

H. K. Pathak¹, V. V. S. N. Lakshmi, Kenan Taş, Brian Fisher

A FIXED POINT THEOREM IN BANACH SPACES OVER TOPOLOGICAL SEMIFIELDS AND AN APPLICATION

Abstract: A fixed point theorem for three mappings on a Banach space X over a topological semifield is proved. An application is given for the solvability of certain non-linear functional equations in X .

1. Introduction

The notion of a topological semifield has been introduced by M. Antanovskii, V. Boltyanskii and T. Sarymsakov in [1].

Let E be a topological semifield and K be the set of all its positive elements. Take any two elements x, y in E . If $y - x$ is in \overline{K} (in K), this is denoted by $x \ll y$ ($x < y$). As proved in [1], every topological semifield E contains a subsemifield, called the axis of E , which is isomorphic to the field R of real numbers. Consequently by identifying the axis and R , each topological semifield can be regarded as a topological linear space over the field R .

The ordered triple (X, d, E) is called a metric space over the topological semifield if there exists a mapping $d : X \times X \rightarrow E$ satisfying the usual axioms for a metric (see [1], [2] and [4]).

Linear spaces considered in this paper are defined on the field R . Let X be a linear space. The ordered triple $(X, \|\cdot\|, E)$ is called a *feeble normed space over the topological semifield* if there exists a mapping $\|\cdot\| : X \rightarrow E$ satisfying the usual axioms for a norm (see [1] and [3]).

2. Main result

We use the following definition:

DEFINITION 1. Let $(X, \|\cdot\|, E)$ be a feeble normed space over a topological semifield E and let $d(x, y) = \|x - y\|$ for all x, y in X . A space $(X, \|\cdot\|, E)$ is

¹ Research partially supported by U.G.C. grant, New Delhi, INDIA.

1991 *AMS Mathematics Subject Classification*: 54H25, 47H10.

Key words and phrases: Banach space, common fixed points, topological semifield.

said to be a Banach space over the topological semifield E if (X, d, E) is a sequentially complete metric space over the topological semifield E .

Now we prove the following result.

THEOREM 1. *Let X be a Banach space over a topological semifield E and let F, G and H be three continuous self mappings of X satisfying the following conditions:*

- (1) $(1 - t)G(X) + tF(X) \subset G(X), \quad \forall t \in (0, 1),$
- (2) $(1 - t)G(X) + tH(X) \subset G(X), \quad \forall t \in (0, 1),$
- (3) $FG = GF, \quad HG = GH,$
- (4) $p\|Gx - Gy\|^m + \|Gy - Hy\|^m \ll q\|Gx - Fx\|^m,$
- (5) $p\|Gx - Gy\|^m + \|Gy - Fy\|^m \ll q\|Gx - Hx\|^m$

for all x, y in X , where $p, m > 0$, and $0 < q < 1$. Then the sequence $\{Gx_n\}$ defined by

$$(6) \quad Gx_{2n+1} = (1 - t)Gx_{2n} + tFx_{2n},$$

$$(7) \quad Gx_{2n+2} = (1 - t)Gx_{2n+1} + tHx_{2n+1}$$

where x_0 is a point in X , $0 < t < 1$ and $0 \leq q - pt^m < 1$, converges to the common fixed point of F, G and H in X .

P r o o f. Note that the points x_n in the theorem exist because of conditions (1) and (2). Let x_0 in X be an arbitrary point. From (6) and (7), we obtain

$$(8) \quad \|Gx_{2n+1} - Gx_{2n}\| = t\|Fx_{2n} - Gx_{2n}\|,$$

$$(9) \quad \|Gx_{2n+2} - Gx_{2n+1}\| = t\|Hx_{2n+1} - Gx_{2n+1}\|.$$

If we put $x = x_{2n}$ and $y = x_{2n+1}$ in (4), we then have from (8) and (9)

$$\begin{aligned} p\|Gx_{2n} - Gx_{2n+1}\|^m + t^{-m}\|Gx_{2n+2} - Gx_{2n+1}\|^m \\ \ll qt^{-m}\|Gx_{2n+1} - Gx_{2n}\|^m \end{aligned}$$

and hence

$$(10) \quad \|Gx_{2n+1} - Gx_{2n+2}\| \ll (q - pt^m)^{\frac{1}{m}}\|Gx_{2n+1} - Gx_{2n}\|$$

for all n . Putting $x = x_{2n+1}$ and $y = x_{2n+2}$ in (5) and using (8), we get

$$\begin{aligned} t^{-m}(pt^m\|Gx_{2n+1} - Gx_{2n+2}\|^m + \|Gx_{2n+3} - Gx_{2n+2}\|^m) \\ \ll qt^{-m}\|Gx_{2n+2} - Gx_{2n+1}\|^m. \end{aligned}$$

Hence

$$(11) \quad \|Gx_{2n+3} - Gx_{2n+2}\| \ll (q - pt^m)^{\frac{1}{m}} \|Gx_{2n+2} - Gx_{2n+1}\|$$

for all n . From (10) and (11) we then obtain

$$\|Gx_n - Gx_{n+1}\| \ll (q - pt^m)^{\frac{1}{m}} \|Gx_{n-1} - Gx_n\|$$

which implies that

$$\|Gx_n - Gx_{n+1}\| \ll (q - pt^m)^{\frac{n}{m}} \|Gx_0 - Gx_1\|.$$

Since $0 \leq q - pt^m < 1$, it follows that $\{Gx_n\}$ is a Cauchy sequence. Since X is complete, it then follows that the sequence $\{Gx_n\}$ converges to a point u in X . Using (6) and (7), we see that $\{Fx_{2n}\}$ and $\{Hx_{2n+1}\}$ also converge to u . Since F, G and H are continuous, we have

$$(12) \quad F(Gx_{2n}) \rightarrow Fu, \quad H(Gx_{2n+1}) \rightarrow Hu.$$

Since G commutes with F and H , we have

$$F(Gx_{2n}) = G(Fx_{2n}), \quad H(Gx_{2n+1}) = G(Hx_{2n+1})$$

for $n = 0, 1, 2, \dots$. Letting n tend to infinity, we have

$$Fu = Gu = Hu$$

and then

$$(13) \quad \begin{aligned} G(Gu) &= G(Fu) = F(Gu) = F(Fu) = F(Hu) \\ &= G(Hu) = H(Gu) = H(Hu). \end{aligned}$$

Now if $Fu \neq H(Fu)$, then by (4), (12) and (13) we have

$$\begin{aligned} p\|Gu - G(Hu)\|^m + \|G(Hu) - H(Hu)\|^m &\ll q\|Gu - Fu\|^m, \\ p\|Fu - H(Fu)\|^m + \|G(Hu) - H(Fu)\|^m &\ll q\|Fu - Fu\|^m. \end{aligned}$$

Hence

$$(14) \quad Fu = H(Fu)$$

and by (4), (13) and (14), we have

$$Fu = H(Fu) = G(Fu) = F(Fu)$$

which implies that Fu is a common fixed point of F, G and H .

Now to prove the uniqueness. Suppose that u and v are two common fixed points of F, G and H in X . Then by (4), we have

$$\begin{aligned} p\|Gu - Gv\|^m + \|Gv - Hv\|^m &\ll q\|Gu - Fu\|^m \\ p\|u - v\|^m + \|v - u\|^m &\ll q\|u - u\|^m \end{aligned}$$

and so $\|u - v\|^m \ll 0$. This implies the uniqueness of the common fixed point of F, G and H .

We next investigate the solvability of certain non-linear functional equations in a Banach space over a topological semifield.

THEOREM 2. *Let X be a Banach space over a topological semifield E and let F, G and H be three continuous self-mappings on X satisfying conditions (2), (3), (4) and (5) of Theorem 1, let $\{g_{p'}\}$, $\{f_{p'}\}$ and $\{h_{p'}\}$ be sequences of elements in X and let $w_{p'}$ be the unique solution of the system of equations*

$$(15) \quad u - Gu = g_{p'}, \quad Gu - Fu = f_{p'}, \quad Gu - Hu = h_{p'}.$$

If $\lim_{p' \rightarrow \infty} \|g_{p'}\| = \lim_{p' \rightarrow \infty} \|f_{p'}\| = \lim_{p' \rightarrow \infty} \|h_{p'}\| = 0$, then the sequence $\{w_{p'}\}$ converges to the solution of the equations

$$u = Gu = Fu = Hu.$$

Proof. Suppose that $\|w_{p'} - Gw_{p'}\| \neq 0$, $\|Gw_{p'} - Fw_{p'}\| \neq 0$ and $\|Gw_{p'} - Hw_{p'}\| \neq 0$. Then by (4), we have for $p' > q'$,

$$\begin{aligned} \|w_{p'} - w_{q'}\| &\ll \|w_{p'} - Gw_{p'}\| + \|Gw_{p'} - Gw_{q'}\| + \|Gw_{q'} - w_{q'}\| \\ &\ll \|g_{p'}\| + p^{-1}[q\|Gw_{p'} - Fw_{p'}\|^m \\ &\quad - \|Gw_{q'} - Hw_{q'}\|^m]^{1/m} + \|g_{q'}\| \\ &= \|g_{p'}\| + p^{-1}[q\|f_{p'}\|^m - \|h_{q'}\|^m]^{1/m} + \|g_{q'}\|. \end{aligned}$$

Letting p', q' tend to infinity, it follows that $\|w_{p'} - w_{q'}\| \rightarrow 0$, which implies that $\{w_{p'}\}$ is a Cauchy sequence in X . Since X is complete, it then follows that the sequence $\{w_{p'}\}$ converges to a point w in X .

Since F, G and H are continuous, it follows from (15) that

$$\|w - Gw\| = \lim_{p' \rightarrow \infty} \|w_{p'} - Gw_{p'}\| = \lim_{p' \rightarrow \infty} \|g_{p'}\| = 0,$$

$$\|Gw - Fw\| = \lim_{p' \rightarrow \infty} \|Gw_{p'} - Fw_{p'}\| = \lim_{p' \rightarrow \infty} \|f_{p'}\| = 0,$$

$$\|Gw - Hw\| = \lim_{p' \rightarrow \infty} \|Gw_{p'} - Hw_{p'}\| = \lim_{p' \rightarrow \infty} \|h_{p'}\| = 0.$$

This implies that $w = Gw = Fw = Hw$, completing the proof of the theorem.

We finally note that Theorem 1 and its proof may be modified for a Banach space over a real or complex field by replacing the symbol ' \ll ' with ' \leq ' throughout the text.

References

- [1] M. Antonovskii, V. Boltyanskii and T. Sarymsakov, *Topological semifields*, Izdat. Sam. GU, Tashkent, (1960).
- [2] M. Antonovskii, V. Boltyanskii and T. Sarymsakov, *Metric spaces over semifields*, Izdat. Sam. GU, Tashkent, (1961).
- [3] S. Kasahara, *On formulations of topological linear spaces by topological semifields*, Math. Japon., **19**(1974), 121-134.
- [4] Z.P. Mamuzić, *Some remarks on abstract distance in general topology*, Eleutheria, **2**(1979), 433-446.

H. K. Pathak and V. V. S. N. Lakshmi
DEPARTMENT OF MATHEMATICS
KALYAN MAHAVIDYALAYA
BHILAI NAGAR – 490 006 (MP), INDIA

Kenan Taş
DEPARTMENT OF MATHEMATICS
ABANT IZZET BAYSAL UNIVERSITY
BOLU, 14280, TURKEY

Brian Fisher
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF LEICESTER
LEICESTER, LE1 7RH, ENGLAND

Received August 12, 1997; revised version March 23, 1998.

