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A VARIATIONAL CHARACTERIZATION
OF THE BEST APPROXIMATION ELEMENT

Abstract. A variational characterization for the best approximtion element from
linear subspaces in normed linear spaces is given.

1. Introduction

Let (X, ||-||) be a normed linear space and G a nondense linear subspace
in X. Suppose zg € X \ Cl(G) and go € G.

DEFINITION 1.1. The element go will be called the best approzimation ele-
ment of g in G if

1.1 - = inf -
(1.1) “370 gol| ;2c||m° gl

and we shall denote by Pg(zg) the set of all elements which satisfy (1.1).

The following classic characterization result due to I. Singer (see for
example 19, p. 16]) holds.

THEOREM 1.2. Let X,G,zo and go be as above. Then go € Pg(zo) if and
only if there exists a functional f € X* so that
Ifll =1, f(g) =0 for all g € G and f(zo — go) = [lzo — goll-

For some different consequences as well as for the geometrical interpre-
tation of this classic fact see [ 19, p. 16-26].

Another main result due to I. Singer is embodied in the next theorem
19, p. 57].

THEOREM 1.3. Let X,G,zq and go be as above. Then gy € Pa(zo) iff for
every g € G there exists a functional f9 € X* so that

fe € &(Bx-), Ref9(go—g) >0 and f9(zo — go) = ||Zo — o]
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where Bx- is the unit closed ball of dual space X* and E(Bx-) denotes the
set of all extremal points of Bx-.

For some interesting consequences of this theorem see [19, p. 52-63]
where more details are given.

Another characterization of the best approximation element in terms of
the tangent functional 1, i.e.,

(z,9) = lim (llz +ty| ~llz])/t; @y € X, 2#0

is embodied in the following theorem [19, p. 82]:

THEOREM 1.4. With the above assumptions, the following statements are
equivalent:

() g0 € Pa(zo);
(ii) One has

(20 — 90,9) 20 forall g € G,
(iii) We have the double inequality
—7(%o — g0, —9) <0< 7(xo — go,9) forallg € G,
(iv) For any g € G, there exists f9 € X* so that
I£°l=1, Ref9(g)=0 and [9(z0—go)= llzo— goll

In 1935, G. Birkhoff (see [19, p. 84]) introduced the following concept of
orthogonality in normed spaces

zly(B) iff |z+ay||>|z|| forallx€R,

which in the case of real prehilbertian spaces coincides with the usual or-
thogonality associated with the inner product.

By the use of Birkhoff’s orthogonality, the following characterization of
best approximation elements holds.

LEMMA 1.5. Let X be a normed space, G its nondense linear subspace,
zg € X \ CiG) and g9 € G. Then gy € Pa(zo) iff zo — g0 L G(B), i.e.,
xo—goL g forallgeG.

For other results in connection with best approximation element see the
monograph [19] as well as the recent papers [6], (7], [11] and [12].

2. An interpolating theorem
Let (X,]]-]|) be a normed space. The mapping f : X — R given by
f(z) = %||z||? is convex on X and thus there exist the following limits (see
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also [6] and [12]):

@ v =, lim (ly+ 1ol ~ Iol?)/2, sy e X.
The mapping (-,-)is) will be called the inferior (superior) semi-inner
product associated with the norm || - ||.

The semi-inner product (-, -);,) has the following properties:
(i) (z,z)p = ||z||? for all z € X
(i) (az, By)p = af (z,y)p if af > 0 and z,y € X;
(lll) (—m,y)p = —(I’y)q = (:Z:, —y)P for all z,y € X;
(iv) One has the inequality

(e +tyl® — llzl*)/2¢ 2 (y,2)s 2 (3, 2)i 2 (llz + 29]|* - ||z]|*)/22

forallz,y€ X and 2 < 0 < ¢;
(v) The following Schwarz’s inequality holds

[(z,)pl < llz|llyl] for all z,y € X;

(vi) The mapping (-, ")) is sub(super)-additive in the first variable;
(vii) (az +y,z)p = a ||z||> + (y,2)p for all @ € R and z,y € X;
(viil) One has the inequality

|(y + Z,.’L‘)p - (Z,IL')pi < ”y” “.’I)” for all T,Y,z € X;
(ix) We have

z L (az+y)(B) if and only if (y,2); < —alz|? < (y,2),

wherea € Rand z,y € X and z L y (B) iff (y,2); <0< (y,2)s;

(x) The norm || - || is Gateaux differentiable in y € X \{0}, i.e., the
space X is smooth in y iff (z,y); = (z,y)s for all z € X or, iff the mapping
(,9)p is linear on X;

where p, g € {s,i} and p # ¢.

Below we present certain characterization of best approximation element.
This characterization gives us a possibility of ”interpolation” (estimation)
of the bounded linear functionals on real normed spaces (compare with [6]):

THEOREM 2.1. Let (X, || - ||) be a real normed space and G its closed linear
subspace with G # X and 2o € X \ G, go € G. The following statements are
equivalent:

(i) go € Pa(zo);
(ii) For every f € (G®Sp(zg))* with Ker(f) = G, we have the estimation
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(2.1) N flle., (=, do(zo — g0)/ 1o — goll)i < f(z)
< | flle., (2, Ao(zo — g0)/lIzo — goll)s

for all z € Gz, := G @ Sp(wo), where ||fllg,, := sup{[f(@)|/|Iz|, z € Gz, }
and Ag := sgn f(zo).

Proof. We need the following lemma which is interesting by itself (see also
[6)).

LEMMA 2.2. Let (X, || - ||) be as above f € X*\ {0}, zo € X \ Ker(f) and
go € Ker(f). The following sentences are equivalent:

(1) go € PKer(f)(mO);

(ii) One has the estimation:
(2.2) lIfli(z; do(zo—g0)/llzo—goll): < f(z) < || fll(z, Ao(zo—g0)/llzo—go0ll)s
Jor allz € X and A := sgn f(zg).

Proof. (i)=(ii)”. Take go € Pker(s)(To) and denote by wo := zo — go. Then
wp # 0 and by Lemma 1.5 we deduce that wg L Ker(f)(B). Using the
property (iz) of the s.i.p. (-, -);(s) we have (y,wp); < 0 < (y,wp)s for every
y € Ker(f).

Fix £ € X. Then the element y := f(z)wy — f(wg)z belongs to Ker(f),
and by the above inequality, we deduce that
(2.3) (f(z)wo = f(wo)z, wo)i <0 < (f(z)wo — f(wo)z, wo)s
forallz € X.
Using the properties of (-,-); and (-,-)s one has
(f(z)wo — f(wo)z, wo)p = f(2)llwoll® + (—f(wo)z, wo)p, «€X.

where p=sorp=1.
On the other hand, since wy L Ker(f)(B) and wg # 0, hence f(wg) # 0.
Thus we have to consider two cases: a) f(wg) > 0 and b) f(wg) < 0.

a) If f(wp) > 0, then by (2.3) we have successively that
0 < f(@)llwoll® + (= f(wo)z,wo)s = f(z)lwl? + f(wo)(~2,wo)s
= f(@)llwoll® + (—, f(wo)wo)s = f()llwoll* — (z, f(wo)wo):-

Therefore

f(z) > (z ,fﬁwﬂlz ) forallz e X.

Similarly, by (2.3), we deduce that

0> f(z)llwoll® + (= f(wo)z, wo): = f()l|woll* — (2, f(wo)wo)s



Variational characterization of the best approzimation element 121

which implies

(2.4) flz) < (x, f|(|:0)”1:0> for all z € X.
0 s

b) Notice that for every y,z € X we have

_(y’ z)‘i = (_y’z)s = (—ya _(_z))s = (y> _Z)s
and thus,
0 < f(@)llwoll® + (= f(wo)z, wo)s = f(@)llwoll® + (- F(wo))(z, wo)s
= f(@)l|lwoll* + (2, (= f(wo))wo)s = f(z)llwoll* — (z, f (wo)wo):

which shows that the inequality (2.4) holds. Similarly, we have that (2.4')
is also valid for f(wp) < 0. Consequently, in both cases we can state

(2.5) ( f (“’0)"”0) < f@)< (.TM) for all z € X.

llwol|? llwoll?

Now, let u : L(lw—°)n’-§'2 Then by (2.5) we have

Tw
flz) < (z,u)s < ||z||||ul| forallze X
and
f(z) > (z,u); = —(z, —u)s > —||z||||ul] forallze X.
The latter implies that

el <22 < foranzex

]l —
ie., [IFll < llu].
On the other hand, we have
Fu) o (u,u);

flz2552

W12 Tt = Ty =1
what shows that ||f|| = ||u|| = LII{%IM But f(wp) = f(zo) and then

| (o)l f(zo)do .
= = y Le., f(zg)=A Zo —
”f” ”mo_gO” “zo—gon f( 0) OHf”” 0 90“

which implies, by (2.5), that the estimation (2.2) holds.
(i1)=(i) Suppose that (2.2) holds for all z € X. Then we get

(2, do(zo — go)/l|Zo — goll}s <0 < (=, Xo(zo — g0)/llz0 — goll)s
for all z € Ker(f), what gives, by (ix), that
Mo(Zo — 90)/llzo — goll L Ker(f)(B).
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If Ao > 0, then, obviously, by the above relation we get that (zg — go) L
Ker(f)(B), and, by Lemma 1.5, we conclude that go € Pker(s) (o).

If Ap < 0, then also —(zg—go) L Ker(f)(B) or (zg—go) L (— Ker(f))(B)
and since — Ker(f) = Ker(f), we obtain that go € Pxer(s)(%0), and the proof
of the lemma is completed.

Now, the proof of the theorem follows by the above lemma applied to
the normed linear space G, where G is a hyperplane.

The following corollary is important as it gives a criterion of represen-
tation for the continuous linear functionals in terms of semi-inner products

(5 *)ics)-
COROLLARY 2.3. With the above assumptions and if g — go is a point of

smoothness of the normed space X, then go € Pg(zo) if and only if for every
f € G}, with Ker(f) = G, one has the representation

f(@) = [ flle., (2 Ao(zo — g0)/llzo — goll)p  for all z € Gz, p € {s,1}.

3. A variational characterization
The following theorem contains a variational characterization of best
approximation element.

THEOREM 3.1. Let (X, |- ||) be a real normed space and G a closed linear
subspace in X with G # X andzg € X\G, go € G. The following statements
are equivalent:

(i) g0 € Pe(o);
(ii) For every f € G} with Ker(f) = G, the element
up = f(2o)(o ~ 90)/lZ0 — gol|®

minimizes the quadratic functional Fy : G,, — R given by Fy(z) = ||z||® -
2f(x).

To prove this theorem, we need the following lemma which is also inter-
esting by itself.

LeMMA 3.2. Let (X, || -]|) be a real normed space, f € X* \ {0} and w €
X \ {0}. The following statements are equivalent:

(i) One has the estimation
(3.1) (z,w); < f(z) < (z,w)s forallze X,
(i1) The element w minimizes the quadratic functional

F;: X - R, Fi(u) = ||ul® - 2f(u).
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Proof. (i)=(ii). If w satisfies the relation (3.1), then for £ = w we obtain

fw) = |lwl®.
Now, let v € X. Then

Fy(u) = F(w) = flul* = 2f(u) - Jlwl|® + 2f(w)
= [lull® = 2£(u) + lwl|* 2 fjul® - 2(u, w)s + ||w]|?
> [lul® = 2llullllwll + llw]* = (full - [w]})* >0
which shows that w minimizes the functional F}.

(ii)=(i). If w minimizes the functional F, then for allu € X and A € R
we have:

F¢(w + Au) — Fy(w) > 0.
On the other hand, a simple calculation yields
Fy(w + M) = Fy(w) = [lw + Ml ~ wl® ~ 2Af ()
and thus we obtain
(3.2) 22 f(u) < Jlw + Xulf® - fJwl®
for all u € X and A € R. Assume that A > 0. Then by (3.2) we have:

2 _ 2
< APl

Passing A — 0+ then f(u) < (u,w), for all u € X.

Putting (—u) instead of u we get f(u) > —(—u,w)s; = (u,w); for all
u € X, and the lemma is thus proved.

The above lemma gives us the following criterion of representation for
the continuous linear functionals in normed linear spaces.

COROLLARY 3.2. Let (X, || - ||) be a real normed space and f € X*\ {0} ,
w € X \ {0}. Then w is a point of smoothness of X and it minimizes the
functional Fy if and only if one has the representation

f(z) = (z,w), forallzeX,
where p=s orp=1.

Proof of Theorem 3.1. (i)=(ii). If go € Pg(zo), then by Theorem 2.1.
we deduce that for every f € G, with Ker(f) = G one has the estimation
(2.1). If in this relation we put z = Ag(zo — go), a simple calculation gives
us

_ _f(=o)l
Il llzo — goll



124 S. S. Dragomir

and then (2.1) becomes
(z, f(@o)(zo — go)) < f(z) < (a:, f(zo)(zo — 90)) for all z € Ga,.

lzo — gol)? flzo — gol|?

1

Now if we apply Lemma 3.2 for uo = f(z0)(zo — g0)/||Zo — gol|? on the
space G, we conclude that up minimizes the quadratic functional Fy on
the space Gg,.

(ii)=>(i). If uo given above minimizes the functional F¢ on G,, then by
Lemma 3.2 we derive that the estimation (3.3) holds and, furthermore, the
interpolation (2.1) is valid. Thus, by Theorem 2.1, we get that go € Pg, and
the proof is completed.

4. Applications in the space C(D)
Let D be a compact Hansdorff set and C(D) the space of continuous
real-valued functions defined on D with the norm

17lleo = max|f(z)
Then for f,g € C(D), f # 0, we have (see e.g. [18]):
1 tlee = Sl

t—0t t
whete A= {z € D | |f(z)] = floo}-
First of all, let us observe that for all f, g € C(D) we get

lg +t£113, — llgll3

T+(f.9) = = max(g(z) sgn(g(z))]

(4.9)s = tE.%l+ 2t
= lgleo tim 12000 =Wl _ oy g, )

= llgllo max[f(z) sgn(g(z))]
where
B={z e D||g(z)| = llglloo}
and, obviously
(£,9) = ~(=1,9)s = ~llglloo max~(z) sgn(g(a))
= ll9llco min(f(z) sgn(g(x))]

for all f,g € C(D).
Now using Theorem 2.1 we can state the following characterization of
best approximation element in the space C(D).
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PROPOSITION 4.1. Let A be a linear space in C(D), fo € C(D)\ Cl(A) and
go € A. The following statements are equivalent:

(i) g0 € Pa(fo);
(i) For every bounded linear functional & defined on subspace Ay :=

A ® Sp(fo) with Ker(®) = A we have the estimation
12la :
— min f(z) sgnlAo(fo — go)]]

| fo — golleo z€C
<P(f) < lldsllAf" max|f(z) sgn[ro(fo — 90)]]
= ~ |Ifo — golleo z€C

for all f € Agy where

o= sgnld(foll, 181y, =swp{!T, 7 45\ (o)

and
C:={z € D||fo(z) — go(z)| = I fo — gollo }-

The following variational characterization of best approximation in C(D)
holds (see Theorem 3.1).

PROPOSITION 4.2. Let A be a linear subspace in C(D), fo € C(D)\ Cl(A)
and go € A. The following statements are equivalent:

(i) 90 € Pa(fo);
(i) For every @ a bounded linear functional on Ay, with Ker(®) = A the
element
ho := ®(f)(fo — 90)/ Il fo — ol%

minimizes the quadratic functional Fg : Ajy — R given by Fe(f) := || f||%, —
28(f).

5. Applications in the space L'(D, Y ,v)

Let D be a set, ) a o-field of subsets of D and v a positive measure on
3. By LY(D, Y ,v) we mean the usual space of real-valued v-measurable
functions f defined on D for which |f| is v-measurable, and

£l = § I£]dv.

D
For f € LY(D,Y,v), let
Z(f) =A{z| f(z) = 0}.
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Then Z(f) is v-measurable and for all f,g € L(D, Y., v), f # 0 we have
(see e.g. [18]) that

m+(f,9)= g -(sgnflav+ | |gldv.
D 2(

Now, let us observe that for all f,g € L'(D,>_,v) we have

(f,9)s = lgllim+(£, 9)

=llglla § f - (sgng)dv + gl | If1dv
D Z(g)

and
(f,9)i=—(=f,9)s = llglL | £ - (seng)dv — llglls | [fldv.
D Z(9)

Using Theorem 2.1. we can state the following characterization of the
best approximation element in the space L*(D, Y, v)

PROPOSITION 5.1. Let A be a linear subspace in LY(D,Y,v), fo €
LY(D,Y.,v)\ Cl(A) and gy € A. The following statements are equivalent:

(i) go € Pa(fo);

(ii) For every & a bounded linear functional defined on subspace Az, :=
A @ Sp(fo) with Ker(®) = A we have the estimation

|14,
(5.1) 2| f-sen(Xo(fo—go))ldv — |Blla,, - | Ifldv
[1fo— gollx g
I2llas ¢, ~ _ ,
m_Whgnﬂfh@WM>mmw+Whmmiwvw

for all f € Ay, where

%=m@%%HM%=wm%%Lf€MAWH

and
Z(fo—g0) = {z € D | fo(z) = go(z)}

Finally, the following variational characterization of the best approxima-
tion element in L'(D, Y, v) holds:

PROPOSITION 5.2. Let A be a linear subspace in L*(D,Y,v), fo € C(D)\
Cl(A) and gy € A. The following statements are equivalent:

(i) 90 € Pa(fo);
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(ii) For every bounded linear functional @ on Ay, with Ker(®) = A, hg :=

®(fo)(fo — 90)/ |l fo — gol|? minimizes the quadratic functional Fg : Agy — R
gwen by Fa(f) = || fll1 — 2&(f).

The proof follows by Theorem 3.1 applied to the space L1(D, Y, v). We

omit the details.

For other characterization of best approximation element in concrete

spaces see [1], [3], [14], [16-17] and [19], where further references are given.
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