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POSITIVE SOLUTIONS OF A NONLINEAR 
INTEGRAL EQUATION FROM BIOMATHEMATICS 

Abstract. The aim of the present paper is to investigate the existence of positive 
continuous solutions of the nonlinear integral equation x(i) = \t_T f(s, x(s))ds, arising in 
infectious diseases. We give sufficient conditions ensuring the existence of positive periodic 
continuous solutions of this equation, provided that / is a continuous function periodic 
in the first argument. We also study the existence of positive continuous solutions of the 
initial value problem for the considered equation. 

1. Introduction 
In the present paper we deal with the delay nonlinear integral equation 

t 
(1.1) x(t) = 5 f(s,x(s))ds, 

t - T 

which can be interpreted as a model for the spread of certain infectious 
diseases with a contact rate that varies seasonally. In this equation x(t) is 
the proportion of infectives in a population at time t, r is the length of 
time an individual remains infectious, and f(t,x(t)) is the proportion of 
new infectives per unit time. 

This model was formulated and investigated for the first time by Cooke 
and Kaplan in [1]. They considered continuous functions / : Rx [0, oo[ —> R, 
f(t, 0) = 0 for all i 6 R, which generalize f(t,x) = a(i)x(l — x), where 
a(t) is the effective contact rate at time t. Obviously x(t) = 0 is a trivial 
solution of (1.1). To find conditions ensuring the existence of at least one 
positive continuous solution of Eq. (1.1) was the main purpose of numerous 
investigations. 
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Thus, in the papers [1], [2] and [7] there are given sufficient conditions for 
the existence of nontrivial periodic continuous solutions of (1.1), provided 
that / is periodic in the first argument, i. e. there exists a positive real 
number OJ such that 

fit + to,x) = fit, x) for all (t, x) 6 R x [0, oo[. 

The papers [4] and [5] deal with the initial value problem for Eq. (1.1). 
There are given conditions ensuring the existence of positive continuous 
solutions of (1.1) when we know the proportion <j>(t) of infectives in the 
population for t 6 [—r, 0], 

(1 .2) x(t) = <j>(t) for all t € [ - T , 0]. 

Clearly, in this case we must suppose that the function cf> satisfies the con-
dition 

o 
(1.3) ¿ ( 0 ) = \ f(s,cj>(s))ds. 

— T 

In the next two sections we shall establish two very general existence 
theorems from which several already known results can be derived. The first 
theorem gives conditions ensuring the existence of positive periodic contin-
uous solutions of Eq. (1.1) while the second one guarantees the existence of 
positive continuous solutions of (1.1) satisfying the condition (1.2). 

2. Positive periodic solutions of Eq. (1.1) 
In this section we establish sufficient conditions ensuring the existence of 

nontrivial positive periodic continuous solutions of (1.1). In order to simplify 
the formulation of the results, we shall use the following assumptions: 
(Ai) / : R x [0, oo[ —> R is a continuous function satisfying f(t, 0) — 0 for 

all t € R; 
(A2) there exists c e ]0,00] such that f(t, x) > 0 for all [t, x) € Mx ]0, c[; 
(A3) there exists u> > 0 such that 

f(t + u,x) = fit, x) for all (t, x) e R x [0, oo[; 

(A4) there exist a positive real number a < c and an integrable function 
b : [-T, u] —> R such that 

(2.1) f(t, x) > b(t) for all (í, x) G [ - r , u) x [a, c] 

and 

(2 .2) 
i 
J b(s)ds > a for all t € [0,w]; 

t - T 
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(A5) there exist a real number xq e [a,c] and an integrable function 
F : [—T,u\ x [a, xo] —> R such that F(t,-) is nondecreasing for all 
t e [—T, 

(2.3) / ( i , x) < F(t, x) for all (í, x) E [ - r , w] x [a, x0], 

and 
t 

(2.4) \ F{s, x0) ds < XQ for all t e [0, w]. 
t - T 

We are now in position to state the main result in this section. 

T H E O R E M 2 . 1 . If the assumptions (Ax)-(A5) are fulfilled, then Eq. (1.1) 
has at least one positive continuous solution x : K —> R with period u> and 
satisfying x(t) > a for all t G M. 

Proof . Let E be the Banach space consisting of all continuous (¿-periodic 
functions x : R —> R endowed with the norm 

||x|| = sup {|®(t)| | t e R} = sup {|x(<)| | t e [0,w]}, 

and let S be the subset of E defined by 

S := {x E E | Vt e [O.w] : a < x{t) < x 0 } . 

Obviously 5 is a bounded closed convex subset of E. 
Next we define the mapping A : S —* E by 

t 

Ax(t) := J f(s,x(s))ds. 
t - T 

It is immediately seen that A is correctly defined because the assumptions 
(Ai) and (A3) guarantee that Ax is a continuous w-periodic function for 
every x 6 S. Moreover, by using the well-known Arzelá-Ascoli theorem, it 
is easy to prove that A is completely continuous. 

We claim that A(S) C S. To see this, let x E S be arbitrarily chosen. 
Taking account of assumption (A4) we have 

t 
(2.5) Ax(t) > \ b(s) ds> a for all t 6 [0, w]. 

t - T 

On the other hand, (A5) ensures that 
t t 

(2.6) Ax(t)< j F(s,x(s))ds< J F(s,x0)ds <x0 for all t <E [0,w]. 
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Prom (2.5) and (2.6) it follows tha t Ax G S. Since x was arbitrarily chosen 
in 5 , we conclude tha t the inclusion A(S) C 5 holds. Now the conclusion of 
the theorem is a consequence of Schauder fixed point theorem. • 

Next we illustrate the applicability of Theorem 2.1 by deriving some 
already known results as its consequences. Let us list three more assumptions 
for convenience: 

(Ae) l i m s u p x _ > + 0 ( / ( i , x)/x) = oo(i) uniformly with respect to t G [0,w] 
and sup {a0(t) | t € [0,a>]} < 1 / r ; 

(A7) l i m s u p I _ > 0 0 ( / ( i , x ) / x ) = a ^ t ) uniformly with respect to t G [0,u;] 
and sup { ^ ( i ) | t G [0,w]} < 1 / r ; 

(Ag) there exists R > 0 such tha t f(t,x) < R/T for all (t, x) G [—r, u>] x 

COROLLARY 2.2 ([2, Theorem 1]). Suppose that the assumptions (AI)-(A4), 
(Aq) and (A7) are satisfied with c — 00 in (A2). Then Eq. ( 1 . 1 ) has at least 
one positive continuous solution x : IR —> M with period u and satisfying 
x(t) > a for all t € M. 

P r o o f . The assumptions (Aq) and (A7) ensure (see [2]) the existence of real 
numbers /x > r and /3 > 0 such tha t 

Thus the assumption (A5) is also fulfilled if we define F : R x [0, oo[—> M by 
F(t, x) := j^x + /3, and choose xq G [o, 00[ such tha t 

Consequently, Theorem 2.1 can be applied. • 

COROLLARY 2.3 ([2, Theorem 2]). Suppose that the assumptions (Ai)-(A4) 
and (As) are satisfied with c — 00 in (A2). Then Eq. (1.1) has at least 
one positive continuous solution x : R —» R with period u> and satisfying 
a < x(t) < R for all t € R. 

P r o o f . The assumption (Ag) ensures the validity of (A5) if we put F(t, x) := 
^ and xq R, and Theorem 2.1 applies. • 

REMARK. For examples of functions satisfying the assumptions in Corollary 
2.2 and Corollary 2.3 the reader is referred to [2]. 

We end this section with an application of Theorem 2.1 to the func-
tion f(t,x) — a(t)x(l — x) f rom which have s tar ted all the investigations 
concerning Eq. (1.1). 

[0 ,R]. 

f(t,x) <-x + 0 for all (t, x) G R x [0, oo[. 
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COROLLARY 2.4. Let us be a positive real number, leta:M.—+Rbea positive 
us -periodic continuous function such that 

t 

1 < J a(s)ds< 4 for all t G [0, w], 
t - T 

and let f : R2 —> R be the function defined by f(t, x) := a(t)x( 1 — x). Then 
Eq. (1.1) /ias at least one us-periodic continuous solution x : R —• R such 
that 0 < x(t) < 1 for all t € R. 

P r o o f . Put 

01 := min { l - T j | te [O.wjl 
I- \t_Ta{s)ds J 

02 := max I t J a(s) ds \ t £ [ 0 , w\ 1 
^ t - T ' 

a :— min {oi, 1 — 02}. 

It is immediately seen that 0 < a < | and o = | iff 

t 
\ a(s) ds — 2 for all t 6 [0, o>]. 

t - T 

If the above relation holds, then x(t) = \ is a positive w-periodic continuous 
solution of (1.1). 

Suppose next that 0 < a < Define the functions b : R —> R and 
F : R2 -» R by 

b(t) •- o(l - a)a(t) 
and 

F(t,x) :=\a(t), 

respectively. Then it is easy to check that all the assumptions (AI)-(A5) 
are satisfied if we set c 1 — a and xo := 1 — o. Therefore Theorem 2.1 
applies. • 

R E M A R K . It should be emphasized that none of the theorems given in [2] or 
[7] can be applied in the conditions of the above corollary. 

3. Positive solutions of the initial value problem (1.1)—(1.2) 
Our main purpose in this section is to establish a general existence the-

orem for the initial value problem (1.1)—(1.2). From this theorem we shall 
derive the main result from [4]. It should be mentioned that our approach 
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is based 011 the Schauder fixed point theorem instead of the transversality 
theorem used in [4]. 

To simplify the formulation of the results in this section, we shall use 
the following assumptions: 

(Bi) / : [—r, oo[x[0, oo[ —> [0, oo[ is a continuous function; 
(B2) o is a positive real number; 
(B3) 4> : [—r, 0] —> [a, 00[ is a continuous function satisfying the condition 

(1.3); 
(B4) there exists a locally integrable function b : [—r, oo[—> 1R such that 

(3.1) / ( i , x) > b(t) for all (t, x) G [~r, oo[x [a, oo[ 

and 
t 

(3.2) j 6(s) ds>a for all t > 0; 
t - T 

(B5) there exists a continuous function F : [0, oo[x[a, oo[ —> ]R such that 
F(t, •) is nondecreasing for all t G [0, oo[ and 

(3.3) f(t, x) < F(t, x) for all (í, x) G [0, oo[ x [a, oo[. 

THEOREM 3.1. Suppose that the assumptions (Bi)-(B5) are satisfied, and 
that [0,i0[ with. 0 < t0 < 00 is the maximal interval on which the Cauchy 
problem 

, , ¡y'(t) = F(t,y(t)) 
{ ' } \ I/C0) = 0(0) -H 1 

has a solution. Then Eq. (1.1) has at least one continuous solution x : 
[—7-, ^o[ -> K which satisfies the condition (1.2) and such that x(t) > a for 
all t G [—r, to[. 

P r o o f . Let ( i n ) n >i be an increasing sequence of real numbers lying in 
]0, io[ which converges to io- We set T := [—r, to[ and Tn := [—r, tn] for each 
positive integer n. It is well-known that E := C(T) is a complete locally 
convex space with respect to the compact convergence topology generated 
by the family {pn \ n G N} of semi-norms pn : E —> 1R defined by 

pn(x) := sup {|x(¿)| I t G Tn}. 

Moreover, the family B := {Br^n \ r > 0, n G N} of balls 

Br,n :={xeE I pn(x) < r} 

is a neighbourhood-base at the origin of E with respect to this topology. 
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Let yo : [0, io[—* R be a solution of the Cauchy problem (3.4). We shall 
prove that 

( 3 . 5 ) Vo(t)>a for all t G [0, tot-

Indeed., J/o(0) = (f)(0) + 1 > a. If we suppose that the relation (3.5) doesn't 
hold, then there exists t* G ]0,io[ such that yo(t*) = a and yo(t) > o, for all 
t G [0, t*[. Taking into account the assumption (B5) we have 

y'0(t) = F(t,y0(t)) > f(t,y0(t)) > 0 for a l l t G [0,t*], 

hence yo is nondecreasing on [0, t*]. Consequently, we get a = yo(t*) > 

j/o(0), which is a contradiction. This contradiction shows that (3.5) holds as 
claimed. 

Let S be the set of all functions x G E such that x(t) = <p(t) for all 
t G [—r, 0] and a < x(t) < yo(t) for all t G [0, io[- Obviously S is a nonempty 
closed convex subset of E . 

Next we define the mapping A : S —> E by 

A m - / ^ i f i £ [ " T ' 0 ] Ax[t) | ^ / ( S ; a ( a ) ) d s , i t e [ 0 ; io[ 

It is immediately seen that for each x G S the function Ax is continuous. So 
the mapping A is correctly defined. 

Next we prove that A(S) C S. Indeed, let x G S be arbitrarily chosen. 
Taking into account the definition (3.6) of A, we need only to prove that 

(3.7) a < Ax(t) < y0(t) for all t G [0, i 0[ . 

From the assumptions (B3) and (B4) it follows that 
t t 

Ax(t) — J f(s,x(s))ds> J b(s)ds>a 
t-T t-T 

for all t G [0,io[- On the other hand, taking account of assumption (B5) we 
get 

(Ax)'(t) = f { t , x(t)) - fit - r , x(t - t)) < f i t , x(t)) < 

< F(t,x(t)) < F(t,yo(t)) 

for all t G [0,io[. Therefore 
t 

Ax(t) - A E ( 0 ) < J F(s, yo(s)) ds = yo(t) - y0(0) for al l t G [0, t0[. 

0 
Since Ax(0) = 0(0) and y0(0) = 0(0) + 1, we get 

Axit) < y 0 i t ) ~ 1 < yo(t) for all t G [0, i 0 [ -
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Therefore the relation (3.7) holds. From this relation we conclude that 
A(S) C S. 

In the sequel we shall prove that the mapping A is continuous at each 
point xeS.To see this, let V := Ax + Br>n (r > 0, n G N) be a neighbour-
hood of Ax in E. Put 

Mn := sup {y0(i) I t G [0,i„]}. 

Since / is continuous on the compact set [0,in] x [a,Mn], there exists a 
number q > 0 such that 

\f(s,u)-f(s,v)\ < 
I n 

for all s G [0,tn] and all u, v € [a,Mn] with |u — < q. Then U := (x + 
Bq,n) H S is a neighbourhood of x such that 
(3.8) AzeV for all z£U. 
Indeed, if z is any element in U, then z — x G -Bg,n, whence 

t t 

| Ax(t) - Az(t)| < IJ f(s, x(s)) ds - J f(s, z(s)) ds 
0 0 

t„ 

< S \f(s,x(s))- f(s,z(s))\ds<r, 
0 

for all t € [0, tn}. Moreover \Ax(t) - Az(t)\ = 0 for all t G [ - r , 0]. Hence the 
relation (3.8) holds. Consequently, A is continuous at x as claimed. 

Finally, we establish the relative compactness of the image A(S) in E. 
The image A(S) is equibounded because if t G [—r, 0], then 

Ax(t) = <j>{t) for all x G S, 
while if t G [0,io[, then 

a < Ax(t) < y0(t) for all x G S. 
The image A(S) is equicontinuous because for every x G S and every 

t, t' G [0, r] with t <t' we have 
t' t ' - T 

\Axtf)-Ax(t)\ = \\f(sM*))d*~ \ f(s,<l>{s))ds 
t t - T 

t' t ' - T 

< \ F(s,x(s))ds+ \ f(s,<j)(s))ds 
t t - T 

t' t ' - T 

<\F(s,yQ(s))ds+ j f(s,<t>(s))ds 
t t - T 
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t'-T 

= yo(i') - yo(t) + J f(s,<j>(s))ds, 
t-T 

while for every x € S and every t, t' € ]r, to[ with t < t' we have 
t' t'-T 

\Ax(t') - Ax(t)\ = | \f(s,x(s))ds- \ f(s,x(s))ds 
t t-T 

t' t'-T 

< \ F(s,x(s))ds+ \ F(s,x(s))ds 
t t-T 

t' t'-T 

<\F(s,y0(s))ds+ \ F(s,y0(s))ds 
t t-T 

= yo(t') - y0(t) + y0{t' - r ) - y0{t - r). 
Now the well-known theorem of Ascoli ensures the relative compactness of 
A(S) in E. 

Since all the conditions of Schauder's fixed point theorem ([3], [6]) are 
satisfied, we conclude that A has at least one fixed point in S. This completes 
the proof. • 
COROLLARY 3 . 2 ([4, Theorem 1]). Suppose that the assumptions (Bi)-(B4) 
are fulfilled and that there exist the continuous functions g : [0, oo[ —> [0, oo[ 
and h.: [a, oo[ —+ ]0, oof satisfying the following conditions: 

(i) h is nondecreasing; 
(ii) f(t,x) < g(t)h(x) for all (t,x) e [0,oo[x[a, oo[. 

If to G ]0,oo] is defined by 

f t °° 1 1 t0 := s u p j i e ]0,oo[ | \ g(u)du < \ j ^ d u j , 

then Eq. (1.1) has at least one continuous solution x : [—r, io[ —* K- which 
satisfies the condition (1.2) and such that x(t) > a for all t € [—r, ¿o[-

P r o o f . It is immediately seen that our assumption (B5) is satisfied if we 
define F : [0,oo[ x [a, oof —> R by F(t, x) := g(t)h(x). Put a 0 := 0(0) + 1. 
Then the Cauchy problem (3.4) has the solution yo : [0, ¿o[ Vo{t) '•= 
H~1(G(t)), where G : [0,oo[—> R and H : [oo,oo[ —> R are the functions 
defined by 

t 1 1 
G(t) := \ g(u) du and H(x) := \ —— du, 

x h(u) 0 ao 
respectively. Now the conclusion follows from Theorem 3.1. • 
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