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A VARIATIONAL C H A R A C T E R I Z A T I O N 
OF T H E B E S T A P P R O X I M A T I O N E L E M E N T 

Abstract. A variational characterization for the best approximtion element from 
linear subspaces in normed linear spaces is given. 

1. Introduction 
Let (X , || • ||) be a normed linear space and G a nondense linear subspace 

in X. Suppose xq E X \ Cl(G) and so G G. 

DEFINITION 1.1. The element SO will be called the best approximation ele-
ment of XQ in G if 

(1-1) Iko - soil = inf ||®o - sll 

and we shall denote by VG(XO) the set of all elements which satisfy (1.1). 

The following classic characterization result due to I. Singer (see for 
example [19, p. 16]) holds. 

THEOREM 1.2. Let X,G,xO and, go be as above. Then go £ VG{xO) if and 
only if there exists a functional f € X* so that 

11/11 = 1, / ( s ) = 0 for all geG and f(x0 - So) = ||®o - Soil-

For some different consequences as well as for the geometrical interpre-
tation of this classic fact see [ 19, p. 16-26] . 

Another main result due to I. Singer is embodied in the next theorem 
[19, p. 57], 

THEOREM 1.3. Let X,G,xO and go be as above. Then go € VG(xO) iff for 
every g € G there exists a functional f9 E X* so that 

f9 e £(BX.), R e / 5 ( s o - S ) > 0 and fO(x0 - So) = ||*o - Soil 
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where Bx* is the unit closed ball of dual space X* and S(Bx-) denotes the 
set of all extremal points of Bx* • 

For some interesting consequences of this theorem see [19, p. 52-63] 
where more details are given. 

Another characterization of the best approximation element in terms of 
the tangent functional T, i.e., 

r{x,y) := Um(||a: + iy|| - ||®||)/i; x,yeX, z^O 

is embodied in the following theorem [19, p. 82]: 

THEOREM 1.4. With the above assumptions, the following statements are 
equivalent: 

(i) 9o € VG(xO); 
(ii) One has 

T{X0 - go,g) > o for all g E G; 

(iii) We have the double inequality 

-T{Xo - go, -g) < o < r(x0 - go, g) for all g E G, 

(iv) For any g E G, there exists f9 E X* so that 

| | / 1 = 1, R E / » ( S ) = 0 and f9(x0-g0) = | | X 0 - f f 0 | | -
In 1935, G. Birkhoff (see [19, p. 84]) introduced the following concept of 

orthogonality in normed spaces 

i i y (B) iff ||x + ay\\ > ||x|| for all a € R, 

which in the case of real prehilbertian spaces coincides with the usual or-
thogonality associated with the inner product. 

By the use of Birkhoff's orthogonality, the following characterization of 
best approximation elements holds. 

LEMMA 1.5. Let X be a normed space, G its nondense linear subspace, 
x0 6 X \ CI(G) and g0 E G. Then g0 E VG(x0) i f f x0 - g0 ± G(B), i.e., 
xo — go ± g for all g E G. 

For other results in connection with best approximation element see the 
monograph [19] as well as the recent papers [6], [7], [11] and [12]. 

2. An interpolating theorem 
Let ( X , || • ||) be a normed space. The mapping / : X —> R given by 

f(x) = is convex on X and thus there exist the following limits (see 
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also [6] and [12]): 

(x,y)i(s) •= Um (||î/ + ix||2-||y||2)/2i, x,y e X. 
t-> o-(+) 

The mapping (•, -)i(s) will be called the inferior (superior) semi-inner 

product associated with the norm || • ||. 
The semi-inner product (•, -)i(s) has the following properties: 

( i ) ( x , x ) p = ||x||2 for all x G X; 

(ii) (ax, (3y)p = a/3 (x, y)p if a/3 > 0 and x, y G X\ 

(iii) {-x,y)p = ~(x,y)q = (x,-y)p for all x,y € X; 

( iv ) One has the inequality 

(||x + iy||2 - ||x||2)/2i > (y, x)s > (y, x){ > (||x + zy\\2 - \\x\\2)/2z 

for all x, y G X and z < 0 < t; 

( v ) The following Schwarz's inequality holds 

\(x,y)p\ < ||x|| ||y|| for all x,y € X; 

(v i ) The mapping (•, • ) s ^ is sub(super)-additive in the first variable; 
(vii) (ax + y, x)p = a ||x||2 + (y, x)p for all a G R and x, y G X\ 

(viii) One has the inequality 

|(y + z, x)p - (z, x)p\ < ||y|| ||x|| for all x,y,z€ X; 

( ix) We have 

x 1 (ax + y)(B) if and only if (y, x){ < -a||a;||2 < (y, x)s 

where a G R and x,y G X and x JL y ( B ) iff (y, x)i < 0 < (y, x ) s ; 

(x ) The norm || • || is Gâteaux differentiable in y G X \ {0 } , i.e., the 
space X is smooth in y iff (x,y)i — (x,y)s for all x G X or, iff the mapping 
(•,y)p is linear on X\ 
wjiere p, q G { s , i} and p ^ q. 

Below we present certain characterization of best approximation element. 
This characterization gives us a possibility of "interpolation" (estimation) 
of the bounded linear functional on real normed spaces (compare with [6]): 

THEOREM 2.1. Let (X, || • ||) be a real normed space and G its closed linear 

subspace with G ^ X and xo G X \ G, go G G. The following statements are 

equivalent: 

(i) 9o e VG(xO); 

(ii) For every f G (G©Sp(xo ) ) * with Ker (/ ) = G, we have the estimation 
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( 2 . 1 ) | | / | | G I O ( X , A 0 ( X 0
 -SO)/||®O -ffolDi < f(x) 

< I I / I I G X O ( X , A O ( X 0 -9O)/\\XO - S o i l ) . 

for all x € GXQ := G©Sp(x 0 ) , where \\f\\Gxo := sup{|/(x) | / | |x | | , x G GXO} 
and A0 := sgn f(x0). 

P r o o f . We need the following lemma which is interesting by itself (see also 
[6])-

LEMMA 2.2. Let (X, || • ||) be as above f G X* \ {0}, x0 € X \ Ker(/) and 
go G Ker(/). The following sentences are equivalent: 

(i) go e VKer{f){xo); 
(ii) One has the estimation-. 

( 2 . 2 ) | | / | | ( x , A o ( x o - 5 o ) / | | x o - S o | | ) i < / ( ® ) < l l / I K ® » A o ( ® o - 0 o ) / | | * o - 0 o | | ) . 

for all x € X and Ao := sgn/(xo). 

P r o o f . (i)=>(ii)". Take go G 'PKei(f)(xo) and denote by wo :— xo — go- Then 
Wo ^ 0 and by Lemma 1.5 we deduce that wo -L Ker(f)(B). Using the 
property (ix) of the s.i.p. (•,•)*(«) we have (y,wo)i < 0 < (y,wo)s for every 
y G Ker(/). 

Fix x e X. Then the element y := f{x)wo — f(wo)x belongs to Ker(/), 
and by the above inequality, we deduce that 

(2.3) (f(x)w0 - f(w0)x,w0)i < 0 < (/(x)w0 - f(wo)x,wo)s 

for all x G X. 
Using the properties of (•, )i and (•, -)s one has 

(f(x)w0 - f(wo)x,wo)p = /(x)| |w0 | |2 + (-f(wo)x,wo)p, x G X. 

where p = s or p = i. 
On the other hand, since WQ J_ K e r ( f ) ( B ) and WQ ^ 0, hence f(wo) 0. 

Thus we have to consider two cases: a) f(wo) > 0 and b) f(w0) < 0. 

a) If f(w0) > 0, then by (2.3) we have successively that 

0 < /(x)| |ty0 | |2 + (-f(w0)x,w0)s = f(x)\\w\\2 + f(w0)(-x,w0)s 

= /(z)l|™o||2 + ( x, f(w0)w0)s = /(x)| |w0 | |2 - (x, f(w0)w0)i. 

Therefore 

for all x £ X. 

Similarly, by (2.3), we deduce that 

0 > / ( x ) | | ^ o | | 2 + (-f(w0)x,w0)i = f{x)IKII2 - (x, f(w0)w0)s 
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which implies 

(2.4') / ( X ) < ( X | Z ^ ) for a l l * G X 

b) Notice that for every y, z E X we have 

- (y>* ) i = {~y,z)s = (-y,-(-z))s = (y,-z)„ 

and thus, 

o < f(x)\\wo\\2 + i-f(wo)x,wo). = / ( x ) I K I I 2 + {-f(w0))(x,w0)s 

= /0»0l|u>o||2 + (x, (-f(w0))w0)s = /(x)||u;o||2 - (x, f(w0)w0)i 
which shows that the inequality (2.4) holds. Similarly, we have that (2.4') 
is also valid for /(WQ) < 0. Consequently, in both cases we can state 

Now, let u : = . Then by (2.5) we have 

f(x) < (x,u)s < ||z||||u|| for all x 6 X 

and 

f(x) > (x,u)i = -(x,-u)s > -||x||||u|| for all x e X. 

The latter implies that 

-Hull < Ì ^ r < Hull for all x € X 

i.e., ||/|| < H|. 
On the other hand, we have 

> M > M = iid 
U u 

what shows that ||/|| = ||u|| = B u t = a n d t h e n 

11/11 = = = « « " - » « 

which implies, by (2.5), that the estimation (2.2) holds. 
(ii)=Ki) Suppose that (2.2) holds for all x E X. Then we get 

(x, A0(x0 - So)/||®o - Soil)» < 0 < (x, A0(x0 - So)/||xo - Soil)* 

for all x € Ker(/) , what gives, by (ix), that 

Ao(xo-So)/||xo-So|| l K e r ( / ) ( S ) . 



122 S. S. Dragomir 

If Ao > 0, then, obviously, by the above relation we get that (xq — go) _L 
K e r ( f ) ( B ) , and, by Lemma 1.5, we conclude that go E VKei(f)(xo)-

If A0 < 0, then also -(x0-g0) JL K e r ( / ) ( £ ) or (x0-g0) ± ( - K e r ( / ) ) ( £ ) 
and since — Ker ( / ) = Ker( / ) , we obtain that go G VKei(f)(xo)> a n d the proof 
of the lemma is completed. 

Now, the proof of the theorem follows by the above lemma applied to 
the normed linear space GXo where G is a hyperplane. 

The following corollary is important as it gives a criterion of represen-
tation for the continuous linear functionals in terms of semi-inner products 

COROLLARY 2.3. With the above assumptions and if xq — go is a point of 
smoothness of the normed space X, then go E Vg(x O) if and only if for every 
f E G*0 with Ker ( / ) = G, one has the representation 

/ ( Z ) = ||/||G«0(®,A0(SO -0O)/||®O -9O\\)P for all x G Gxo, p G { s , i } . 

3. A variational characterization 
The following theorem contains a variational characterization of best 

approximation element. 

THEOREM 3.1. Let (X, || • ||) be a real normed space and G a closed linear 
subspace in X with G ^ X and xq G X\G, go E G. The following statements 
are equivalent-. 

(i) 9o e Vg(xo); 
(ii) For every f G G*0 with Ker ( / ) = G, the element 

uo := f(xo)(xQ - go)/\\xQ - g0\\2 

minimizes the quadratic functional Ff : GXo —> R given by Ff(x) = ||x||2 — 
2 f{x). 

To prove this theorem, we need the following lemma which is also inter-
esting by itself. 

LEMMA 3.2. Let (X, || • ||) be a real normed space, f G X* \ { 0 } and w € 
X \ { 0 } . The following statements are equivalent: 

(i) One has the estimation 

(3.1) {x,w)i < fix) < {x,w)s forallxEX; 

(ii) The element w minimizes the quadratic functional 

Ff : X R, Ffiu):=\\u\\2-2fiu). 
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P r o o f . (i)=»(ii). If w satisfies the relation (3.1), then for x = w we obtain 
/ ( « , ) = |M|2. 

Now, let u G X. Then 

Ff(u) - Ff(w) = |M|2 - 2 f ( u ) - |M|2 + 2f(w) 

= IMI2 - 2f(u) + |M|2 > ||u||2 - 2{u,w)s + IMI2 

> IMI2 - 2IMIIMI + IMI2 = (IMI - IMI)2 > 0 

which shows that w minimizes the functional Ff. 
(ii)=i>(i). If w minimizes the functional F f , then for all u G X and A G R 

we have: 

Ff(w + Au) - Ff(w) > 0. 

On the other hand, a simple calculation yields 

Ff(w + Au) - Ff(w) - ||w + Ait||2 - ||u;||2 - 2A f (u) 

and thus we obtain 

(3.2) 2Xf(u) < + Au||2 — ||H|2 

for all u G X and A G R. Assume that A > 0. Then by (3.2) we have: 

I h + A l z f - H l 2 - y f[u) < — , uex. 

Passing A —• 0+ then f(u) < (u,w)s for all u € X. 
Putting (—u) instead of u we get f(u) > —(—u,w)s = (u,w)i for all 

u G X, and the lemma is thus proved. 
The above lemma gives us the following criterion of representation for 

the continuous linear functionals in normed linear spaces. 

COROLLARY 3.2. Let (X, || • ||) be a real normed space and f G X* \ {0 } , 
w G X \ {0 } . Then w is a point of smoothness of X and it minimizes the 
functional Ff if and only if one has the representation 

f(x) = (x, w)p for all x G X, 

where p = s or p = i. 

P r o o f of T h e o r e m 3.1. (i)=»(ii). If 9o € VG(x0), then by Theorem 2.1. 
we deduce that for every / G G*Xo with Ker(/) = G one has the estimation 
(2.1). If in this relation we put x = Ao(xo — go), a simple calculation gives 
us 

_ l/(*o)l 
G l ° 11*0-soil 
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and then (2.1) becomes 

/ ( « . ) ( « . - » n / / ( » . ) ( « . - « , ) j t o r a l l x e G 

' F o - 5 o l r ) i \ iFo -so l l 2 1 

Now if we apply Lemma 3.2 for uq = /(xo)(xo — ffoVll^o — Soil2 on the 
space GXo we conclude that uq minimizes the quadratic functional Ff on 
the space GXo. 

(ii)=»(i). If uq given above minimizes the functional Ff on GXo, then by 
Lemma 3.2 we derive that the estimation (3.3) holds and, furthermore, the 
interpolation (2.1) is valid. Thus, by Theorem 2.1, we get that go € Vg, and 
the proof is completed. 

4. Applications in the space C(D) 
Let D be a compact Hansdorff set and C(D) the space of continuous 

real-valued functions defined on D with the norm 

ll/lloo = rnax|/(x)|. 
x£D 

Then for f,g € C(D), / ^ 0, we have (see e.g. [18]): 

r + ( f , g ) := lim ^ + = max[9 (x) sgn(5 (x))] 
t-»o+ t xe a 

where A { x € D \\f(x)\ = H/H«,}. 
First of all, let us observe that for all f,gE C(D) we get 

\\g + tf\\? 
( f , g ) a - = lim 

loo iioo 
t—>0+ 21 

= llfflloo lim l l / + t g l l 7 " " - " 1 0 0 = \\9\\ooT+(gJ) 
t • 0 + u 

— I i/||oo max[/(x)sgn(s(x)) ] 

X^D 

where 

B = {x E D \ |<?(x)| = ||ff||oo} 

and, obviously 
( f , 9 ) i = ~ ( - f , 9 ) s = -|lsl l°°max[-/(x)sgn(9(x) ) ] 

= llsl|ooimn[/(®)sgn(5(x))] x£B 

for all f , g e C(D). 
Now using Theorem 2.1 we can state the following characterization of 

best approximation element in the space C(D). 
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PROPOSITION 4.1. Let A be a linear space in C(D), f0 E C(D) \ Cl(A) and 

go G A. The following statements are equivalent: 

(i) go e VA(fo); 

(ii) For every bounded linear functional $ defined on subspace Af0 :— 

A © Sp(/o) with Ker (^ ) = A we have the estimation 

min[/(x)sgn[A0 (/o-So) ] ] 
ll/o -Polloo 

for all f € Af0 where 

< * ( / ) < , , ; A \ max[/(x) sgn[A0(/o - go)]] 
IIXo - flolloo 

A 0 :=sgn [£ (/ 0 ) ] , \\*\\Afo := s u p { ^ , / e ^ \ { 0 } } 

and 

C : = { x e D | |/0(x) - = ll/o - Solloc}. 

The following variational characterization of best approximation in C(D) 

holds (see Theorem 3.1). 

PROPOSITION 4.2. Let A be a linear subspace in C(D), f0 e C{D) \ Cl(A) 

and go € A. The following statements are equivalent: 

(i) go e VA{fo)\ 

(ii) For every $ a bounded linear functional on Af0 with Ker(<?) = A the 

element 

ho :=2(/) (/o-So)/||/o-So||L 

minimizes the quadratic functional F$ : Af0 —> R given by F$(f) := 11 

2 * ( / ) . 
oo 

5. Applications in the space L 
Let D be a set, a <7-field of subsets of D and v a positive measure on 
By v ) we mean the usual space of real-valued ^-measurable 

functions / defined on D for which |/| is ^-measurable, and 

11/111 = 5 1 / 1 ^ 
D 

For / 6 let 

Z ( f ) := {* | f{x) = 0} . 
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Then Z ( f ) is ¡/-measurable and for all /, g 6 L1{D, v), f ± 0 we have 
(see e.g. [18]) that 

T+(f,g)= \ g • (sgn f)dv + \ \9\dv. 

D Z{f) 

Now, let us observe that for all f,g E Ll(D, v) we have 

(f,9)s = \\ghr+(f,g) 

= l l5l|iS/-(sgnp)^+||5||1 j \f\dv 

D Z{g) 

and 

(/. ffh = - ( - / > = llfflli \ f • (sgag)dv - ||g||i J \f\dv. 
D Z(g) 

Using Theorem 2.1. we can state the following characterization of the 
best approximation element in the space v). 

PROPOSITION 5.1. Let A be a linear subspace in v), f0 E 
L1(D, v) \ Cl(A) and go 6 A. The following statements are equivalent: 

( i ) So € 7M/o) ; 
(ii) For every $ a bounded linear functional defined on subspace Af0 :— 

A ffi Sp(/o) with Ke r ( ^ ) — A we have the estimation 

(5-1) I, J ^ h S / • sgn(A0(/o - go))] dv - ||gjU/o • \ \f\dv 
11/0 50111 D Z(fo-go) 

< * ( / ) < J * h a \ 5 / • [sgn(Ao(/o - 50))] dv + \\*\\Af, • J |/| dv 

for all f 6 Af0, where 

•Wf)1 

ll 

and 

Z(fo -go)-{xeD\ f0(x) = g0(x)}. 

Finally, the following variational characterization of the best approxima-
tion element in L1(D,'^2,v) holds: 

PROPOSITION 5.2. Let A be a linear subspace in LX(.D, fo £ C(D) \ 

Cl(A) and go € A. The following statements are equivalent: 

( i ) 9O e PAUO)] 

A0 = sgn£(/0 ) , m\A / 0 = s u p { V ^ i i , f e Afo\ { 0 } } 
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(ii) For every bounded linear functional $ on Af0 with Ker($) = A, ho := 
*(/<,)(/„ — 5o)/ll/o — ffolli minimizes the quadratic functional : Af0 —• R 
given by F*(f) := | | / | | i - 2 * ( / ) . 

The proof follows by Theorem 3.1 applied to the space u). We 
omit the details. 

For other characterization of best approximation element in concrete 
spaces see [1], [3], [14], [16-17] and [19], where further references are given. 
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