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POSITIVE SOLUTIONS OF A NONLINEAR
INTEGRAL EQUATION FROM BIOMATHEMATICS

Abstract. The aim of the present paper is to investigate the existence of positive
continuous solutions of the nonlinear integral equation z(t) = S:_T f(s,z(s))ds, arising in
infectious diseases. We give sufficient conditions ensuring the existence of positive periodic
continuous solutions of this equation, provided that f is a continuous function periodic
in the first argument. We also study the existence of positive continuous solutions of the
initial value problem for the considered equation.

1. Introduction
In the present paper we deal with the delay nonlinear integral equation

t
(1.1) z(t)= | f(s,2(s))ds,
t—7

which can be interpreted as a model for the spread of certain infectious
diseases with a contact rate that varies seasonally. In this equation z(t) is
the proportion of infectives in a population at time ¢, 7 is the length of
time an individual remains infectious, and f(t,x(t)) is the proportion of
new infectives per unit time.

This model was formulated and investigated for the first time by Cooke
and Kaplan in [1]. They considered continuous functions f : Rx [0, co[ — R,
f(t,0) = 0 for all ¢t € R, which generalize f(t,z) = a(t)z(l — z), where
a(t) is the effective contact rate at time ¢. Obviously z(t) = 0 is a trivial
solution of (1.1). To find conditions ensuring the existence of at least one
positive continuous solution of Eq. (1.1) was the main purpose of numerous
investigations.
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Thus, in the papers [1}, [2] and [7] there are given sufficient conditions for
the existence of nontrivial periodic continuous solutions of (1.1), provided
that f is periodic in the first argument, i. e. there exists a positive real
number w such that

ft+w,z) = f(t,z) forall ({,z) € R x [0,00].

The papers [4] and [5] deal with the initial value problem for Eq. (1.1).
There are given conditions ensuring the existence of positive continuous
solutions of (1.1) when we know the proportion ¢(¢) of infectives in the
population for ¢ € [—7,0],

(1.2) z(t) = ¢(t) forallt e [-1,0].

Clearly, in this case we must suppose that the function ¢ satisfies the con-
dition

0
(1.3) $(0) = | f(s,¢(s)) ds.

-T

In the next two sections we shall establish two very general existence

theorems from which several already known results can be derived. The first
theorem gives conditions ensuring the existence of positive periodic contin-
uous solutions of Eq. (1.1) while the second one guarantees the existence of
positive continuous solutions of (1.1) satisfying the condition (1.2).

2. Positive periodic solutions of Eq. (1.1)

In this section we establish sufficient conditions ensuring the existence of
nontrivial positive periodic continuous solutions of (1.1). In order to simplify
the formulation of the results, we shall use the following assumptions:

(A1) f:Rx][0,00] — Ris a continuous function satisfying f(¢,0) = 0 for
all t e R;

(Az) there exists ¢ € ]0, oo] such that f(¢,z) > 0 for all (¢,z) € Rx ]0,cf;

(Ag) there exists w > 0 such that

ft+w,z) = f(t,z) forall (¢,z) € R x [0,00];
(A4) there exist a positive real number a < ¢ and an integrable function
b:[~7,w] — R such that
(2.1) f(t,z) >b(t) forall (t,z) € [-7,w] X [a,]

and

¢
(2.2) S b(s)ds>a forallte [0,w];

t—r
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(As) there exist a real number zy € [a,c] and an integrable function
F : [-1,w] X [a,z9] — R such that F(¢,-) is nondecreasing for all
te[-rw,

(2.3) f(t,z) < F(t,z) forall (t,z) € [-7,w] X [a, Zg),

and

¢
(2.4) S F(s,z0)ds <z forallte[0,w].

t—1
We are now in position to state the main result in this section.

THEOREM 2.1. If the assumptions (Ay)—(As) are fulfilled, then Eq. (1.1)
has at least one positive continuous solution z : R — R with period w and
satisfying z(t) > a for allt € R.

Proof. Let E be the Banach space consisting of all continuous w-periodic
functions z : R — R endowed with the norm

lzll = sup {l=(t)| | t € R} = sup {|z(¢)| | £ € [0,w}},
and let S be the subset of F defined by
S:={zeFE|Vte[0,w]:a<Lz(t) <z0}
Obviously S is a bounded closed convex subset of E.

Next we define the mapping A : S — E by
t

Az(t) := S f(s,z(s))ds.
t—T1

It is immediately seen that A is correctly defined because the assumptions
(A1) and (Aj) guarantee that Az is a continuous w-periodic function for
every z € S. Moreover, by using the well-known Arzeld-Ascoli theorem, it
is easy to prove that A is completely continuous.

We claim that A(S) C S. To see this, let € S be arbitrarily chosen.
Taking account of assumption (A4) we have

t

(2.5) Az(t) > S b(s)ds >a forallte [0,w]
t—1
On the other hand, (As) ensures that
¢ t

(2.6) Az(t) < S F(s,z(s))ds < S F(s,z0)ds < z¢ forall t € [0,w].

t—71 t—71
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From (2.5) and (2.6) it follows that Az € S. Since = was arbitrarily chosen
in S, we conclude that the inclusion A(S) C S holds. Now the conclusion of
the theorem is a consequence of Schauder fixed point theorem. m

Next we illustrate the applicability of Theorem 2.1 by deriving some
already known results as its consequences. Let us list three more assumptions
for convenience:

(Ag) limsup,_, o(f(t,z)/z) = ao(t) uniformly with respect to t € [0,w]
and sup {ao(t) | t € [0,w]} < 1/7;

(A7)  limsup,_,(f(t,z)/z) = ax(t) uniformly with respect to ¢ € [0, w]
and sup {aw(t) | t € [0,w]} < 1/7;

(Ag)  there exists R > 0 such that f(¢,z) < R/7 for all (¢,z) € [-7,w] X
[0, R}.

COROLLARY 2.2 ([2, Theorem 1]). Suppose that the assumptions (Ay)—-(A4),

(Ag) and (A7) are satisfied with ¢ = co in (A2). Then Eq. (1.1) has at least

one positive continuous solution z : R — R with period w and satisfying
z(t) > a for allt € R.

Proof. The assumptions (Ag) and (A7) ensure (see [2]) the existence of real
numbers g > 7 and 8 > 0 such that
flt,z) < lm + 4 forall (¢t,z) € R x [0, 00[.
©

Thus the assumption (As) is also fulfilled if we define F : R x [0, oo[— R by
F(t,z):= %:c + B, and choose zg € [a, oo[ such that

1
T<—1:0 + ,3) < zg.
7
Consequently, Theorem 2.1 can be applied. m

COROLLARY 2.3 ([2, Theorem 2]). Suppose that the assumptions (A1)-(Ag)
and (Ag) are satisfied with ¢ = oo in (Ag). Then Eq. (1.1) has at least
one positive continuous solution = : R — R with period w and satisfying
a<z(t) <R forallt e R.

Proof. The assumption (Ag) ensures the validity of (As) if we put F(t, ) :=
% and zg := R, and Theorem 2.1 applies. m

REMARK. For examples of functions satisfying the assumptions in Corollary
2.2 and Corollary 2.3 the reader is referred to [2].

We end this section with an application of Theorem 2.1 to the func-
tion f(t,z) = a(t)z(1 — ) from which have started all the investigations
concerning Eq. (1.1).
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COROLLARY 2.4. Let w be a positive real number, let a : R — R be a positive
w-periodic continuous function such that
t
1< S a(s)ds <4 forallt e [0,w],
t—7

and let f : R? — R be the function defined by f(t,z) := a(t)z(l — z). Then
Eq. (1.1) has at least one w-periodic continuous solution z : R — R such
that 0 < z(t) < 1 for allt € R.

Proof. Put

a1 := min {1 —

1
[__a(s)ds ltelo w]}

a3 = max {% § a(s)ds|t€[0,w]}

t—71
a := min {a;,1 — as}.

It is immediately seen that 0 < a < % and a = § iff

t

S a(s)ds=2 forallte [0,w].

t—r
If the above relation holds, then z(t) = % is a positive w-periodic continuous
solution of (1.1).
Suppose next that 0 < a < % Define the functions b : R — R and
F:R?2 > Rby
b(t) := a(l — a)a(t)
and
1
F(t,z) = Za(t),

respectively. Then it is easy to check that all the assumptions (A;)-(As)
are satisfied if we set ¢ := 1 — @ and zg := 1 — a. Therefore Theorem 2.1
applies. m

REMARK. It should be emphasized that none of the theorems given in (2] or
[7] can be applied in the conditions of the above corollary.

3. Positive solutions of the initial value problem (1.1)—(1.2)

Our main purpose in this section is to establish a general existence the-
orem for the initial value problem (1.1)-(1.2). From this theorem we shall
derive the main result from [4]. It should be mentioned that our approach
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is based on the Schauder fixed point theorem instead of the transversality
theorem used in [4].

To simplify the formulation of the results in this section, we shall use
the following assumptions:

(B1)  f:[—T,00[%x[0,00[ — [0, 00] is a continuous function;

(B2) ais a positive real number;

(Bs) ¢ :[-7,0] - [a,o0[ is a continuous function satisfying the condition
(1.3);

(B4)  there exists a locally integrable function b : [-7, 0o[— R such that

(3.1) f(t,z) > b(t) forall (t,z) € [—7, 00[X][a, 0]
and
(3.2) § b(s)ds >a forallt>0;

(Bs)  there exists a continuous function F : [0, 00[x[a, 00[ — R such that
F(t,-) is nondecreasing for all ¢ € [0, co[ and

(3.3) ft,z) L F(t,z) forall (¢,z) € [0,00[ X [a, 00[.

THEOREM 3.1. Suppose that the assumptions (B1)—(Bs) are satisfied, and
that [0,to] with 0 < to < 0o is the mazimal interval on which the Cauchy
problem

"(t) = F(t,y(t
(3.4) y'(t) = F(t, (1))
y(0) =4(0) +1
has a solution. Then Eq. (1.1) has at least one continuous solution z :

[—7,to[ = R which satisfies the condition (1.2) and such that z(t) > a for
allt € [—7,1q].

Proof. Let (t,)n>1 be an increasing sequence of real numbers lying in
]0, to[ which converges to tg. We set T' := [—7, to[ and Ty, := [—7, t,] for each
positive integer n. It is well-known that E := C(T) is a complete locally
convex space with respect to the compact convergence topology generated
by the family {p, | n € N} of semi-norms p,, : E — R defined by

Pn(z) :=sup {|z(t)| | ¢t € Tn}.
Moreover, the family B := {B,, | r > 0,n € N} of balls
B, :={z € E|pu(z)<r}
is a neighbourhood-base at the origin of E with respect to this topology.
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Let yo : [0,%9[— R be a solution of the Cauchy problem (3.4). We shall
prove that

(3.5) yo(t) >a forallt e [0,to].

Indeed, yo(0) = ¢(0) + 1 > a. If we suppose that the relation (3.5) doesn’t
hold, then there exists t* € |0, o[ such that yo(t*) = a and yo(t) > a for all
t € [0,t*[. Taking into account the assumption (Bs) we have

yo(t) = F(t,yo(t)) = f(t,yo(t)) >0 forall t € [0,¢],

hence yo is nondecreasing on [0,t*]. Consequently, we get a = yo(t*) >
yo0(0), which is a contradiction. This contradiction shows that (3.5) holds as
claimed.

Let S be the set of all functions z € E such that z(t) = ¢(¢) for all
t € [-7,0] and a < z(t) < yo(t) for all t € [0, ¢o[. Obviously S is a nonempty
closed convex subset of E.

Next we define the mapping A: S — E by
. o(t) ift € [-7,0]
(3.6) Az(t) = { I f(s,z(s))ds ifte [0,

It is immediately seen that for each z € S the function Az is continuous. So
the mapping A is correctly defined.

Next we prove that A(S) C S. Indeed, let £ € S be arbitrarily chosen.
Taking into account the definition (3.6) of A, we need only to prove that

(3.7 a < Az(t) < yo(t) forallte [0,%].
From the assumptions (B3) and (By) it follows that
¢ t
Az(t) = S f(s,z(s))ds > S b(s)ds > a
t—T1 t—T

for all ¢ € [0, ¢o[. On the other hand, taking account of assumption (Bj) we
get

(Az)'(t) = f(t,z(t)) - f(t — T, 2(t — 7)) < f(t,2(t)) <
< F(t,z(t) < F(t,yo(t))
for all ¢t € [0, tg[. Therefore

Az(t) — Az(0) < | F(s,y0(s)) ds = yo(t) ~ o(0) for all £ € [0, o].
0

Since Az(0) = ¢(0) and yo(0) = #(0) + 1, we get
Az(t) < yo(t) — 1 < yo(t) forallte [0,z
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Therefore the relation (3.7) holds. From this relation we conclude that
A(S)CS.

In the sequel we shall prove that the mapping A is continuous at each
point z € S. To see this, let V := Az + B,.,, (r > 0,n € N) be a neighbour-
hood of Az in E. Put

M, :=sup {yo(t) | t € [0,%a]}.

Since f is continuous on the compact set [0,,] X [a, My], there exists a
number g > 0 such that

T
|f(s,u) - f(sav)l < t_

for all s € [0,t,] and all u,v € [a, M,,] with |u —v| < g¢. Then U := (z +

Bg,n) NS is a neighbourhood of z such that

(3.8) AzeV forallzeU.

Indeed, if 2 is any element in U, then z — z € By, whence
t

|Az(t) — A2(t)] < | ] £(s,2(5)) ds = § £(s,2(5)) ds|
0 0

tn

< §1£(s,2(s)) = f(s,2(5))| ds <,

0

for all t € [0,t,). Moreover |Az(t) — Az(t)| = 0 for all ¢t € [—7,0]. Hence the
relation (3.8) holds. Consequently, A is continuous at z as claimed.

Finally, we establish the relative compactness of the image A(S) in E.

The image A(S) is equibounded because if ¢ € [—7, 0], then

Az(t) = ¢(t) forallz e S,
while if ¢ € [0, o[, then
a < Az(t) < yo(t) forallzeS.

The image A(S) is equicontinuous because for every z € S and every
t,t’' € [0,7] with t <t we have

|Aa:(t')—A:v(t)|=|Sf(s,m(s))ds— | 7(s.6(s))ds
< SF(s,:c(s))ds+ S— f(s,9(s))ds

< F(s,90(s))ds+ | f(s,0(s))ds

t—T1

o
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t'—r
=wo(t) —wo(t)+ | f(s,6(s))ds,
t—7
while for every = € S and every t,t' € |7, to[ with ¢t < t’ we have
t' t'—r
|4z (t') - As()] = | | £(s,3())ds = | f(s,a(s))ds
t t—7
t' t -7
< S F(s,z(s))ds+ S F(s,z(s))ds
t t—1
t I
<\ F(s,yo(s))ds + S F(s,yo(s))ds
t t—71

= yo(t') — yo(t) + yo(t' — 7) — yo(t — 7).
Now the well-known theorem of Ascoli ensures the relative compactness of
A(S)in E.
Since all the conditions of Schauder’s fixed point theorem ([3], [6]) are
satisfied, we conclude that A has at least one fixed point in S. This completes
the proof. m

COROLLARY 3.2 ([4, Theorem 1]). Suppose that the assumptions (B1)-(B4)
are fulfilled and that there exist the continuous functions g : [0, co[ — [0, 00|
and h: [a,00[ — |0, 00| satisfying the following conditions:

(i) h is nondecreasing;

(i) f(t.2) < g(®)h(z) for all (t,) € [0, 00[x[a, oo,
If tp € ]0,00] is defined by

t [o o)

1
to := sup {t €10, 00[ | (S)g(u) du < ‘S) Wdu},
then Eq. (1.1) has at least one continuous solution z : [—7,ty] — R which

satisfies the condition (1.2) and such that z(t) > a for all t € [T, 1]

Proof. It is immediately seen that our assumption (Bs) is satisfied if we
define F : [0,00[ x [a,00] — R by F(t,z) := g(t)h(z). Put ag := ¢(0) + 1.
Then the Cauchy problem (3.4) has the solution yg : [0,t0] — R, yo(t) :=
H~Y(G(t)), where G : [0,00[— R and H : [ag,00[ — R are the functions
defined by

t T 1
G(t) :=\g(u)du and H(z):=\ —=du,
jede o e

respectively. Now the conclusion follows from Theorem 3.1. m
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