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THE DIRICHLET PROBLEM FOR BIHARMONIC
EQUATION IN CASE OF THE HALF PLANE

Abstract. Using the representations of the solution of Dirichlet problem for the half
plane, the basic biharmonic problem (BP) is solved. Applying the half plane theorem on
Almansi type representation of the solution is given by direct or analytical methods. New
formulas are proved and for special cases some applications are presented.

1. The Dirichlet problem for the half plane

Let C={z=z+iy:z,y € R} be the complex plane, where the upper
half plane Dy(y > 0) and the lower half plane Dy(y < 0) are delimited
through the boundary ¢ = (—00,00); then C = D; U Dy Uc.

THEOREM 1.1. The Dirichlet problem (DP) for Dy requires to find a har-
monic function U(z,y) of C2(D1) class, continuous on D1 = D; U c such
that Uly=0 = U*(x). The solution is [1], [5], [9]
oo
y U*(?)
1 =2 R S A
L U=\ oprrge

-0

dt.

The problem has solutions in the case when U*(¢) has a finite number of
discontinuities or singularities, too. To assure the convergence of the integral,
U*(t) will satisfy Holder type conditions or regularity conditions at infinity,
and for this purpose it is sufficient to exist o > 0 with the condition [1}, [9]

Jim |z*U*(z)| = M < 0.
Let V(z,y) be the harmonic conjugated function of U(z,y) in C. Then

the Cauchy-Riemann conditions
ou _ov ou ov

@) 8z 8y’ 8y Oz
are satisfied (1], [9].
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In this case, we consider the function

(3) f(z) = U(z,y) + 1V (z,y)

which may be holomorphic in C, except a finite number of isolated singular
points.

THEOREM 1.2. If on the c azis the real part Rf(z) = U*(z) and the imagi-
nary part Sf(z) = V*(z) are known in regularity conditions, then one can
derive in Dy the holomorphic function f(z) with the Cisotti formula

@ fG)=5 1 ogo(t]*()dt+zK1 and f(z):71r g ‘t/*()dt+K2,

respectively, where the real constants K1, K2 can be determined knowing the
value of f(z) in a single point of D;.

It may be observed that if one determines the real part of f(z) from (4),
then (1) is obtained.

We suppose that, if U*(z) is given as a real rational function, then from
U*(z) = %8 one performs directly the simple fraction decomposition, de-
termining the principal part P,{U*(2)} = Pi(z) + P2(2), where Pi(2) and
Py(z) correspond to the poles from D; and Ds, respectively. The solution
is obtained calculating the Cauchy integral and then applying the residue
theorem.

THEOREM 1.3. The solution of the Dirichlet problem with rational data on
boundary c is, for the two domains Dy [4], [7]

(5) fi(z) =U(z,y) +iV(z,y) = 2Pk(2) +iK, Lk=1,2, l#k.

There are situations when the solution of the Dirichlet problem is re-
quired, so that f(z) must have a finite number of isolated singularities in
C': poles, logarithmic singularities, essential singularities or poles at infin-
ity [9], [11]. Such a case is furnished in hydrodynamics, electromagnetism
or thermodinamics by the potential plane fields E = E;(z,y)i + Ey(z,v)j
with divE = 0 and rotE = 0 2], [5], [9]; in this case E = gradU(z,y)(E =
gradV (z,y)) and one derives the potential field f(z,y) = U(z,y) + iV (z,y)
with E, = %g = %‘y/,E = %—Z = %‘;, where f(z) is holomorphic in C,
except the specific singularities. The functions U(z,y) =const., V(z,y) =
const. may present field lines or equipotential lines, with f'(2) = E; —iE,.
These potential fields f (z) can be generated by potentials of the form

ZZ +ZBllogz—bl)+ZChz + g(2),

lc1_11 h=1
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where Ag;, By, Cp € C and g(z) has essential singularities. Similarly to the
Milne-Thomson theorem for the circle [13], generalized by C. Iacob [5], [6],
using the analytic extension and the Schwarz principle, one obtains the
solution of the Dirichlet problem with given singularities in the half-plane

[4], {6]-

THEOREM 1.4. (Half-plane theorem) Supposing that fo(z) has given singu-
larities in Dy one requires a holomorphic function f(z) in D1, having the
same singularities as fo and moreover, Rf(2)|. = 0, (Sf(2)|. = 0). As it is
known (2], (3], [4], [6] one obtains immediately

6)  f(2) = fol2) - fo®) + iK1,  (f(2) = fo(2) + fo(Z) + K2)-

The proof is performed by verification. For example, in the second re-
lation in (6), fo(z) has singularities in the principal part in D; and fo(%)
is the analytical extension with singularities in the principal part in Ds.
Since f(z) — fo(2) — fo(Z) is analytical and bounded in the whole plane C,
therefore, according to the Liouville theorem, it reduces to a constant. One
observes that Sf(z)|. = ${fo(z) + fo(z)}|. = 0 and hence the constant K
is real. The first relation in (6) may be verified similarly.

Combining Theorems 1.1 and 1.2, we get the following important result.

THEOREM 1.5. The function f(z) holomorphic in Dy, such that Rf(2)|. =
U*(z), having the same singularities as fo(z) in Dy and being the solution
of DP problem with the specific singularities and real values given on the
boundary c is of the form [11]

(7) f(z) = U(z,y) + iV (z,y)

—;z_soog*(t)dt+f( z)— fo(Z) +iK, K e€R.

It is obviuos that, if U*(z) is a rational function, then we obtain according
to (5), the solution of DP with given singularities in D; and rational data
on the boundary c,

(8) F(2) = 2Py(2) + fo(2) - foZ) +iK, z€ Dy,
where Py(z) = Pp{U(z)} corresponding to the poles from Dy [11].

Application 1. Let be the dlpole fo= -2 located in the point ia, a > 0,

z—1ia

p > 0and Rf(2)|l. = U*(z) = 1+_z7 Then U*(z) = 1+z =1 ﬁ—%ﬂ)wmh

Py(z) = me and, according to (8) the induced potentlal by fo(z) having

the distribution U* on cis f(z) = —2— + 211)?& + L
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THEOREM 1.6. [7] Let G(z) be holomorphic in Dy and D2, continuous and
uniform; on c the function G(z) may have at most singularities of first kind

in E = {21,%2,...,2,} and the rational function fo(z) has polar singulari-
ties in Dy. Holomorphic function F;(z) in D; such that
(9) REj(z)lc = Rfo(2) - RG(2)lc - B, j=1,2,

is of the form
(10) Fj(z) = fo(2)G(z) — [Pj(2) — Pj(z] + K, j=1,2, K €R,
where P;j(z) is the principal part of the function fo(2)G(z) in Dj,j =1,2.

Proof. According to Theorem 1.5, the parenthesis from (10) contains the
principal parts for the singularities of fo(2)G(z) in Dj;. Substracting the
parenthesis from fo(2)G(z), the singularities are eliminated, getting Fj(z)
holomorphic in D; U D,. By (9), we have R{F;(2)}|. = R{fo(2)G(z) —

[Pj(z) — Pj(Z)]}|c and hence Fj(z), as solution of DP is (10). It may be
observed that, if G(z) = 1, then RFj(z)|. = Rfo(2)|c = R{P;(2) + P;(Z) -
[Pj(2)=P;(2)|} = 2RP;(Z)|c = 2RPx(2), j # k, and Theorem 1.3 is obtained
particularly with (5), where j = 1, and Py(z) = Pa(2) is Pp{fo(z)} in Da.

In some applications, for the specified domains, there are frequent cases
when the conditions on OX axis are given with discontinuities on intervals.
We give an application of this theorem.

Let ¢; be the interval (a,b) located on 0X axis, a < b. The complemen-
tary of ¢; on the axis is & = ¢ - ¢;.

The Dirichlet problem with rational piecewise data requires to determine
in D; the holomorphic function F(z) = U + 4V, knowing its real part on the
boundary

(11) Ul =9(z), Ul =0
where g(z) is rational function without singularities on c.

THEOREM 1.7. [7]. Let g = g(z) and let

1 -b
(12) G(z) = o mZ=2  zeD

be a uniform function in Dy and for z = z > b the determination of the
logarithm be real. If P(z) is the principal part of the function g(z)G(z) cor-
responding to the poles from D1, then the solution of DP with the boundary
conditions (11) is

(13) F(z) =g¢(2)G(2) — [P(2)— P(z)|+iK, zeD;, KeR



The Dirichlet problem 45

Proof. We introduce the rational function g(z) with poles symmetric with
respect to the z-axis, real for y = 0 and such that g(Z) = g(z). We notice that
RG(2)|e = 1, RG(2)lc, = 0 and RF(z)]c = R{g(2)G(2)}|c = R{g(2)G(2) -
[P(2) = P(Z)]}e.

Using Theorem 1.6 or directly, as solution of DP, the formula (13) is
derived, and then U(z,y) is found.

As a general rule, the principal part of a function F(z) is obtained ex-
panding it in a Laurent series in the neighbourhood of the singular isolated
points from D,, i.e., P(z). But there appear isolated poles z; on cz, the
point at infinity included. For these points denote by Q(z) the principal
part of F(z) and write

(14) P{F(2)} = P(z) +Q(2) =

00 (]) P oo (k)

It is obvious that, if g(z) has another poles z in ¢z or at infinity, then
applying the residue and semiresidue theorems directly in (14) substracting
the principal part Q(z) from g(z)G(z), the formula (13) becomes

(15)  F(2) = 9(2)G(2) ~ [P(z) - P(2) + Q(2)] +iK, K €R.

Application 2. [7]. Let us consider g(z) = z™,n > 1; in this case RF'(2) =
z", for = € (a,b), RF(z) = 0 on c2. The function

9(2)G(z) = —lnz:z :jr_:[ln(l_g) —ln(l—%)]

has a single pole at infinity. Hence, expanding the logarithms, we get the
principal part Q(z) in the form

Q@) = - a4 02— @k )

n-—1

and P(z) = 0. The solution (15) becomes

(16) Fl)= Smi=b LY Z — aP)am.

™ z—a

There are situations when DP must be solved to the half plane with
boundary data as piecewise irrational functions [4]. Thus, one has to find in
D; the harmonic function U(z,y) with irrational data on boundary

(17) {U(z,+o)=(w—a)ﬂ*(b—x)-wx), z € (a,b),
U(z,0)0=0 on ca,
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where R(z) is a rational function without singularities on ¢; and p € (0, 1).
Here the complex plane C has a cut on [AB]. Then, using (4), we have

1! R(t) 1 .
(18) F(z)= —=| RS ——dt +iK.

7T’La

According to [4], this integral is evaluated by using the residue theorem
and the methodology of Theorem 1.6. So, for ( € D; one considers the

function
—a\ ¥
(19) F0=(53) ta

and the contour I' formed by the semicircle C3(0) of |z| = R and the
semicircles CF(a) and CF(b) of |z — a| = € and |z — b| = € isolating the
critical points a and b, respectively. Computing

§F(Q)d¢= | F(Qd¢+ | F(Q)d¢ -

g Ck C(@)
b
pm —ipmy [ (T 0\F R(2)
‘ i )i(b*t> (t—a)(t—z)dt“LCES(b)F(C)dC
= 2miRes{F((),{ = z} + 2mi i Res{F((),( = z},
k=1

where z, are the singularities of F(z) at a finite distance in D;. The con-
ditions of the Jordan theorem are satisfied, hence for R — oo,¢ — 0, the
respective integrals tends to zero. Distinguishing P(z) = P,{F(z)} for D;
and Q(z) = Pp{F(z)} for the poles from ¢; the point at infinity included,
one obtains

(20) F(2)=U+1iV
= {i<z_a)“R(Z)‘[P(z)—ﬁ(—f_)wLQ(Z)HiK}-

sinur - \z—-b/ z—a

THEOREM 1.8. [4]. The solution of DP with irrational data (17) on boundary
is U(z,y) = RF(z),z € Dy, where F(z) is given by (20).

The above theorems can be used for the solution of the Dirichlet problems
with these special boundary data, for single connected domains which can
be conformaly mapped onto the half plane through rational functions.

The problems have been solved also for the inner or outer domains of
the circle in many studies, but with outstanding contributions of the roma-
nian school, leaded by C. ITacob (3], [4], [11]. Recently, C. Marinescu [12]
performed a method for construction of some holomorphic functions f(z)
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with singularities in the inner or outer circle, when on the same arc of circle
there are given simultaneously U(z,y) and V(z,y).

2. The fundamental biharmonic problem for half-plane

The fundamental l)_iharmonic problem (FBP) requires to find a function
U =U(z,y),U € C'(D;) U C*(D;) biharmonic in D, [2], [4], [6], i-e.,

8'U U | 9

1 U = 2 =0
(21) AU Fr z20y? t oyt ’
and satisfying the boundary conditions

oUu oU

2 = —_— = ———— =

(22) Ulc = Ri(z), an |, 3y |. Ry(z),

where R;, Ry are continuous or Lebesgue integrable given functions. In this
case Holder type conditions are satisfied. The derivate direction is of the
outer normal.

THEOREM 2.1. Let R; satisfy the smoothness conditions specified above.
Then the solution of the FBP for the half plane of an Almansi type is of
the form

(23) U(z,y) = Ui(z,y) + yU2(z,y)

where Uy, Uy are harmonic functions in D1 and precisely

2T R . ¢ TR

e U@y ="" 1 et =7 | gooreg

dt.

Proof. We obtain Uy, U, from (23) solving two Dirichlet problems in Dj.
For Uy, by the first condition of (22), we get

(25) AUl((l:,y) =0 in Dl, U|y=0 = Ullc = Rl(m),
and, applying (1) we obtain

oo
Y Ra(t)
26 Urz,y) =L | —2\Y
(26) 1(2,9) ﬂ_soo(t—:r)2+y2
By the second condition of (22), we get %—g|c = —%—Zly__.o = —[%’} +

Us]ly=0 = Rz(z); The function %1 + Uz is harmonic in D;. Using (1), we
obtain

oU T Rt
(27) 2 4 Ua(y) = -2 20

Oy s _L (t—xz)2+ 92 at.

The relations (26), (27) give (24). The uniqueness of the solution is garanteed
by the uniqueness of the solution of a Dirichlet problem.
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In order to give a complex representation of this solution we consider
the following analytical functions in D,

(28)  A(2) = Ur(z,y) +iVi(z,y), B(z) = Ua(z,y) +iVa(z,y),
where U;, Vj,1 = 1,2, are harmonic conjugate functions and
(29)  Ulz,y) = R{A(z) + yB(2)} = RF (2) = U1(=,y) + yUa(z,y).
For F(z) = A(z) + yB(z) the conditions (22) become

Ulc = RF(2)|c = Ur(z,y)|c = Ri(z),

) Tl = ~ 3 (RF()}e = —RIB(2) + A (2o = Rala)

THEOREM 2.2. By the smoothness conditions presented above, the function
(81) F(z) = A(2) +yB(2)

_1 OSO Rl(t)—sz(t)dt_l °S° yR1(t)

) t—z o, (t=2)?

dt+ Ky, + 1K,

is the solution of FBP with conditions (30).

Proof. Using (4), we shall follow the reasoning from the proof of Theo-
rem 1.9. By virtue of the first condition (30), we have Ul = RF(2)|y=0 =
RA(z)|y=0 = Ri(z) and the analytic function A(z) is

(32) A =+ | BBy

o S t—z
—00
By the second condition (30), using.(4), we get the analytic function

(33) B(z) +id/(z) = “%17' i sz(tz)dt.

The relations (32), (33) lead to (31), where the constants K1, K may be
determined, knowing a priori F(z) in one point of the domain D;.

Hence we have obtained the solution (31) of FBP similar to the Cisotti
formula (4). Also we notice that writing ®F(2) in (31) under the integral
sign, we get the solution (24).

Let us consider now that Ri(z), Re(z) are rational functions satisfying
the conditions of Theorem 1.3. We shall denote by Pp{R;(2)} = Pj(2),
j = 1,2, the principal parts corresponding to the poles from D,. After a
short calculation, using the residue theorem in (31), we obtain the solution
of (FBP) in D; with rational functions on boundaries

(34)  F(z) = A(2) + yB(z) = 2P{(z) — y[2P5(2) + 2iP}* ()] + K1 + iK>.
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We are going to generalize the result (34), according to Theorem 1.6. We
shall consider again the FBP with the special conditions

ou
(35) Uly=0 = Ri(z)RH:1(2)]c, 577“: = Ry(z)RH3(2)|c,
where Rj, Ry are rational functions and Hy, Hy are holomorphic functions
in the domain D;. On the ¢ axis they can have a finite number of isolated

singular points of the first kind.

THEOREM 2.3. The solution of FBP with the conditions (35) in the domain
D1 18
(36) {A(Z) = Ri(2)Hi(2) — [I1(2) — L1(2)] + 1Ky,

B(z) = —iA'(z) — {Ra(2)Ha(2) — [L2(2) — L2(2)]} + iKa.
We have noted the principal parts Po{R;(t)H;(2)} = L;j(2) in Dy, j =1,2.

Proof. By the first condition (35), we have
RF(z)|c = RA(2)|c = R{R1(2) Hi(2)}.

The hypotheses of Theorem 1.6 are satisfied by the holomorphic function
A(z) and, using (10), we find (36). In the same way, using the second condi-
tion (35), we have 82|, = —R[i4'(2) + B(2))|c = R{Rz(2)Ha(2)}|c; and, by
(10) for the analytic function —[iA’(z)+ B(z)], we obtain the solution in D;.
If the functions R;(z)H;(z) have poles at infinity, then the formulae (36)
must be modified in the sense of (15) by adding [L;(z) — L;(Z) + Q;(2)],5 =
1,2, where Q;(z) are the principal part for R;(z)H;(2) corresponding to the
poles at infinity. We note that, if H;(z) = 1, then L;(z) = P;(2) and from
(36) we obtain the solution (34).

As an application of this theorem we shall give the solution of the FBP
with piecewice rational boundary value and also with piecewice irrational
boundary value.

Let H; = R;j(2)G(z),j = 1,2, where G(z) = X In £=2 as in (12), and let
R;(z) be rational functions with poles in the domain D; or in the exterior of
[a, b] or at infinity, just like in the hypothesis of Theorem 1.7. In this case the
biharmonic function U(z,y) in D; is to be determined with the piecewice
rational boundary conditions

Ri(z), z € (a,b)
0, X € cg,
Ry(z), z € (a,b)
0, T € cy.

Ul = RE, ()] = {
(37)
%—lfﬂc = RHy(2)|c = {
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THEOREM 2.4. The solution of the FBP in the domain Dy is U(z,y) =
RF(z) = R{A(z) + yB(z)}, where

(38) {A(z) = H1(2) — [Pi(z) — P1(Z) + Q1(2)] + iK1,
B(z) = —iA'(z) — {Hz(2) — [Pa(2) = P2(Z) + Q2(2)]} + iKo,

Pi(2) and Py(2) are the principal parts of H1(z) and Hz(z) in D;, respec-
tively; and Q;(z) = Pp{Hy(2)},7 = 1,2 for the poles on c or at infinity.

Proof Thanks to the solution (13) given by Theorem 1.7, the proof is
similar to the proofs of Theorems 2.1 and 2.2.

Application 3. Let us solve the FBP in the domain D; with the following
boundary conditions
1 U ou {x", z € (—1,1)

Ul

T3 0, zeer

We note that these conditions satisfy the hypotheses of Theorems 2.2 and
2.3. The function in the first condition is rational on ¢ and in order to apply
the formulae (36) with Hi(z) = 1, we must take in (34) with A(2) = 2P (2),
where P(z) is the principal part of the function R;(2) = 1—+1;g for the pole

z =1 in Dy. We obtain A(z) = ;ﬁ For the second condition we note that

the hypotheses of Theorem 2.3 are satisfied with Hy(z) = Z;:— In i;—i Hence,
in the formulae (38) Py(z) = 0 and @Q2(z) is the principal part for the pole

at infinity calculated in Application 2 and (35), so

B(z) = —idl(z) - —mZ=L 4t ZV—:I 2 np
m z4+1 = et

Let us consider the FBP with irrational piecewise boundary value. Let
Hj(2) = R;(2)G(2), j = 1,2, where G(z) = (z — a)*"L(b— 2) ¥, u € (0,1)
and Ry, R are rational functions with poles in Dj or on ¢y the pole at
infinity included, as it was mentioned in Theorem 1.8. It is required to de-
termine the function U(z,y) biharmonic in the domain D; and satisfying
the conditions

Ule = RH1(2)| = {ORl(m)G(m), T € c1,y =40,

(39) ’ T E CZ;
&L c= §RH2(Z)|C = RZ(-’L‘)G(:I:), T €c,y=+40,
an 0, e

where G(z) = (z — a)*"}(b — z)™* is the value of G(2) for z € (a,b),
y = +0.
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THEOREM 2.5. The solution of FBP with condition (39) for the domain D,
is U(z,y) = RF(2) = R{A(z) + yB(z)}, where
oy { 46) = Bl B - PG R + Qua) + iy,

B(z) = —iA'(2) - {i(”“ ¥~ [Pa(2) - Pa(Z) + Q2(2)]} + iKo,

where Pj(2),Q;(2),j = 1,2, are the principal parts of -

R;(2)C(z) = z(z b) &2

z—a’
respectively, corresponding to the poles in D;, at infinity or on c;.

sin /.m

Proof. Following the proof of the Theorem 2.2, imposing the first condition
(39) ie., Ule = RF(2)|c = RA(2)|c = R{H1(2)}|c, using Theorem 1.8 and
(20), we get A(z) from (40). From the second condition (39), Q%Ic = —‘?,—ZIC =
—R{B(z) +1A'(2)}|c = RH2(2)|; we find for B(z) +iA’(z) the solution (20)
and then we find B(z) from (40).

We note that for all theorems proved in Section 2 we had to solve two
Dirichlet problems which are generally independent. Therefore we can com-
bine Theorems 2.2, 2.3, regarding the boundary conditions and we can con-
sider that for any logarithm or radical function a cut [AB] was made on axis
X'OX in order to compute the complex integrals.

Application 4. Let us solve the FBP with the following conditions

1 ou zt4+a?2 1 ou
T2 | ST
where p = 1,2,3,... and a € R. As it is seen, the conditions of Theorems

2.3, 2.4 are fulfilled. Considering the function -1—+1;; exp(—z%) with the pole
z =1t in D; and using (36), from the first condition (41) we get

(41) UIC - = 0,

1 1z
A(z) = — -2 ——
In order to satisfy the second condition (41) we consider the function

7’(z 1 —z4+a
z2+1 2241 z 1

ity. Here p=3 L and cis cut along the segment [—1, 1]. From hmz_,oo(z—_q) 2=1
it results Py(2) = ———j'—— and Q2(z)|z=00 = 12, because

having a pole z = ¢ in D; and a pole of first order at mﬁn-

4 2 2
z2*+a . a® 1 1 1 . a
Z 11 =Z[Z+;][l—z—2'+'z—4'+...][1+;+;+...]=’L[Z+§+...].

We get for B(z) the following expression

1)%z4+a2 1 (a®+1)iz
+1/) 2241 2-1 22+1

B(z) =iA'(z) + z(
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The above theorems may be used to solve FBP for simply-connected
domains conformal mappable by means of rational functions to the half
plane [1], [6]. The FBP for the circle was solved by Caius Iacob [6] in the
sense state by Theorem 2.2.

Remark. It is well known that a FBP is to be solved when the permanent
plane flows of viscous fluid [2], [5], [8] or the plane problem of elasticity
[6], [14] is studied. For the viscous fluid flows the function U(z,y) is the
stream function for the velocity field w = u + iv,u = %‘i’,v = %—‘I’ with

A?¥ = 0. Imposing boundary conditions on the solid frontiers, we must
preserve bounded or null velocity at infinity. In the case of the plane elasticity
problem the function U(z, y) is the Airy function [2], [10] with A2U = 0 and
the stress tensor components are T7; = %—,—,Tlg B:g},T 99 = 62U . The
boundary conditions must preserve null stress at infinity. For an Alman31
type (23) representation of the solution we can derive Kolosov-Mushelishvili
type formulae [2], [4].

For these problems it is known the Goursat complex representation of

biharmonic equation aaTg_g 0 with the solution U(z,y) = S{Zp(z) +

x(2)}, where ¢, x are analytic functions in D; [2], [4], [11]. For elasticity
theory there are known the results of Mushelishvili [2], [4] For viscous fluids
the theory of Mushelishvili has been adapted by D. G. Ionescu [8], who has
extended it on FBP for the circle and half-plane with given singularities for

¢(z) and x(z).
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