X.

Since F,G and H are continuous, it follows from (15) that

- Gul|| = li 1 — Guy|| = i =0

lw = Gul| = lim Jlwy — Gup|| = lim [lgy[| =0,

||Gw - Fw|| = lhm ||Gwp/ — pr/|| = Illl’l’l ”fp'” =0,
p'—00 pl—o0

IGw — Hw|| = lim |Guy — Huy| = lim [|hyl]| = 0.
p/—o0 p'—o00

This implies that w = Gw = Fw = Hw, completing the proof of the
theorem.

We finally note that Theorem 1 and its proof may be modified for a
Banach space over a real or complex field by replacing the symbol ‘<’ with
‘<’ throughout the text.
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