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1. Introduction

Suppose that E = (0,a) x (—b,b) where a > 0, b = (by,...,bn) €
R™ b;>0,i=1,.,nand B =[-7,0] x [-7,7], 70 € R, 7= (7T1,...,Tn)
€ RY. Forc=b+ 7 let Eg = [—79,0] x [—¢,c] and O F = (0,a) x ([—¢,c] \
(—b,b)). We use vectorial inequalities if the same inequalities hold between
their corresponding components.

For a function z : [~7p,a) x [—¢,¢] = R and for a point (z,y) € E we
define the function z(;,) : B — R by the formula

2z (L, 8) = 2(z + t,y + 5), (t,5) € B.

Then the function z(; ) is the restriction of z to the set [z —70, z] x [y—7, y+7]
and this restriction is shifted to the set B.

Let C(X,Y) denote the class of all continuous mappings from X into ¥
where X,Y are metric spaces.

Suppose that f : E x C(B,R) — R and ¢ : Eg U9JyE — R are given
functions. Consider the initial - boundary value problem

(1) D-Tz(m’y) = f(x’yr Z(z,y))y
Z(:L‘,y) = (p(.’L’, y)’ (z,y) € EoU BOEa

where D,z denotes the derivative of z with respect to z.

Our formulation of the differential - functional problem is motivated by a
general model of the ordinary differential - funtional equations (see [2], [7]).

We consider classical solutions of the problem (1). Let E* = EgUgpEUE.
A function v : E* — R is solution of (1) if it is continuous on E*, it has
derivative with respect to z on E and it satisfies the problem (1).

The existence of solutions of the problem (1) was discussed in [3], where
also is a review of papers dedicated to applications of problems of the
type (1).



106 D. Jaruszewska-Walczak

The problem (1) is a particular case of the problem of the type

(2) DIZ(:L‘,y) = g(x’ya z(z,y),Dyz(x’y))a
z(z,y) = ¢(z,y), (z,y) € BoUGE
where g : E x C(B, R) x R™ — R. Difference schemes of the Euler type for
the problem (2) were considered in [1], [4], [5], [6].
In our paper we consider the Euler difference — functional method for

the problem (1) and the one — step methods more effective than this one.
We give a constructive way to obtain the above mentioned methods.

2. Euler method for initial — boundary value problems

We will denote by Z the set of integers. For y,7 € R}, y = (y1,.--,¥n)»
y= (171, o ,gn)a we put y *x gy = (ylgl’ v ,Z/ngn)'

We define the mesh on the sets B and E*. Let h = (ho,h’), A’ =
(hiy...,hn), hi >0 for i =0,1,...,n, be the step of a mesh. Suppose that
there are Ny € Z, N = (N1, ..., Nyp) € Z™ such that Nohg = 79, N*h' = 1.
Let A be the set of all A having the above property. We assume that A # ()
and that there is a sequence {h(k)}, h) € A, such that limg_,o A®) = 0.

For any h € A we put

2@ =ihy, Y™ =mxn
where m = (my,...,my) € Z" and y(™ = (y(ml), . ,y(m")

Write Ry, = {2 : i € Z} and R}*™ = {(z®, ™)) : (4,m) € Z}*"} and
Brn=BNR™, Eop=ENR™, Ey=ENR™, 0B, = &ENR*™,
Ef = E*NRy™.

For a function z : Ef — R and a point (2@, y(™) we write z(b™) =
z(w(i),y(m)). For the above z and 0 < i < Ny, —N < m < N we define
the function z; ) : Bn — R by

z(i,m)(t, s) = z(:c(i) + t,y(m) +3s), (t s)€ Bp.

The function z(; n,) is the restriction of 2z to the set ([z® — 79, 2®] x [y™ —
7,9(™ + 7]) N R;™™ and this restriction is shifted to the set Bj.
Let 6 be the difference operator

5Z(i,m) — _l_(z(i-{-l,m) _ z(i,m)).
ho
Let Iyp = [—7'0,0] N Ry, Iy = (0 a ﬁ Ry, I ,3— [—7’0, ﬂ Ry,.

For a function 7 : Iy — R we write n® = n(a:( ) z® e I}. For the above
n and ¢ € I, we define the function 7 : o, — R by

M6 (t) = n(e® +1), t € I
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We will use the symbol F(X,Y) to denote the class of all functions from X
into Y, where X and Y are sets.
In the sequell we will need the following operators T, : F(Bp,R) —
C(B,R) and Ty : F(Ip.p, R) — C([~70,0], R).
Let z € F(B, R). For every (z,y) € B there is (z(®,4(™) € By, such
that
2 <z < g0, M <y < ylmH)

where m+ 1= (my +1,...,my, + 1). Then we put

— () — ymIN¢ — o(mI\1=¢
r—T Z i Y-y y—-y
¢esSy

+<1_:1:—-:1;(i)) Z (2m+<)(y y( )) ( _y_:,{(m))l—(;
/
ho s, h h
Sy ={¢=(¢,--- ,Cn : kE{O 1} k=1,...,n},
h, k=1 hk

_a(m)\ 1-¢ n o me) N 1-¢k

y-y _ Yk — Yy,
(1-5-) "H(l“h—) -

k

[y

where

We adopt the convection that 00 = 1.
Let n € F(Ip, R). For every = € [—79,0] there is z(® € Iy such that
t® < z < z(+1) Then we put

P (3] — 2®
X X . X r .
(To.nn)(z) = - G+ 4 (1 - )77(’)-

0
It is easy to see that Tj 4 is a particular case of T}.
Let h € A. Suppose that ¢p, : Eyp UdoEr, — R is a given function. We
consider the difference - functional equation

(3) 6Z(i'm) = f(x(z)7 y(m)1 Thz(i,m))
with the initial - boundary condition
(4) Zom) — gog’m) on Eyp UGgEp.

We say that the method (3)~(4) is convergent if for every solution v of
the problem (1) there is solution zp of method (3)-(4) and the function
& : A — Ry such that limy_,g &(h) =0 and

@™ — 2™ < &(h) on Ej.
For w: D — R, D C R'*™ let the symbol w" denotes the restriction of w
to the set D N R}™.



108 D. Jaruszewska-Walczak

In the sequel we will need the following lemmas.

LEMMA 1. Suppose that w : B — R is of class C?. Then there exists c € R,
such that

I Ta(w") = w [lo< clhf?
where |h| = max{h; : i = 0,1,...,n} and || - |[o is the mazimum norm in
C(B, R).

Proof. The operator T} has the following properties

) E (#)C(l_y—g(m))l—C:L

CeSt
— MmN ¢ — ym)\1-¢
(6)2(—_y,ij )(1—%> hae = — 9™, 1<k<n,
CESH

where 3™ < y < y(™+1D), The relations (5), (6) can be proved by the
mathematical induction with respect to n. We obtain the estimate

(Thw™) (e, y) ~ w(z,y)| <

2
<o

0w i
(xay)l(w’y)eB) Tase{z,yl,---,yn}} Z hzhja
Or0s 52

what shows the Lemma 1.
For a function w : [~79,ap) — R, where ap > a, and for a point z € [0, a)
we define the function wg) : [-70,0] — R by

wi@(t) = w(z +1), ¢ € [-70,0].
The following assumption will be needed throughout the paper.

AssuMPTION Hjy. Suppose that o : [0,a0) X C([—70,0], R+) — R4 where
ag > a, is a function of variables (z, p) such that

1) o is continuous, o(z,0) = 0 for z € [0, ap) and w(z) =0, = € [—79, ap),
is a unique solution of the problem
W'(z) = o(z,w(g)), wl(z)=0 for z e [—,0};
2) o is nondecreasing with respect to = and p.

LEMMA 2. Suppose that o : [0,a0) x C([—70,0],Ry) — R4 satisfies the
Assumption Hy and let A, B are the constants such that the problem

(7 W'(z) = a(:c,To‘h(w(z))h) + A, w(z)=B for z € [-7,0]
has a solution on [—7y, a]. Suppose that the function n : I} — R satisfies
1) < 0 + hoo (2@, Ty angy) + koA, 1™ < B on Ipa.

Under these assumptions we have n(9 < (D(z(i)),a:(i) € I} where @ is a
solution of the problem (7).
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Proof. Let @ be a solution of the problem (7). For each z(* € I there
exists 8; € (0,1) such that @(z0tD) = @(z®) + ho@' (z® + 8;h0).

From the Assumption Hj it follows that & is nondecreasing, so we have
@(z0tD)) > o(z®) + ho@'(z®) and the difference - functional inequality

(D(H'l) > E)(i) + hoO’(:I:(i), To,h(u_.i(z(i)))h) + hpA
is satisfied. Thus 7 < @(z®), z® € I}.
Let the operator V : C(B, R) — C([—7,0], R) be defined by
(Vw)(z) = max{|w(z,y)| : y € [-7,7]}, w € C(B, R), z € [-7,0].
Now we are ready to formulate the main theorem of this section.
THEOREM 1. Suppose that

1) the Assumption Hy is satisfied, the function f : E x C(B,R) - R
is uniformly continuous and the problem (1) has an unique solution of the
class C? on E*;

2) the function f satisfies inequality

|f(z,9,9) — f(z,9, 0| < o(2, V(g - 7)),
where (z,v,9),(z,y,9) € E x C(B, R),
3) there is ag : A — Ry such that limp 0 ag(h) = 0 and

|pBm) — ¢§j’m)| < ag(h) on Eyp U GoEy.
Then the method (3)—(4) is convergent.
Proof. Let @ be the solution of (1) and let Z, be the solution of (3). We

define . . .
e(hm) — Z}(f’m) — @™ on E;

and
e® = max{]e®™)| : (z,y™) € E}} on I3.
Since there is = §(™) € (0,1) such that
(8) al+bm) = g™ 4 o f(2) + 0o, y™, g Lo o)),
and there is B : A — R, such that limp_,q B(h) = 0 and
(9) 1£( + 6ho, ¥ ™, Ty) 4 ghg yomry) — FD, 4™, gy yomny)| < B(R)
we have
|eFEm)| = 1eGm) 4 o (F(2®, 5™, Ty (28) i.m)
= F(@® + 6ho, y™, B z) 4 gng o))
< €W + ho(o (2, V(Th(Zh) am) — Tfs.m)))
+ 0 (2D, V(Thuf; ) — o yomy)) + B(R))
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< €@ 4 ho(o(z®, Tone) + ola, cb)?) + B(R)).
Thus (1) < e + hy(o(2®, Tore)) + v(R)), where v(h) = o(a, c|h|?) +
B(h). From the Lemma 2 it follows that
where w(:; h) is the solution of the problem
W'(z) = cr(z,To,h(w(z))h) +v(h), w(z)=cap(h) forz € [-mp,0].
From the assumptions it follows that limy_,q w(w(i); h) = 0 and this ends
the proof of theorem.

The estimation of the discretization error is established by our next the-
orem.

THEOREM 2. Suppose that assumptions 1)-2) of Theorem 1 are satisfied and

1) the function v is a solution of the problem (1) on E* and there are
the functions v,v0 : A — Ry such that

6™ — £(2®, 5™, T (v*) g my)| S ¥(R)  on Bn,
|o(Bm) — cpﬁf””’| <(h) on EypUO8oEp;
2) zp : By — R is a solution of the method (3)—(4).

Then , . .
o™ — 2] < (@ h),

where w(-; h) is a solution of the problem
' (2) = o(z, Ton(w=)") +(R),

(10) w(m) =(h), z € [—’7’0,0].

Proof. We only give the main idea of the proof. Set
elm) — p(tm) _ z,(f’m) on Ej
and
e®) = max{|e®™)|: (z9,y™) e Ef} onI}.
An analysis similar to that in the proof of Theorem 1 shows that
e®D) < e + hoo(z®, Tones)) + hov(h)
and our assertion follows from Lemma 2.

3. One-step difference methods

Let h € A. Suppose that &, : E, x F(E},R) > R, ¢p: EghUOE, — R
are given functions.

Suppose that the function &, satisfies the Volterra condition, i.e. if
(z,y) € En, 2,Z € F(E},R) and 2(%,9) = 2(%,9) for (Z,7) € E, T <z
then &p(z,y, 2) = Pn(z,y, 2).
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We consider the one-step difference method
6206m) = &y, (x| 4™ 2),
(11) (i,m) (im)
2\ =y on Egp UOoEp.

We say that the method (11) is convergent if for every solution v of the
problem (1) there is solution 2; of method (11) and the function& : A — R,
such that limp_g &(h) = 0 and

@™ — 2™ < &(h) on Ef.

We introduce the following assumption.

AssuMPTION Hj. Suppose that op : In x F(I, Ry) — Ry is a function of
variables (z,p) and

1) the function oy, satisfies the following Volterra condition: if z € Iy,
w,w € F(I},R}) and w(Z) = @(Z) for Z < z then ox(z,w) = op(z,@);

2) op(z,0) = 0 for z € I, and 7)) = 0 on I} is an unique solution of the
problem

(12) ) = 9@ 4 hoop(z®,n), 7D =0 on Iyy;

3) the difference problem (12) is stable in the following sence: if 7, :
It — R is the solution of the problem

2D = 0 4 hoop(2®D,n) + hov(h), 1% =ag(h) on Ips

where g,y : A — R, and limp_,g ap(h) = limp_,0y(h) = 0, then there is a
function 3: A — R, such that na(z) < B(h) for z € If and limp,_,g B(h) = 0;
4) oy, is nondecreasing with respect to p.

Denote by V}, the operator V : F(E}, R) — F(I{, R) defined by
(Vhw)(z) = max{|w(z,y)| : (z,y) € E}}, we F(E;,R), z € I}.
The following theorem gives the sufficient conditions for convergence of
the method (11).
THEOREM 3. Suppose that

1) the function f : ExC(B, R) — R of the variables (z,y, q) is uniformly
continuous and the problem (1) has an unique solution on E*;
2) the function oy, : I x F(I},R.) — R, satisfies the Assumption H;
3) the function @), : Ey, x F(E}, R) — R satisfies inequality
léh(m, yaw) - ¢h(may’u_))l < O'h(il?, Vh(w - u_))) on Eh X F(E}:aR)v
4) the following compatibility conditions are satisfied
|¢h(-’E, Y, (ﬁh)) - f(za Y, a(z,y))l < a(h) on Eha

|¢§:rm) _ So("’m)l S ao(h) on EO.h U 60Eh1
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where a,ap : A — Ry, limpga(h) = limpgao(h) = 0 and @ is the
solution of the problem (1).

Then the method (11) is convergent.

Proof. Let @ be the solution of (1) and let Z be the solution of (11). We

define
e(i)m) — 2(1,771) — ra(":’m) on E”:

and

e® = max{|e®™)|: (z® ™) c E}} onI}.
Using (8) and (9) from the proof of the Theorem 1 we have
(i+1,m)|

= [e™ + ho(Sh(z®,y™), 2) — F(z@ + ho, y™, Biz6) 4ong yom))|
< e® + ho(on(z®,€) + a(h) + B(R)).
Thus ¢® < n,(:) where 7, is the solution of the problem

{n(":'*'l) = n(i) + hoO’h(Z(i),Tl) + hO(a(h‘) + ﬁ(h))
77("') = ao(h) on IO.h'

e

From our assumptions it follows that limp_,q ng) = 0 and this completes

the proof of Theorem 3.
Now we formulate the theorem on estimation of the discretization error.

THEOREM 4. Suppose that

1) the assumptions 1)-3) of Theorem 3 are satisfied;
2) the function v is solution of the problem (1) on E* and there are the
functions v,v : A — R4 such that
|6(vm)EM) — &, (2, (™) yh)| < y(R)  on Ey,
p(tm) — soﬁf’m)l <v(h) on EypUOGEy;
3) zp : Ef — R is solution of the method (11).
Then
(13) pl&m) — 5™ <0 on B},
where ny, 1s solution of the problem
(14) {'fIE’:H) =n® + hoon(z, ) + hoy(h)
1 = 5(R) on Io s

Proof. This follows by the same m.ethod as in Theorem 2.
The expression §(v?) ™) —&;, (x®), (™) 4*) where v is the solution of the
problem (1), is called the local discretization error of the method (11). It has
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an influence on the estimation of the discretization error. For ah(m(i),p) =
Lmax{pW : ) € I}, j < i}, L >0, the estimation (13) has the form
Lz(') _

i i,m 1 i
|v(z,m) _ z’(l, )l < 7(h)e - + ’Yo(h)eLz()
h a
< (A1 4 (myete.

We say that the method (11) is of order k if the local discretization error,
with the solution v of suitable class, is O(|h|F) .

4. Examples

Now we give a way to construct the methods of different orders.

Let h € A. Let k > 1 be integer and (z,y) € Ex. We define the sets
B,(cz’y) = ([z —kmo, z) X [y—kT,y+ kT])NE* and Bff,;y) = B,(f’y) NEy. For w :

E} — Rlet w(g ), denote the restriction of the function w to the set B,(:,’cy),

e wyyk = W\ plea) Let the operator T,Efk’y) : F(B;(:,’cy), R) — C(B,(f’y), R)
h.k
have the following property
1750 2" — zllo < clnl?

for z : B,gz’y) — R of suitable class and for some constant ¢ € R,. For
k =1 and k = 2 let the operator T,S.zk’y) be defined analogously to this one
in Section 2. In these cases, for simplicity of notation, we write T} instead
(z.y)
of T ™.
For the problem (1) we can define &, : Ep x F(Ef,R) — R in the
following way

(15) ¢fl(m,:‘/71‘”) = f(.’l:, Y, Thw(z,y).l)’ (.’E, y,'LU) € Ep X F(EI:a R)
Difference method (11) with such @}, is the Euler method for the differential
- functional problem (1). This method is of order 1. The comparison function

op : In x F(I},R.) — R, for & given by (15) can be constructed in the
following way. If we assume that

|f(z,y,9) - f(z,9,9)| < o(z,V(¢—q)) on ExC(B,R),
where o satisfies the Assumption Hp, then we put
Uh(fl?(i),?) = U(w(i)a TO.hp(i))a x(z) € In,p € F(II:’ R+)
If the function u is a solution of class C3 of the problem (1) on E* then
the first and second order derivatives with respect to z of the solution u are

completely determinated by the functions f, ¢ and their derivatives.
We have

Dzu(a:, y) = f(z, yau(z,y))’
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Dgu(:z:, y) = Dz f(z, v, u(m,y)) + qu(z>y> u(z,y))(Dzu)(z,y)
= sz(.'I?, v, u’(z,y)) + qu(.’l,‘, Y, u(:c,y))flp[u](z,y),
where f?lul(z,y) = Dyp(z,y) for (z,y) € Ep UE and fPlul(z,y) =

(2,9, w(zy)) for (z,y) € E.
Since

ho. ) —
o) MRl v _ gip )

h
+ ?O(D:l:f(x, Y, u(z,y)) + qu(.’E, Y, u(z,y))f(p[u](w,y)) + O(h(2))

it seems natural to choose the function @, : Ep x F(E}, R) — R as follows
ho
Pn(z,y,w) = f(z,y, Thw(zy).1) + —2—Dmf($, Y, Thw(z,y).1)

h
+ 70qu(-73: Y, Thw(z,y).l)f‘p[Thw(m,y).Z](z,y)'

The difference method (11) with the above &, is the method of
order 2. It is called the Taylor method of order 2.

The another method of order 2 uses the function & : Ex x F(Ef,R) » R
defined by

sth(m’ Y, w) = qlf(ma Y, Thw(z,y).l)
+ @2f(z + aho,y, Thwg gy + Bho fC[Thw(zy).2)(,))-
We choose the parameters ¢i, ¢z, @, 8 in the following way. For the func-
tion ¢, we write
@h(fL‘, Y, 'UJ) = qlf(w: Y, Thw(z,y).l)
+ @2(f(z, Y, Thw(zy).1) + aho Dz f (%, Y, Thw(z y).1)
+ ﬂhOqu(m) Y, Thw(z,y).l)f(p[Thw(m,y)J](z,y)) + O(h(z])
Using Taylor’s expansion (16) for the solution u of the problem (1) we put

1 1
(17) at+e=1 qa= 3 @B = 3

For every solution of the system (17) we obtain the method of order 2. These
methods are called the Runge-Kutta methods of order 2.

In the similar way we can construct the methods of the highter orders.
We must only use the suitable Taylor’s expansion instead of (16).

5. Numerical examples
Consider the differential-integral problem
Dgu(z,y) = F(z,y, {gu(z + t,y + s) dtds),

(18) u(z,y) = p(z,y), (2,y) € EoUHE,
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where F : E X R — R is function of variables (z,y,r).

For the function w : Ef — R and for the point (z®, y(m) ¢ Ep we
define

J(w;z®, y™) = H . Z Z Wt +Hom+m/+()
(#',¢0)€loxSo (m'()EIXS

where H = [[}—o(%)"", I=I; x ... x I, =81 x ... x S, and

Ij = {0} for 75 =0, Ij = {—Mj,...,Mj —1} fOI‘Tj > 0, j= 1,...,n,

S; = {0} for ; =0, §; ={0,1} for 7; >0, j =0,1,...,n,

Ip = {0} for o =0, Ip = {—My,...,—1} for 7o > 0.

The Euler method for the problem (18) uses #Z : E, x F(E},R) > R
given by the following formula

&1, (z,y,w) = F(z,y, J(w; z,y))-

For the Taylor method of order 2 we define 87 : Ej, x F(E;, R) — R such
that

h
8} (2,y,w) = Flo,y,J(w;z,9)) + 5 DeF(z,y, I (w;z,Y))

h
+7°DTF(w, v, J(w; z,9)) - J(vi 2, y),

where

v(z,y) = Dyp(z,y) for (z,y) € Eo.n UBoE
and

v(z,y) = F(z,y, J(w;z,y)) for (z,y) € Ey.

The Runge-Kutta method of order 2 for the problem (18) uses the func-
tion &% : By x F(E}, R) — R such that

@f(fl}, Y, w) = QIF(:E’ Y, J(w; z, y))
+ QQF(.’IJ + ahO) Y, J(w’ T, y) + :BhOJ(U; €T, y))
with the parameters ¢, g2, @, § satisfying the system (17).

In each above methods we use @y, : Ep , UG Ep, — R such that pp(z,y) =
(p(:ll,y), ("L') y) € Egp U OoE.

The numerical results we obtain for the problem (18) with £ = (0,1) x
(-1,1), EgUdE = ([0,1) x [-1.5,1.5])\ E, B = {0} x [-1.5,1.5] and
F(z,y,r) = r — 2%(y? + 115) + 2zy2, o(z,y) = x*y? and hg = 0.02, h; =
0.02. The table shows some experimental values obtained for the Euler
method, the Taylor method and the Runge-Kutta method. In the table
the symbols zP, 2T,z denote the solutions of the respective difference-
functional methods and 6}1‘3 , 6L, 6,’5 denote the point distances of the solutions
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of the difference-functional methods to the solution u of the differential-
functional problem, i.e. 6% (z,y) = |u(z,y) — z&(z,9)|, (z,y) € Ep where
X € {E,T,R}.

The above values are as follows:

(z,9) 2(zy) & (z,y) 2 (2,y) &y z(zy) 6f(zy)
(0.4,—0.4) 0.0239 1.69-1073 0.0256 1.57-107% 0.0256 2.35-1075
(0.4,0.8) 0.0097 5.64-107% 0.1024 1.52-10¢ 0.1023 6.25-107°
(0.8,—0.4) 0.0979 4.48-10~3 0.1024 1.40-10~% 0.1023 5.12-107°
(0.8,0.8) 0.3970 1.26-10"2 0.4096 1.32-107° 0.4095 1.31-107*

The computations were carried out on an IBM AT.

[1]
[2]
(3]
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