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1. Introduction 
Suppose that E = (0,a) x (—b,b) where a > 0, b — (b\,...,bn) 6 

Rn, bi> 0, i = l , . . ,n and B = [ - r 0 , 0 ] x [ - r , r ] , r0 6 R+, r = ( n , . . . , r n ) 
G R+. For c = b + r let E0 = [ - r 0 , 0 ] x [—c, c] and d0E = (0, a) x ( [ - c , c] \ 
(—b,b)). We use vectorial inequalities if the same inequalities hold between 
their corresponding components. 

For a function z : [—TO, a) x [—c, c] —> i? and for a point ( x ,y ) 6 E we 
define the function Z(I)3/) : B —> R by the formula 

Z(x,y)(t,s) = z(x + t,y + s), (t,s)eB. 

Then the function Z(X)y) is the restriction of z to the set [x—TO, X] x [y—T, y + r ] 
and this restriction is shifted to the set B. 

Let C(X, Y ) denote the class of all continuous mappings from X into Y 

where X, Y are metric spaces. 
Suppose that / : E x C{B, R) —> R and <p : EQ U DOE —• R are given 

functions. Consider the initial - boundary value problem 

Dxz(x,y) = f(x,y,z[Xty)), 

z(x, y) = <p(x, y), (x, y) eE0U d0E, 

where Dxz denotes the derivative of z with respect to x. 

Our formulation of the differential - functional problem is motivated by a 
general model of the ordinary differential - funtional equations (see [2], [7]). 

We consider classical solutions of the problem (1). Let E* = EoUdoEUE. 

A function v : E* R is solution of (1) if it is continuous on E*, it has 
derivative with respect to x on E and it satisfies the problem (1). 

The existence of solutions of the problem (1) was discussed in [3], where 
also is a review of papers dedicated to applications of problems of the 
type (1). 
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The problem (1) is a particular case of the problem of the type 

^ Dxz(x, y) = g(x, y, z{Xty),Dyz(x, y)), 

z ( x , y ) = <p(x,y), ( x , y ) e E0\Jd0E 

where g : E x C(B, R) x Rn —> R. Difference schemes of the Euler type for 
the problem (2) were considered in [1], [4], [5], [6]. 

In our paper we consider the Euler difference — functional method for 
the problem (1) and the one — step methods more effective than this one. 
We give a constructive way to obtain the above mentioned methods. 

2. Euler method for initial —- boundary value problems 
We will denote by Z the set of integers. For y, y 6 y — ( y \ , . . . , yn), 

V = ( j / i , • • •,Vn), w e p u t y * y = ( y m , . . .,ynyn)-

We define the mesh on the sets B and E*. Let h = (ho, h'), h' = 
( h i , . . . , hn), hi > 0 for i = 0 ,1 , . . . , n, be the step of a mesh. Suppose that 
there a r e N0 e Z, N = ( N i , . . . , Nn) G Zn such that N0h0 - r0, N*h' - r . 
Let A be the set of all h having the above property. We assume that Z\ / 0 
and that there is a sequence {h^}, e A, such that limfc—yoo h^ = 0. 

For any h G A we put 
= ih0, y(m) = m * t i 

where m = (m x , . . . , mn) G Zn and y ^ = ( y ^ , . . . , y{™n)). 

Write Rh = {xW : i 6 Z } and Rl
h

+n = : (i,m) G Z 1 + n } and 
Bh = B n Rl+n, Eo.h = E0n Rl+n, Eh = En Rl+n, d0Eh = d0E n R\+n, 

E* = E* n Rl+n. 

For a function z : E^ —> R and a point we write z(l>m) = 
z ( x w , i / m ) ) . For the above z and 0 < i < N0, -N < m < N we define 
the function Z(ii7n) : Bh —» R by 

Z(i,m)(t, s) = z ( x « + t , » H + s ) , (t, s) G Bh. 

The function Z(i m) is the restriction of z to the set (fx'2) — r o . x W j x ^ ) -
r, y{m) + r]) n and this restriction is shifted to the set Bh-

Let 6 be the difference operator 
¿jz(i,m) _ _ z{i,rr 

ho 

Let I0.h = [ - r 0 l 0] n Rh, Ih = (0, o) n Rh, It = [ - r 0 , a) n Rh. 

For a function tj : —> R we write rj^' = t j (xW), XW £ For the above 
77 and i G Ih we define the function r / ( : Io.h R by 

T7(i)(t) = f?(x« + t), t e l 0 . h . 
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We will use the symbol F(X,Y) to denote the class of all functions from X 
into Y", where X and Y are sets. 

In the sequell we will need the following operators Th : F(Bh,R) —• 
C(B,R) a n d T0.h : F(I0.h,R) -* C ( [ - T 0 , 0 ] , R). 

Let z G F(Bh,R). For every ( x , y ) € B there is G Bh such 
that 

xW < x < x ( i + 1 \ y{m) <y< y{m+1) 

where m + 1 = (mi + 1 , . . . , mn + 1). Then we put 

C 6 5 + 

where 

5 + = {C = (Ci , - . - ,Cn) : Cfc e { 0 , 1 } , k = l,...,n}, 

F)-n( * 

We adopt the convection that 0° = 1. 
Let T] G F(Io.h,R)- For every x € [—ro,0] there is x'*' G io./i such that 

xW < x < x ( i + 1 \ Then we put 

It is easy to see that TQM is a particular case of TV 
Let h G A Suppose that iph : Eo.h U do Eh —» R is a given function. We 

consider the difference - functional equation 

(3) 6 z ^ = f ( x ^ J m \ T h z { i t m ) ) 
with the initial - boundary condition 

( 4 ) = <p%'m) o n E0.h U d0Eh. 

We say that the method (3 ) - (4 ) is convergent if for every solution v of 
the problem (1) there is solution Zh of method (3 ) - (4 ) and the function 
a: A—* R+ such that lim/i_>o = 0 and 

-z^'m)\<a(h) o n E l 

For w : D R, D C R1+n let the symbol wh denotes the restriction of w 
t o t h e s e t D n Rlh+n. 
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In the sequel we will need the following lemmas. 

Lemma 1. Suppose that w : B —> R is of class C2. Then there exists c G R+ 
such that 

|| Th(wh) - w ||0< c\h\2 

where |/i| = max{/ij : i = 0 , 1 , . . . , n} and || • ||o is the maximum norm in 
C(B, R). 

P r o o f . The operator T^ has the following properties 
-y(m)N C / y - y l 

h J V h (8) Y.i^P^i^-^P-V^ 
Ces+ 

_ , , M \ i-C 

< sup 

(6) £ ( ^ i - ) ( l - hkCk = yk- v t k \ 1 < k < n, 
C es+ 

where y^ < y < y(m+1\ The relations (5), (6) can be proved by the 
mathematical induction with respect to n. We obtain the estimate 

\(Thwh){x,y)-w(x,y)\ < 

x,y) : (x,y) G B, r, s G {x, yi,..., y n } | £ hihi> 
i,j=o 

what shows the Lemma 1. 
For a function w : [—To, ao) R, where ao > a, and for a point x G [0, a) 

we define the function U>(x) : [—TO, 0] —> R by 

w(s)(t) = w(x + i), t G [-T0)0]. 
The following assumption will be needed throughout the paper. 
Assumption H0. Suppose that a : [0,ao) x C ( [ - t 0 , 0] , .R+) - > R+ where 
oo > a, is a function of variables (a:,p) such that 

1) O is continuous, a(x, 0) = 0 for x G [0, ao) and OJ(X) = 0, x G [—to, ao), 
is a unique solution of the problem 

u / ( x ) = A(X,U)(X)), UJ(X) = 0 for x G [—ro,0]; 

2) a is nondecreasing with respect to x and p. 
Lemma 2. Suppose that a : [0, ao) x C([—TQ, 0], i2+) —» R+ satisfies the 
Assumption HQ and let A, B are the constants such that the problem 
(7) J[x) = a(x,T0.h(u{x])h) + A, u(x) = B for x G [ - r 0 ) 0 ] 
has a solution on [—To, a]. Suppose that the function 7] : —> R satisfies 

v(i+i) <v® + h0o(x®,T0.hri(i)) + h0A, V^<B on I0.h. 

Under these assumptions we have rj^ < G 11 where w is a 
solution of the problem (7). 
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P r o o f . Let w be a solution of the problem (7) . For each a;W G Ih there 
exists 0i e ( 0 , 1 ) such t h a t ¿ - ( x ^ 1 ) ) = w ( i W ) + hQui'(x^ + 0iho). 

Prom the Assumption HQ it follows t h a t u>' is nondecreasing, so we have 
+ h o u / ( x ^ ) and the difference - functional inequality 

a(i+i) > ¿>W + h0a(x^,T0.h(u(x(i)))h) + hoA 

is satisfied. T h u s jyW < u ( x ^ ) , i ( i ) € JjJ. 

Let the operator V : C(B, R) C ( [ - r 0 , 0 ] , R) be defined by 

(Vw)(x) = max{|u; (x ,2 / )| : y € [ - r , r ] } , w € C(B,R), x € [ - r 0 , 0 ] . 

Now we are ready to formulate the main theorem of this section. 

THEOREM 1. Suppose that 

1) the Assumption HQ is satisfied, the function f : E x C(B,R) —> R 
is uniformly continuous and the problem (1) has an unique solution of the 
class C2 on E*; 

2) the function f satisfies inequality 

I f(x, y, q) - /(x, y,q)| < a(x, V(q - q)), 

where (x, y, q), (x, y,q) € E x C(B, R); 
3 ) there is ao : A —»• R+ such that l i m ^ o ^ o W — 0 and 

WH,m) _ <p(i,m)l < a o { h ) o n E o h u d o E h 

Then the method ( 3 ) - ( 4 ) is convergent. 

P r o o f . Let u be the solution of (1 ) and let Zh be the solution of (3 ) . W e 
define 

e(i,m) = g(i,m) _ _ 0 , m ) o n 

and 
s ^ = max{|e^ , m^| : ( x ^ \ y ^ ) € E ^ } on 

Since there is 9 = 9 ^ € ( 0 , 1 ) such that 

( 8 ) fi(ifi,m) = fi(i,m) + h o f { x ( i ) + eh0,yW,u(x(i)+eho>y(m))), 

and there is (3 : A R+ such that l i m ^ o (3(H) = 0 and 

(9) | / (*« + eh0Jm\u{x{i)+ehoty{m))] - f(x^Jm\u(xii)iy,m))]\ < (3(h) 
we have 

|e(i+l,m)| = |e(i,m) + h o { f { x ( i ) J r n ) i T h { z h ) ( i < m ] ) 

- f(x^ + 9h0Jm),u{x(t)+eh0ty(m))))\ 

< e« + ho(*(x®, V(Th(zh)^m) - 4 i m ) ) ) 

+ a(s« V(Thuh^m) - u{x^y{m)])) + (3(h)) 
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< e(i) + ho(a(x®, T0.he{i)) + a(a, c\h\2) + 0(h)). 

Thus £(i+1) < £ « + ho(a(x^,To.he(i)) + j(h)), where -y(h) = a(a,c\h\2) + 
0(h). Prom the Lemma 2 it follows that 

e ( i ) < wfjW;/»), 
where h) is the solution of the problem 

uj'(x) = a(x,TQM(uj(x})h) + j(h), u(x) = ao{h) for x € [ - r 0 , 0 ] , 

Prom the assumptions it follows that l i m ^ o h) = 0 and this ends 
the proof of theorem. 

The estimation of the discretization error is established by our next the-
orem. 
T h e o r e m 2. Suppose that assumptions l ) - 2 ) of Theorem 1 are satisfied and 

1) the function v is a solution of the problem (1) on E* and there are 
the functions 7 ,70 : A —> R+ such that 

\6(vh)«ri - f(xW,y(m\Th(v%tm))\ < 7(h) on Eh, 

|w(i,m) _ yfrrn) | < ^ Q n ^ y ^ 

2) Zh : El R is a solution of the method (3)-(4) . 

Then . 

where o>(-; h) is a solution of the problem 

(1Q) u'(x) = a(x,T0.h(u(x))h) + f(h), 

= 70(h), x e [—to, 0]. 

P r o o f . We only give the main idea of the proof. Set 
e(i,rn) = v(i,m) _ z(i,m) Qn 

and 
eW = m a x i l e ^ l : (x ( i ) ,y ( m )) e E*h} on 

An analysis similar to that in the proof of Theorem 1 shows that 

e(i+i) < eW + h0a(x^,T0Me{i)) + ho-y(h) 

and our assertion follows from Lemma 2. 

3. One-step difference methods 
Let he A. Suppose that $h:Ehx F(E%, R) -» R, <ph • E0.hUd0Eh R 

are given functions. 
Suppose that the function $h satisfies the Volterra condition, i.e. if 

(x,y) E Eh, z,z e F(El,R) and z(x,y) = z(x,y) for (x,y) e x < x 
then $h(x, y, z) = $h(x, y, z). 
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We consider the one-step difference method 

We say that the method (11) is convergent if for every solution v of the 
problem (1) there is solution Zh of method (11) and the function a : A —> R+ 
such that lim/j^o¿*(/i) = 0 and 

- z£ ' m ) I < a ( h ) on El 

We introduce the following assumption. 

ASSUMPTION HI. Suppose that ah : Ih x F(I£,R+) —> -R+ is a function of 
variables ( x , p ) and 

1) the function ah satisfies the following Volterra condition: if x £ Ih, 
u>,u> 6 F(I^,R+) a n d u(x) = u(x) for x < x t h e n ah{x,u>) = ah(x,u>); 

2) ah(x, 0) = 0 for x € Ih and 77« = 0 on is an unique solution of the 
problem 

( 1 2 ) =VW + h0ah(xW,ri), 77« = 0 on I0.h\ 

3) the difference problem (12) is stable in the following sence: if rjh : 
—> R is the solution of the problem 

7/*+!) = 77« + h0ah(x^,V) + ho-r(h), 77« = a0(h) on I0.h 

where a o , 7 : A —> R+ and l i m ^ o <*o(h) = l i m ^ o "f(h) = 0, then there is a 
function /? : A —> i l + such that rjh(x) < (3(h) for x € and l i m ^ o /3(h) = 0; 

4) ah is nondecreasing with respect to p. 

Denote by Vh the operator Vh : F(E*h,R) F(Ifl,R) defined by 

(Vhw)(x) = max{|u;(s,i/)| : (x,y) e E*h}, w 6 F(E*h,R), x e II 
The following theorem gives the sufficient conditions for convergence of 

the method (11). 

THEOREM 3. Suppose that 

1) the function f : ExC(B, R) —> R of the variables (x, y, q) is uniformly 
continuous and the problem (1) has an unique solution on E*; 

2 ) the function ah • Ih x F(I^,R+) —> R+ satisfies the Assumption H\; 
3 ) the function $h '• Eh x F(E^,R) —> R satisfies inequality 

\$h(x,y,w)-$h(x,y,w)\ < ah(x, Vh(w - w)) on Eh x F(E*h,R)\ 

4 ) the following compatibility conditions are satisfied 

2/> (uh)) - f(x, y, «(s.j,))! < a(h) on Eh, 

\<Ph'm) ~ f{i'm)I < Mh) on E0.h U doEh, 
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where a,ao : A ^ R+, lim/j-^o a(h) = lim^o ao{h) — 0 and u is the 
solution of the problem (1). 

Then the method (11) is convergent. 

P r o o f . Let u be the solution of (1) and let z be the solution of (11). We 
define 

g(i,m) = 2(i,m) _ u(i,m) Qn E* 

and 
e® = m a x f l e ^ l : (xW,y(m>) G E*h} on I*h. 

Using (8) and (9) from the proof of the Theorem 1 we have 
| e( i+l ,m)| 

= + M*fc(s(<),y(m),2) - f(x{i) + ehQJm\ u{x{i)+9h0iyim))))\ 

< £W + ho(*h(x®,e) + a(h) + 0(h)). 

Thus eW < r)^ where % is the solution of the problem 
r ̂ (i+1) = ^(0 + h0ah(x^,T,) + h0(a(h) + 0(h)) 
\r)W=a0(h) onl0.h. 

(i) 
From our assumptions it follows that lim/^o ryh = 0 and this completes 

the proof of Theorem 3. 
Now we formulate the theorem on estimation of the discretization error. 

THEOREM 4. Suppose that 
1) the assumptions l)-3) of Theorem 3 are satisfied; 
2) the function v is solution of the problem (1) on E* and there are the 

functions 7,70 : A —• R+ such that 
\6(vhf'm^ - $h(xW,y(m\vh)\ < 7 (h) on Eh, 

|vd,m) _ (p(i,m){ < 7 o ( / i ) Q n E o h y d o E h . 

3) Zh : E^ —> R is solution of the method (11). 
Then 

(13) \v{i'm)-z^m)\<V^ on El 
where r)h is solution of the problem 

(14) f *?(i+1) = v(i} + ho<Th(xW,T)) + hol(h) 
= 7o(/i) on I0,h. 

P r o o f . This follows by the same method as in Theorem 2. 
The expression ), where v is the solution of the 

problem (1), is called the local discretization error of the method (11). It has 
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an influence on the estimation of the discretization error. For ah(x^ l\p) = 
Lmax{p'^ : x^ € Ifc, j <i}, L > 0, the estimation (13) has the form 

X eLx{i) - 1 , , l ^ m ) _ < i{h)e ^ + 7o(^)eLxW 

< ( ^ + 7o (h))eL*. 

We say that the method (11) is of order k if the local discretization error, 
with the solution v of suitable class, is 0(\h\k) . 

4. Examples 
Now we give a way to construct the methods of different orders. 
Let h G A Let k > 1 be integer and (x,y) € Eh- We define the sets 

B^y) = ( [ x - kr0, x ] x [ y - kr,y + kT])nE* a n d = B{*'y) F o r w : 

E^ —> R let u;(Ii2/).fe denote the restriction of the function w to the set 
i-e- w{x,y).k = W|fl(»,«)- Let the operator : F(B1™\R) - C(B£'v),R) 

I h.k 
have the following property 

I I T l Y ] * h - *h < c\h\k 

for z : —> R of suitable class and for some constant c € R+. For 
k — 1 and k = 2 let the operator T^^ be defined analogously to this one 
in Section 2. In these cases, for simplicity of notation, we write Th instead 
o f T l y l 

For the problem (1) we can define ^ : Eh x F(E£,R) —• R in the 
following way 
(15) $fc(x, y, w) = f(x, y, T ^ ^ . x ) , (x, y, w) € Eh x F(E%, R). 
Difference method (11) with such <Ph is the Euler method for the differential 
- functional problem (1). This method is of order 1. The comparison function 
cr/i : Ih x F(I£,R+) —• R+ for $h given by (15) can be constructed in the 
following way. If we assume that 

I f ( x , y, q) - f { x , y,q) | < a(x, V{q - q)) on Ex C(B, R), 

where A satisfies the Assumption Hq, then we put 
<7fc(z« p) = a(x^,To.hP(i)), X(i) e Ih,P e F(I*h,R+). 

If the function u is a solution of class C3 of the problem (1) on E* then 
the first and second order derivatives with respect to x of the solution u are 
completely determinated by the functions / , ip and their derivatives. 

We have 
Dxu(x,y) = f(x,y,U(x>y)), 
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D2xu(x,y) = Dxf(x,y,u(xiy)) + Dqf(x,y,u{Xty))(Dxu){Xiy) 

= Dxf(x,y,u{Xty)) + Dqf{x,y,u{x^y))f' f >[u]{x^), 
where f*[u](x,y) = Dxy(x,y) for (x,y) G E0 U d0E and / v M(x, ;y) = 
f(x,y,U(x>y)) for (x,y) G E. 

Since 

( 1 6 ) j - = /(®.y»tt(x,»)) 

+ y ( £ > x / ( z , 2/, « ( s ,y ) ) + A ? / ^ , 2/, « ( s , v ) ) / V [ « ] ( x , y ) ) + ^ o ) 

it seems natural to choose the function : EH x F(E^,R) —> i? as follows 

*/»(*, 2/. w) = f(x> V, ThW(XiVyi) + Y D x f ( x , y, ThWfay)^ 

The difference method (11) with the above <Ph is the method of 
order 2. It is called the Taylor method of order 2. 

The another method of order 2 uses the function $H : E^ x F(E^, R) —> i2 
defined by 

$h(x,y,w) = qif{x,y,Thw^y)A) 
+ q2f(x + a^o.y.Thto^),! + 

We choose the parameters qi ,q2,a,P in the following way. For the func-
tion $h we write 

y, w) = qif{x, y, Thw^yyx) 
+ 02(/(a:, y, ThWfay-^) + ah0Dxf(x, y, ThwiXtV)A) 
+ f3h0Dgf{x, y, ThvnXiy).1)fv[Thv)(Xty).2](x,v)) + 0(h%). 

Using Taylor's expansion (16) for the solution u of the problem (1) we put 
1 „ 1 (17) 91 + 92 = 1, < t e a = 2 ' = g 

For every solution of the system (17) we obtain the method of order 2. These 
methods are called the Runge-Kutta methods of order 2. 

In the similar way we can construct the methods of the highter orders. 
We must only use the suitable Taylor's expansion instead of (16). 

5. Numerical examples 
Consider the differential-integral problem 

Dxu(x,y) = F(x,y, \B u(x + t,y + s) dtds), 
u(x,y) = <p(x,y), (x, y) G Eq U d0E, 
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where F : E x R —• R is function of variables ( x , y , r ) . 
For the function w : ££ - f R and for the point (x« ,y( m ) ) e E*h we 

define 

j{w-x^j™)) = H . Y , E ™(i+i'+c°'m+m'+c), 
(i',Co)6/0xS0 (m',C)e/xS 

where H = II?=o(lf )signTj, J = Ji x . . . x Jn, 5 = Si x . . . x and 
Ij = {0} for Tj = 0, Ij = { - M , - , . . . , Mj - 1} for tj > 0, j - 1 , . . . , n, 
Sj = {0} for Tj = 0, Sj = {0,1} for Tj > 0 , j = 0 , 1 , . . . , n, 
J0 = {0} for r0 = 0, Jo = { - M o , . . . , - 1 } for r0 > 0. 

The Euler method for the problem (18) uses ¿ f : Eh x F(E*h,R) -> R 
given by the following formula 

$%(x,y,w) = F(x,y, J(w,x,y)). 

For the Taylor method of order 2 we define : Eh x F(E%,R) R such 
that 

y, w) = F(x, y, J(w; x, y ) ) + ^DxF{x, y, J(w, x, y)) 

+^DrF(x,y,J(w\x,y)) • J(v\x,y), 

where 
v(x, y) = Dx<p(x, y) for (x, y) € E0.h U d0Eh 

and 
v(x, y) = F(x, y, J(w, x, y)) for (x, y) € Eh. 

The Runge-Kutta method of order 2 for the problem (18) uses the func-
tion $ % : E h x F{El , R ) ^ R such that 

$£(x, y, w) = qiF(x, y, J(tu; x, y)) 

+ q2F(x + ah0, y,J(w; x, y) + /3h0J(v; x, y)) 

with the parameters qi,q2,a,P satisfying the system (17). 
In each above methods we use <ph : Eo.hUdoEh —* R such that <ph(x, y) = 

ip{x, y), (x, y) € E0,h U d0Eh. 

The numerical results we obtain for the problem (18) with E = (0,1) x 
( -1 ,1 ) , E0l)d0E = ([0,1) x [—1.5,1.5]) \ E, B = {0} x [-1.5,1.5] and 
F(x,y,r) = r - x2(y2 + + 2 x y 2 , <p{x,y) = x2y2 and h0 = 0 .02, h\ = 
0.02. The table shows some experimental values obtained for the Euler 
method, the Taylor method and the Runge-Kutta method. In the table 
the symbols denote the solutions of the respective difference-
functional methods and 6ff denote the point distances of the solutions 
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of the difference-functional methods to the solution u of the differential-
func t iona l problem, i.e. 6*(x,y) = \u(x,y) — z*(x,y)|, (x,y) € Eh where 
X e {E,T,R}. 

The above values are as follows: 
{.x,y) z%{x,y) 6%{x,y) z%(x,y) 6%(x,y) zfî(x,y) 6%(x,y) 

( 0 . 4 , - 0 . 4 ) 0.0239 1.69 • 10" 3 0.0256 1.57 • 10~ 6 0.0256 2.35 • 10~ 5 

(0 .4 ,0 .8) 0.0097 5.64 • 10" 3 0.1024 1.52 • 10~ 6 0.1023 6.25 • 10"5 

( 0 . 8 , - 0 . 4 ) 0.0979 4.48 • 10~ 3 0.1024 1.40 • 10~ 5 0.1023 5.12 • 10~ 5 

(0 .8 ,0 .8) 0.3970 1.26 • 10~ 2 0.4096 1.32 • 10~ 5 0.4095 1.31 • 10~ 4 

The computations were carried out on an IBM AT. 
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