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THEOREMS ON IMPULSIVE PARABOLIC
DIFFERENTIAL-FUNCTIONAL INEQUALITIES

Abstract. Theorems on weak parabolic differential-functional inequalities together
with initial boundary inequalities and impulsive inequalities, and on uniqueness criteria
of solutions of parabolic differential-functional problems in arbitrary parabolic sets are
proved.

1. Introduction

The aim of the paper is to prove theorems on weak parabolic differential-
functional inequalities together with initial-boundary inequalities and impul-
sive inequalities. As a consequence of these theorems we obtain uniqueness
criteria of classical solutions of nonlinear parabolic differential-functional
problems.

The results of the paper, concerning classical parabolic differential-func-
tional inequalities, are related to positions [4]—[6] and [8].

A theorem on weak inequalities with initial-boundary inequalities for
unbounded solutions was proved in [5] under an assumption that a stifling
divisor exists. In Section 3 of this paper we prove an analogous theorem for
bounded solutions of a nonlinear system of inequalities assuming that the
solutions satisfy a certain condition at infinity. The idea of the proof of the
theorem was drawn out from [6].

To prove the theorems from Section 4 on impulsive parabolic problems
some results given in papers {1]-[3] are applied.

Recently, parabolic problems together with impulsive inequalities with-
out the functional argument have been considered in [7].
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2. Preliminaries

For any vectors z = (21,...,2m) € R™, 2 =(Z1,...,%2m) € R™ we write
z2<zifz <% (i=1,...,m).

Let E C R™*! be an open set such that the projection of E on the t- axis
is the interval (0,T), T < oo. By D we denote a set of the points (£,Z) € E
for which there exists a number p > 0 such that {(¢,z): E;’zl(z‘j -Z;)% +
(t-%2<pt<i}CE.

It is clear that E C D C E. Let

o:=(8EN((0,T] x R®))\D, So:=En ({0} x R*)
Y:=0USYp.
For any t € (0,T) and for any r > 0 we define the following sets:
St :={z € R": (t,z) € D},
D' :=Dn((0,t] x R™),
Di:=D'n{(t,z) € R*: |z| =r},
(DY), .= D*n{(t,z) € "™ : |z| < r}
Z(St):={z|2:S:2z — 2(z) € R™}.

AsSSUMPTION A. For each i € {1,...,m}, we assume that o' is a subset
(possibly empty) of o and I* is a direction such that for every (t,z) € o*
the direction I = l'(t, ) is orthogonal to the t-azis and the interior of some
segment starting at (t,z) in the direction I* is contained in D. The functions
o' ot = Ry, Bt :0' — Ry, where Bi(t,z) > B >0 (i=1,...,m), are
given.

We define two sets: & := (J, o%, D := DU34.

For each i € {1,...,m} a function 4! : DU ¢* — R is said to be o*-
regular in D if u® is continuous in DU o* and the derivatives ul, ul, u, are
continuous in D.

We write w: D — R™ if u' : DUo® — R for every i € {1,...,m}.

A function w: D — R™ is called o-regular in D if u* (i = 1,...,m) are
o'-regular in D.

We denote by C,(D) the set of functions u : D — R™ which are o-
regular in D and by C%(D) the set of the functions belonging to C,(D) and
bounded in D.

For every set E C R'*™ we denote by dist(P, E) the distance between a
point P and the set E.

DEFINITION 2.1. We say that a function u € C,(D) satisfies a boundary
condition (BC) with the constant h > 0 if:
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(1) For every P, = (t,,z,) € D such that lim,_,q dist(P,, X \ 0%) = 0
we have

limsupu'(t,,z,) <h (i=1,...,m);

V—00
(2) For every (t,z) € o' (i =1,...,m) we have
Bi(t, 2)ui(t, z) — o (t, z) Dyu'(t, z) < hf,
where 3 is the constant from Assumption A and

- A 1, . . ,
Dyivt(t, z) := lim sup,_o+ ;[u’(t, z + Tvers I}(t, 1)) — u'(t, z)].

DEFINITION 2.2. A function u € C,(D) satisfies a limit condition (LC) if

limsup w'(t,z) <0 (i=1,...,m)
|z| =00
(t,z)e DUs*

almost uniformly with respect to t.
For each i € {1,...,m} consider the mapping
f:Dx R™x R™ x R™ x Z(8:) 3 (t,z,u,q,7,2) = fi(t,z,u,q,7,2) € R,

where ¢ = (g1,...,qn), T = [Tjklnxn, and an operator P given by the
formula,
(P'w)(t,7) := wi(t, z) — f*(t, 2, w(t, z), wi(t, T), wi, (L, ), w(t, ),
w € C,(D),(t,z) € D,

. . . 2,.¢
where w}, := grad;w*(t,z) and w},, := [%éi’—:l] (i=1,...,m).
J nxn

For each i € {1,...,m} the function f* is said to be parabolic in a subset
S C D with respect to a function u € C,(D) if for every real square sym-
metric matrices r = [rj], 7 = [F;x] and (¢,z) € S the following implication
holds

r<T = fi(t, z,u(t, z), ug(t, z), 7, u(t,-))
< fi(ta z, u(t, .’B), u-‘c(ta z)’ T, u(t’ ))1

where 7 < 7 means that the inequality E;"kzl(rjk —7k)Aj Ak < 0 is satisfied
for arbitrary vector A = (A1,...,A,) € R™.

3. Differential-functional inequalities with initial-boundary
inequalities
We introduce the following assumption:
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AssuMPTION B. There exists a function M : D x R™ x Z(S;) — R™ such
that for (t,z) € D,q € R™,r € R™ and z2,Z2: D — R™ we have
(3.1)  fi(t,z,2(t,2),q,7,2(8, ) — fit,x, Z(t,x), q, 7, Z(t, )
< Mi(t,z, 2(t, x) — 2(t, ), 2(¢, -) — Z(t, -))
in the set {(t,z) € D : 2'(t,z) > z'(t,z)} (i =1,...,m).
Moreover, there exists a constant K € Ry such that for arbitrary func-

tion w : D — R™ bounded from above in D the functions M* (i =1,...,m)
satisfy the inequalities

(3.2) Mi(t,z,w(t, z), w(t,-)) < K max sup w?(t,z)
P zeS:

in the set {(t,z) € D : wi(t,z) >0} (i=1,...,m).
THEOREM 3.1. Suppose that:

1. Assumption B is satisfied,;
2. u,v € C,(D) and (P'u)(t,z) < (Pw)(t,z) for
(t,z) € N; == {(t,z) € D :u'(t,z) > v'(t,z)} (i=1,2,...,m);
3. u—v is bounded from above in D and satisfies the condition (LC) and

condition (BC) with the constant h = 0;
4. f* is parabolic with respect to u orv in N; (i =1,...,m).

Then

(3.3) u(t,z) <wv(t,z) for (t,z)€ D.
Proof. We will show that
(3.4) u(t,z) < v(t,z) for (t,z)e€ D™,

where 0 < Tp < 2—1,?, arguing by contradiction. Suppose that inequality (3.4)
is not true, i.e.,

maxsup [u'(t,z) — v'(¢,z)] = H > 0.

2 DTO

Obviously, there is an index j € {1,...,m} such that
sup [u/(t,z) — v (¢, z)] = H > 0.
DTo

By condition (LC), there exists rg > 0 such that

sup (v —v%)(t,z) = H.
(D7),

Next, define an auxiliary function w by the formula

(3.5) w(t, ) := vl (t,x) — v (¢, z) — %t)’
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where % <A< H, (tz)€ D™, Function w has the following properties:

(i) w(t,z) < H for (¢,z) € DT,
(ii) w satisfies the conditions (BC) with the constant A = 0 and (LC),
(i) if w = supm—w(t, z), then
o

H>w> sup [(w/ —v/)(t,z)—A]=H-X1>0.
(DTo)rg

Condition (LC) implies that for ¢ = % there exists r; > ro such that for
every r > r; we have

(3.6) w(t, z) < % for (t,z) € DTe.

Consequently,

sup w(t,z) =w; >w > 0.
(DTo)r,

Observe, from inequality (3.6), that w; cannot be reached on the boundary
DIt and in the exterior of the set (DT°),, belonging to D™°. Put
DTo(p) := {P € (D™),, : dist(P, (£™),,) > p},
Do(p) := (D™),, \ D™°(p).

Arguing analogously as in Theorem 1 from [5], we obtain that w; cannot be
reached close to the boundary (£7°),, , i.e. there exists pg > 0 such that

(3.7) sup  w(tz) =ws < wy.
(t,z)€Do(po)

Fix po > 0 for which (3.7) holds. Let p; := £ and D; := DTo(p,). Since
the function w is continuous in D; and w(t,z) < we < w; for (t,z) € 0Dy,
there is (,Z) € intDy such that

w(t,Z) = max_w(t,z)=uw
(t,:l:)EDl
Therefore,
(3.8) wy(f,2) = ui(E,3) — vi(§,3) - Ti >0,
0

n
> e DM = Y (Ul (F,7) — v, (,2) N <0
lk=1 lk=1
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On the other hand, by (3.5), by Assumptions 2,4 of Theorem 1 and by
Assumption B, we obtain

~ A - _
we (¢, Z) + T = ul(t,T) — v, 7)
< fj(f,:'i,u,u-;,ujm,u( )) _fJ(t z,v, vi)”imv(f"))
~ 1§, 8,9, 9], ul,, v(E, ) + F (2, 0,03, ul,, v(F, )
< MIEE,u—-v,ul,)—v({,-))
< Ksup (v (f,z) —v(t,z)) < KH
S
Consequently,
(3.9) w5 <KH-~ <H(K-—)<0
' wnT = T 2T, ‘

Since (3.9) contradicts to (3.8) then (3.4) holds.

Assuming that for certain integer m inequality u(¢,z) < v(t, z) holds in
the set D™T0 \ D(m=1To apd repeating the above argumentation, we can
prove that u(t,z) < v(t,z) in (t,z) € D(m+DTo \ pmTo,

The proof of Theorem 3.1 is complete.

Consider the following problem (called a mized parabolic differential-
functional problem):

(3.10) (Pu)(t,z)=0 for (t,z)e D (i=1,. ..,m),
(3.11) ui(t,z) = ¢i(t,z) for (¢, as) € E\cr (1= ., m),
(3.12) Bi(t,z)u'(t, ) — (2, fﬂ) (t z) = ¢3(t,fb‘)

for(, )Ea (i=1,...,m),

where ¢! : \o* » Rand ¢4 : 0 — R (i=1,...,m) are given functions.
A function u € C,(D) is said to be a solution of problem (3.10) — (3.12)

if:
a) the derivatives 4% (3 = 1,...,m) are finite on o* (i = 1,...,m),
. dl
respectively,

(b) u satisfies formulas (3.10) and (3.12) ,

(C) lim(t,z)—»({,i) ui(t,z) = (f)ll(f,f:) (7: = 1,...,m) for all ({,f:) € E\
] (t,z)eD
ot (i=1,...,m).
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Let
LCY(D) := {u eC%D): l l|im ui(t,z)=0(i=1,...,m),
(t,z)eDUg*

almost uniformly with respect to t}.

As a consequence of Theorem 3.1 we obtain the following theorem about
the uniqueness of a classical solution of the parabolic differential-functional
problem (3.10)—(3.12).

THEOREM 3.2. Suppose that Assumption B is satisfied. Then, in the class of
all functions u belonging to LC%(D) such that the functions f* (i=1,...,m)
are parabolic with respect to u in D, there exists at most one function u
satisfying the mized parabolic differential-functional problem (3.10)—(3.12).

4. Differential-functional inequalities with impulsive inequalities

The aim of this section is to prove Theorem 4.1 about weak nonlin-
ear parabolic differential-functional inequalities with nonlinear impulsive in-
equalities and initial-boundary conditions. The Assumption B of Theorem
4.1 is quite different than assumptions considered in papers [1]-[3].

Let s € N be an arbitrary fixed number and let ¢1,¢5,...,¢; be given
real numbers such that 0 = ¢y < ¢t; <ty < ...<t; < T. For any ¢ € (0,T)
we define 6; := D N ({t} x R™) and introduce the following sets

b, = U 6s;, Dy:= U D;,
j=1 ji=1

where
Dj:=Dn[(t;,ti+1) xR*] (i=0,1,...,5s-1),
D, :=Dn [(ts, T] x R™].
Let X, := (0 \ 6x) U So.

AssuMmpPTION C. For each i € {1,...,m}, we assume that 0% is a subset
(possibly empty) of o\ 6, and I* is a direction such that for every (t,z) € ot
the direction I* = I'(t,z) is orthogonal to the t-azis and the interior of some
segment starting at (t,x) in the direction I* is contained in D. We assume
that the functions o' : 0 — Ry, ' : 0% — R, where Bi(t,z) > B >0 (i=
1,...,m), are given.

We will need two sets

m
&.=|Jol, D,:=Dua.
i=1
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~ For each i € {1,...,m}, a function u* : DU} — R is said to be

o, -reqular in D if:

(i) u* is continuous in (DU 0%)\é, ,

(ii) for every (t,z) € 6, and for each sequence (t,,z,) € D, such that
t, >t [ty < t] and limy, 00 (ty, 7o) = (¢, ), the limit lim, 00 u(t,,z,) (5 =
1,...,m) is finite (obviously this limit does not depend on the choice of the
sequence (t,,z,)), it will be denoted by ui(t*,z) [u*(t™,z)], respectively
and u'(t, z) := u'(t*, z), (¢,2) € b4,

(iii) u}, ui,ul, are continuous in Dj.

We write u : D, — R™ if u' : DUo% — R for every i € {1,...,m}.

A function w: D, — R™ is called o,-regular in D if u* (i = 1,..,m) are
oi-regular in D. 5

We use the notation PC,(D) := {u: D, —» R™: uis o,-regular in D}.
DEFINITION 4.1. We say that a function u € PCy(D) satisfies a boundary
condition (BC), with the constant h > 0 if:

(1) For every P, = (t,,x,) € D, such that lim,_, dist(P,, %, \0i) = 0
we have

limsupui(t,,z,)<h (i=1,...,m);

V—00
(2) For every (t,z) € ot the inequalities
Bi(t, o)ui(t, ) — o' (t, z) Dpui(t,z) < hB, (i=1,...,m),
are true, where 3 is the constant from Assumption C and

_ , 1 . , .

Dy’ (t, z) = lim sup, o+ ;[u’(t, z + Tvers lI)(t,z)) — u'(¢, ).
DEFINITION 4.2. A function u € PC,(D) satisfies a limit condition (LC),
if

limsup wu'(t,z) <0 (i=1,...,m)

(tyw)eD.Uo,

almost uniformly with respect to t.
For each i € {1,...,m} consider the mapping
fi:D,x R™ x R™ x R™ x Z(S¢) > (t,z,u,q,7,2) = fi(t,z,u,q,7,2) €R
and an operator P} given by the formula
(Piw)(t, z) == wi(t, z) — fi(t, T, w(t, z), wi(t, z), wi,(t, x), w(t, ),
w € PC,(D),(t,z) € D,.

For each i € {1,...,m}, the function f! is said to be parabolic in a
subset S C D, with respect to a function u € PC,(D) if for every real
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square symmetric matrices 7 = [rjk], ¥ = [F;x] and (¢,z) € S the following
implication holds

r< 7= fit,z,u(t, z),ux(t, ), ult,)) <

fi(t, z, u(t, ), us(t, ), 7, ult, -)),

where r < 7 means that the inequality Z;kzl(rﬂc —7ik)Aj Ak < 0 is satisfied
for arbitrary vector A = (A1,...,A,) € R™

For each i € {1,...,m} consider the function

ht:6, x R™ — R.
ASSUMPTION D. The functions h* (i = 1,...,m) satisfy the following con-
dition
(2,2€ R™,z< 2) = (' + hi(t,2,2) < 7' + h'(¢,2,2))
for (t,z) €6, (i=1,...,m).

THEOREM 4.1. Suppose that:

1. Assumption B, where f and D are replaced by f. and D,, respectively,
18 satisfied;

2. u,v € PC,(D) and (Piu)(t,z) < (Piv)(t,z) for (t,z) € Q; =
{(t,z) € Dy : ui(t,z) > v'(¢, )}, (i=1,2,...,m);

3. u — v is bounded from above in D and satisfies conditions (BC), with
the constant h = 0 and (LC),, and the impulsive inequalities

u'(t,z) —ut(t™,z) — hi(t, z,u(t ™, z)) < vi(t,z) — v (t™, z) — hi(t, z,v(t™, z))

for (t,z) € &,, where h* (i = 1,...,m) are given functions satisfying As-
sumption D;

4. fi(i = 1,...,m) are parabolic with respect to u or v in Q; (i =
1,...,m).

Then
(4.1) u(t,z) <wv(t,z) for (t,z)€D.

Proof. To prove inequality (4.1) consider the following problem:

(42) (Pu)(t,z) < (Ppw)(t,z) for (t,z) € QN [(tk, Thya] x R7
(¢ = 1,...,m); limsup,_, [u*(t,,z,) — v*(ts,2,)] < O for P, =
(ty, zv) € DN[(tk, Ti+1] x R"] such that lim,_, 0 dist(By, [6¢, U (T4 \
0’:)] n [[EkaTk.-l-l] X.Rn]) =0 (2 =1,.. "m); .Bz.(t,w)(ul - ’Uz)(t’ Z‘) -
a'(t,z)Di(u — v*)(t,z) < 0 for (¢,z) € ob N [(tk, Te+1] X R™]
(i=1,...,m),

for k=0,1,...,s, where t; = 0, 6, = So, Tk+1(k=0,1,...,5s — 1) are the

arbitrary numbers such that ¢ < Tk < tg41 and Ty = T.
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First, consider the problem (4.2) for £k = 0. By the assumptions of Theo-
rem 4.1, corresponding to this problem, we obtain, by Theorem 3.1 applied
to the set D N [(0,Ty] x R"], the inequality

(4.3) u(t,z) <wv(t,z) for (t,z) € DN [(0,T1] x R"].

Consequently,

(4.4) u(t,z) < v(t,z) for (t,z) € DN [(0,t) x R

By (4.4) and by the fact that u,v € PC,(D),

(4.5) u(t™,z) <v(t7,z) for (t,z) € &,

From inequality (4.5) and Assumption D we obtain

(4.6)  w(t7,z)+ At z,u(t",z)) < vt z) + hi(t,z,v(t7, z))
for (t,z) € 6, (i =1,...,m).

Inequalities (4.6) and Assumption 3 of Theorem 4.1 imply that

(4.7) u(t,z) < v(t,z) for (¢,2) € by, -
By (4.4) and (4.7),
(4.8) u(t,z) < v(t,z) for (t,z) € DN [(0,41] x R™].

Now, consider the problem (4.2) for £ = 1. By the assumptions of The-
orem 4.1,corresponding to this problem, we obtain, by Theorem 3.1 applied
to the set D N [(¢1, To] x R"], the inequality

(4.9) u(t,z) <v(t,z) for (t,z) € DN [(t1,To] x R™].
From (4.8) and (4.9) we have

(4.10) u(t,z) < v(t,z) for (¢t,z) € DN [(0,Tz] x R"].
Consequently,

(4.11) u(t,z) < v(t,z) for (¢,z) € DN [(0,t2) x R"].
By (4.11) and by the fact that u,v € PC,(D),

(4.12) u(t™,z) <v(t7,z) for (¢,z) € b,.

From inequality (4.12) and Assumption D we obtain

(4.13) it z) + At z,u(t™,z)) < v (t™,z) + hi(t,z,v(t7, z))
for (t,z) e b, (i=1,...,m).

Inequalities (4.13) and Assumption 3 of Theorem 4.1 imply

(4.14) u(t,z) <wv(t,z) for (¢,z) € bs,.

By (4.11) and (4.14),

(4.15) u(t,z) <v(t,z) for (t,z) € DN[(0,t2] x R"].
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Repeating the above procedure (s — 2)-times, we have
(4.16) u(t,z) < v(t,z) for (¢,z) € DN [(0,t,) x R"].

Finally, consider the problem (4.2) for £ = s. By Theorem (3.1), we get
the inequality
(4.17) u(t,z) <v(t,z) for (t,z) € DN [(t,, T] x R"].

Inequalities (4.16) and (4.17) imply u(t,z) < v(t,z), (t,z) € D.

The proof of Theorem 4.1 is complete.

Consider the following mixed impulsive parabolic differential-functional
problem:

(4.18) (Piu)(t,z) =0 for (t,z)€ D, (i=1,...,m);
(4.19) ui(t,z) = ¢i(t,z) for (t,z)€ ?L\ai (i=1,...,m);
(420) Bt 2 (6 ) — 0 (t,2) (6, ) = 3 (8,2)

for (t,z)eot (i=1,...,m);
(4.21) ui(t, z) — u'(t,z) — hi(t, z,ut™,z)) = d5(¢, z)

for (t,z)€5* (7'=1:$m))

where ¢} : Z,\ot > R, ¢b:0' > R and ¢} :6, > R(i=1,...,m) are
given functions.

A function u € PC,(D) is said to be a solution of problem (4.18) —(4.21)
if:

(a) the derivatives ‘fl—‘l‘: (1 =1,...,m) are finite on 0% (i = 1,...,m),
respectively;

(b) u satisfies formulas (4.18), (4.20) and (4.21) ;

() im (4 5y (zz) v'(t,x) = ¢i(£,Z) (i = 1,...,m) for all ({,%) € B, \

] (t,x)eD
ol i=1,...,m).
Let
LPC,(D) := {u € PC,(D): I llim ui(t,z) =0 (i=1,...,m),

(t,z)eD,Uat
almost uniformly with respect to t}.

As a consequence of Theorem 4.1 we obtain the following one:
THEOREM 4.2. Suppose that Assumption B, where f and D are replaced

by f. and D,, respectively, is satisfied and the functions h* (i = 1,...,m)
satisfy Assumption D. Then in the class of all functions u belonging to
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LPC,(D),bounded in D and such that the functions f: (i = 1,...,m) are
parabolic with respect to u in D, there exists at most one function u satisfying
the mized impulsive parabolic problem (4.18)—(4.21).
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