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T H E DIRICHLET P R O B L E M FOR B I H A R M O N I C 
E Q U A T I O N IN C A S E OF T H E HALF P L A N E 

Abstrac t . Using the representations of the solution of Dirichlet problem for the half 
plane, the basic biharmonic problem (BP) is solved. Applying the half plane theorem on 
Almansi type representation of the solution is given by direct or analytical methods. New 
formulas are proved and for special cases some applications are presented. 

1. The Dirichlet problem for the half plane 
Let C = {z — x + i y : x, y G i?} be the complex plane, where the upper 

half plane D\(y > 0) and the lower half plane ^ ( y < 0) are delimited 
through the boundary c = (—oo, oo); then C = Di U D2 U c. 

T H E O R E M 1.1. The Dirichlet problem (DP) for D\ requires to find a har-
monic function U(x,y) of C^-^i) class, continuous on D\ = D\\Jc such 
that U\y=0 = U*(x). The solution is [1], [5], [9] 

U) • U ( x , y ) = y \ U*{t}
 2dt. 

* _oo - t y + y2 

The problem has solutions in the case when U*(t) has a finite number of 
discontinuities or singularities, too. To assure the convergence of the integral, 
U*(t) will satisfy Holder type conditions or regularity conditions at infinity, 
and for this purpose it is sufficient to exist a > 0 with the condition [1], [9] 

lim |xai7*(x)| = M < 00. 
x—*oo 

Let V(x,y) be the harmonic conjugated function of U(x,y) in C. Then 
the Cauchy-Riemann conditions 

dU_dV d U _ _dV 

dx dy' dy dx 

are satisfied [1], [9]. 
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In this case, we consider the function 

(3) f(z) = U(x,y) + iV(x,y) 
which may be holomorphic in C, except a finite number of isolated singular 
points. 

THEOREM 1.2. If on the c axis the real part $lf(z) = U*(x) and the imagi-
nary part $sf(z) = V*(x) are known in regularity conditions, then one can 
derive in D\ the holomorphic function f(z) with the Cisotti formula 

1 o o T J * ( f \ 1 o o v * ( f \ 

(4) f(z) = r - i Z-Mdt + iK! and f(z) = - \ dt + K2, in J t — z 7T t — z — 00 —00 
respectively, where the real constants K\, Ki can be determined knowing the 
value of f(z) in a single point of D\. 

It may be observed that if one determines the real part of f(z) from (4), 
then (1) is obtained. 

We suppose that, if U*(x) is given as a real rational function, then from 
U*(z) — one performs directly the simple fraction decomposition, de-
termining the principal part Pp{U*(z)} = P\{z) + ^(¿O, where Pi(z) and 
P2(z) correspond to the poles from D\ and D2, respectively. The solution 
is obtained calculating the Cauchy integral and then applying the residue 
theorem. 

THEOREM 1.3. The solution of the Dirichlet problem with rational data on 
boundary c is, for the two domains Di [4], [7] 

(5) fl(z) = U(x,y) + iV(x,y) = 2Pk(z) + iK, l,k = 1,2, l^k. 

There are situations when the solution of the Dirichlet problem is re-
quired, so that f(z) must have a finite number of isolated singularities in 
C: poles, logarithmic singularities, essential singularities or poles at infin-
ity [9], [11]. Such a case is furnished in hydrodynamics, electromagnetism 
or thermodinamics by the potential plane fields E = Ex(x,y)i + Ey(x, y)j 
with divE = 0 and rotE = 0 [2], [5], [9]; in this case E = gradU(x,y)(E = 
gradV(x, y)) and one derives the potential field f(x, y) = U(x, y) + iV(x, y) 
with Ex = % = = % = where f(z) is holomorphic in C, 
except the specific singularities. The functions U(x,y) =const., V(x,y) = 
const, may present field lines or equipotential lines, with f'(z) = Ex — iEy. 
These potential fields f(z) can be generated by potentials of the form 

n m a p q 
fo(z) = £ £ T-^Tfc +EBl los(*-M + E + *(*). 

fc=l,-=lVz ai) 1=1 h=l 
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where Akj, Bi,Ch G C and g(z) has essential singularities. Similarly to the 
Milne-Thomson theorem for the circle [13], generalized by C. Iacob [5], [6], 
using the analytic extension and the Schwarz principle, one obtains the 
solution of the Dirichlet problem with given singularities in the half-plane 
[4], [6]-

THEOREM 1.4 . (Half-plane theorem) Supposing that fo(z) has given singu-
larities in D\ one requires a holomorphic function f(z) in D\, having the 
same singularities as /o and moreover, 9?/(z)|c = 0, (3 / (z) | c = 0). j4s it is 
known [2], [3], [4], [6] one obtains immediately 

(6) f(z) = f o ( z ) - W ) + iK1, (/(«) = f0(z) + ftffi + K2). 

The proof is performed by verification. For example, in the second re-
lation in (6), fo(z) has singularities in the principal part in D\ and fo(z) 
is the analytical extension with singularities in the principal part in D2. 
Since f(z) — fo(z) — fo(z) is analytical and bounded in the whole plane C, 
therefore, according to the Liouville theorem, it reduces to a constant. One 
observes that Qf(z)\c — S{/o(x) + fo{x)}\c = 0 and hence the constant K2 
is real. The first relation in (6) may be verified similarly. 

Combining Theorems 1.1 and 1.2, we get the following important result. 

THEOREM 1.5 . The function f(z) holomorphic in D\, such that 5FT/(Z)|C = 
U*(x), having the same singularities as fo(z) in D\ and being the solution 
of DP problem with the specific singularities and real values given on the 
boundary c is of the form [11] 

(7) f(z) = U(x,y) + iV(x,y) 
1 00 U*(t) 

= — S 1— dt + fo(z) ~ fo(z) + KeR. 
TTL t — Z —00 

It is obviuos that, if U*(x) is a rational function, then we obtain according 
to (5), the solution of DP with given singularities in D\ and rational data 
on the boundary c, 

(8) f(z) = 2P2(z) + fQ(z)-M¥j + iK, z e Di, 

where P2{z) = Pp{U(z)} corresponding to the poles from D2 [11]. 

Application 1. Let be the dipole /o = located in the point ia, a > 0, 
p > 0 and R/(z)|c = U*(x) = Then = ^ = ^ with 

~ 2(z+i) an<^' a c c o r <iing to (8) the induced potential by fo(z) having 
the distribution U* on c is f(z) = + -M- + -i-,. J ^ ' 2—ia Z-TML z-R% 
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THEOREM 1.6. [7] Let G(z) be holomorphic in Di and D2, continuous and 
uniform; on c the function G(x) may have at most singularities of first kind 
in E — {x\, x2, • • •, xn} and the rational function fo(z) has polar singulari-
ties in D\. Holomorphic function Fj(z) in Dj such that 

(9) 9tFj(z)\c = S/ 0(z) • 5RG(z)|c - E, j = 1,2, 

is of the form 

(10) Fj(z) = fo(z)G(z)-[Pj(z)-P&] + iKt j — 1,2, K 6 R, 

where Pj(z) is the principal part of the function fo(z)G(z) in Dj,j = 1,2. 

P r o o f . According to Theorem 1.5, the parenthesis from (10) contains the 
principal parts for the singularities of fo(z)G(z) in Dj. Substracting the 
parenthesis from fo(z)G(z), the singularities are eliminated, getting Fj(z) 
holomorphic in £>1 U D2. By (9), we have 5R{Fj(z)}|c = fR{fo{z)G(z) -
[Pj(z) — Pj(2)]}|c and hence Fj(z), as solution of DP is (10). It may be 
observed that, if G(z) = 1, then 3tF,-(z)|c = $fo(z)\c = ®{Pj(z) + Pj(z) -
[Pj(z)-Pj{z)]} = 2diPj(z)\c = 2RPfe(z), j + k, and Theorem 1.3 is obtained 
particularly with (5), where j = 1, and Pk(z) = P2{z) is Pp{fo(z)} in 

In some applications, for the specified domains, there are frequent cases 
when the conditions on OX axis are given with discontinuities on intervals. 
We give an application of this theorem. 

Let c\ be the interval (a, b) located on OX axis, a < b. The complemen-
tary of c\ on the axis is c2 = c — c\. 

The Dirichlet problem with rational piecewise data requires to determine 
in D\ the holomorphic function F(z) = U + iV, knowing its real part on the 
boundary 

(11) U\Cl=g(x), i/|C2 = 0 

where g{x) is rational function without singularities on c. 

THEOREM 1.7. [7]. Let g = g(z) and let 

(12) G(z) = A In — z e D i 
m z — a 

be a uniform function in and for z — x > b the determination of the 
logarithm be real. If P(z) is the principal pari of the function g(z)G(z) cor-
responding to the poles from D\, then the solution of DP with the boundary 
conditions (11) is 

(13) F(z) = g(z)G(z)-[P(z)-P(z)] + iK, z € Dlt K G R. 
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P r o o f . We introduce the rational function g(z) with poles symmetric with 
respect to the x-axis, real for y = 0 and such that g{~z) = g(z). We notice that 
5RG(z)|CL_=_1,3tG(z)|C2 = 0 and MF(z)|c = = ft{g(z)G(z) -

[P(Z) - P(z)]}\c 
Using Theorem 1.6 or directly, as solution of DP, the formula (13) is 

derived, and then U(x, y) is found. 
As a general rule, the principal part of a function F(z) is obtained ex-

panding it in a Laurent series in the neighbourhood of the singular isolated 
points from D\, i.e., P(z). But there appear isolated poles Xk on C2, the 
point at infinity included. For these points denote by Q(z) the principal 
part of F(z) and write 

( 1 4 ) Pp{F(z)} = P(z) + Q(z) = 

p oo a(j) P OO Q(k) oo 

= E E ( " > + E E ( z ™ ) m + £ bhz h-
j=ln=lVz z3) fe=l m=l Xk> h=1 

It is obvious that, if g(z) has another poles x^ in c<i or at infinity, then 
applying the residue and semiresidue theorems directly in (14) substracting 
the principal part Q(z) from g(z)G(z), the formula (13) becomes 

( 1 5 ) F{z) = g(z)G(z) - [P(z) - P(z) + Q(z)} + iK, K e R. 

Applicat ion 2. [7]. Let us consider g(x) = xn,n > 1; in this case ${F(z) = 
xn, for x € (a, b), 3lF(z) = 0 on C2- The function 

g(z)G(z) = --\nZ 6 

m z — a 7Tî ["HHR) 
has a single pole at infinity. Hence, expanding the logarithms, we get the 
principal part Q(z) in the form 

Q(z) = -((&- a ) z n _ 1 + \(b2 - a2)zn~2 + . . . + — ( f c 7 1 ' 1 - a " " 1 ) « ! 
7T L 2 n — 1 J 

and P(z) = 0. The solution (15) becomes 

? — h i n _ 1 1 
( 1 6 ) F(z) = — In — — - ± y ± ( p - ap)zn~p. 
K ' v ' iri z - a IT ^ p 

There are situations when DP must be solved to the half plane with 
boundary data as piecewise irrational functions [4]. Thus, one has to find in 
D\ the harmonic function U(x,y) with irrational data on boundary 

(17) { U { X ' + 0 ) = ( X " a r ~ 1 { b ~ x e ( a ' 
\ £/(x, 0) = 0 on c 2 , 
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where R(x) is a rational function without singularities on ci and /x E (0,1). 
Here the complex plane C has a cut on [AB]. Then, using (4), we have 

(18) F(z) = 1 \ 7 — dt + iK. K ' v ; 7TZ J (x - ay-^b - x y t - z 

According to [4], this integral is evaluated by using the residue theorem 
and the methodology of Theorem 1.6. So, for £ 6 D\ one considers the 
function 

and the contour T formed by the semicircle C^(0) of |z| = R and the 
semicircles C+(a) and C+(b) of \z — a | = e and \z — b\ = e isolating the 
critical points a and b, respectively. Computing 

§ F ( C R = S nod(+ \ Fiodc-
r c+ c«(a) 

n 

= 27rzRes{F(0, C = z} + 2TTi ̂  Res{F(C), C = *k}, 
k=l 

where zk are the singularities of F(z) at a finite distance in D\. The con-
ditions of the Jordan theorem are satisfied, hence for R —• oo, e —> 0, the 
respective integrals tends to zero. Distinguishing P(z) = Pp{F(z)} for D\ 
and Q(z) = Pp{F(z)} for the poles from C2 the point at infinity included, 
one obtains 

(20) F(z) = U + iV 
1 f z - a y R ( z ) { i f z a y R ( z l _ _ + Q + 

\z — bJ z — a Sin flTT 

THEOREM 1.8. [4]. The solution of DP with irrational data (17) on boundary 
is U(x,y) — 9lF(z),z 6 D\, where F(z) is given by (20). 

The above theorems can be used for the solution of the Dirichlet problems 
with these special boundary data, for single connected domains which can 
be conformaly mapped onto the half plane through rational functions. 

The problems have been solved also for the inner or outer domains of 
the circle in many studies, but with outstanding contributions of the roma-
nian school, leaded by C. Iacob [3], [4], [11]. Recently, C. Marinescu [12] 
performed a method for construction of some holomorphic functions f ( z ) 
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with singularities in the inner or outer circle, when on the same arc of circle 
there are given simultaneously U(x,y) and V(x,y). 

2. The fundamental biharmonic problem for half-plane 
The fundamental biharmonic problem (FBP) requires to find a function 

U = U(x, y), U 6 C"(2?I) U C4(£>I) b iharmonic in Dx [2], [4], [6], i .e. , 

. 2TT d * u o d*U d4U n 

and satisfying the boundary conditions 

(22, = * ( » ) , = = 

where R\,R2 are continuous or Lebesgue integrable given functions. In this 
case Holder type conditions are satisfied. The derívate direction is of the 
outer normal. 

THEOREM 2.1. Let Ri s a t i s f y the smoothness conditions specified above. 
Then the solution of the FBP for the half plane of an Almansi t y p e is of 
the form 

(23) U(x, y) = Ur(x, y) + yU2(x, y) 

where U\, U2 are harmonic functions in D\ and precisely 

( 2 4 ) FF ( , , , ) = J „ T " - I , R F , « • 
V ' K , A J 7T J TFF _ -r\2 „212 „- J (t _ J. „2 [(t-x)* + y*]* 7T J ( t - x f + yi 

Proof . We obtain U\,U2 from (23) solving two Dirichlet problems in D\. 
For U\, by the first condition of (22), we get 

(25) AUi(x,y) = 0 in Di, U\y=0 = Ux\c = R i ( x ) , 

and, applying (1) we obtain 

(26) [ / 1 ( x , y ) = v J R l ( 2 t } 2dt. 
_oo (t - x) + y 

By the second condition of (22), we get = = + 

U2]\y=o = R2{x); The function + U2 is harmonic in D\. Using (1), we 
obtain 

( 2 7 ) ^ + = T R F 
d y 7r J^ (t - x)2 + y2 

The relations (26), (27) give (24). The uniqueness of the solution is garanteed 
by the uniqueness of the solution of a Dirichlet problem. 
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In order to give a complex representation of this solution we consider 
the following analytical functions in D\ 

(28) A(z) = Ui(x,y) + iV1(x,y), B{z) = U2(x,y) + iV2(x,y)t 

where Ui,Vi,i = 1,2, are harmonic conjugate functions and 

(29) U(x,y) = %{A(z) + yB(z)} = MF(z) = t/i(x,y) + yU2(x,y). 

For jF(z) = A(z) + yB(z) the conditions (22) become 

(30) 
U\c = XF(z)\e = U1(x,y)\c = R1(x), 

THEOREM 2.2. By the smoothness conditions presented above, the function 

(31) F{z) = A(z) + yB{z) 

= 11 -»*.(«)«_!? »MU + jri + jjr, 
7Tî t — Z 7T (t — ZY —OO —OO v ' 

is the solution of FBP with conditions (30). 

P r o o f . Using (4), we shall follow the reasoning from the proof of Theo-
rem 1.9. By virtue of the first condition (30), we have U\c = 5?F(z)|y=o = 

SL4(z)|y=0 = R\(x) and the analytic function A(z) is 

(32) A(z) = 1 7 Mldt. 
TTl J t — Z 

— 0 0 

By the second condition (30), using. (4), we get the analytic function 

1 
(33) B(z) + iA'(z) = -—. \ 

tro J 
Ri(t) 

iri J t — z 
OO 

dt. 

The relations (32), (33) lead to (31), where the constants K\, K2 may be 
determined, knowing a priori F{z) in one point of the domain D\. 

Hence we have obtained the solution (31) of FBP similar to the Cisotti 
formula (4). Also we notice that writing SRF(z) in (31) under the integral 
sign, we get the solution (24). 

Let us consider now that R\{x), R2(x) are rational functions satisfying 
the conditions of Theorem 1.3. We shall denote by Pp{Rj(z)} = Pj(z), 

j = 1,2, the principal parts corresponding to the poles from D2. After a 
short calculation, using the residue theorem in (31), we obtain the solution 
of (FBP ) in D i with rational functions on boundaries 

(34) F(z) = A{z) + yB(z) = 2 P f c ) - y[2P;{z) + 2 i P { { z ) ] + Kl + iK2. 
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We are going to generalize the result (34), according to Theorem 1.6. We 
shall consider again the FBP with the special conditions 

(35) U\y=0 = i?i(s)Kiii(z)|c, ^ \ c = R2(x)KH2(z)\c, 

where ill, R2 are rational functions and Hi, H2 are holomorphic functions 
in the domain D\. On the c axis they can have a finite number of isolated 
singular points of the first kind. 

THEOREM 2.3. The solution of FBP with the conditions (35) in the domain 
D\ is 

(36) > A { Z ) = ~ ^ ~ + i K l> 
{ B(z) = -iA'(z) - {R2(Z)H2(Z) - [.L2(Z) - L2(Z)]} + iK2. 

We have noted the principal parts Pp{Rj(t)Hj(z)} = Lj(z) in D\, j = 1,2. 

P roof . By the first condition (35), we have 

KF(z)\c = UA{z)\c = »{iJi(z)fTi(z)}c. 

The hypotheses of Theorem 1.6 are satisfied by the holomorphic function 
A(z) and, using (10), we find (36). In the same way, using the second condi-
tion (35), we have g | c = -R[tA'(z) + B{z)}\c = &{R2(z)H2{z)}\c-, and, by 
(10) for the analytic function — [iA'{z) + B(z)}, we obtain the solution in D\. 
If the functions Rj(z)Hj(z) have poles at infinity, then the formulae (36) 
must be modified in the sense of (15) by adding [Lj ( z ) — Lj(z) + Qj(z)],j — 
1,2, where Qj(z) are the principal part for Rj(z)Hj(z) corresponding to the 
poles at infinity. We note that, if Hj(z) = 1, then Lj(z) = Pj(z) and from 
(36) we obtain the solution (34). 

As an application of this theorem we shall give the solution of the FBP 
with piecewice rational boundary value and also with piecewice irrational 
boundary value. 

Let Hj = Rj(z)G(z),j = 1,2, where G(z) = ± In as in (12), and let 
Rj(z) be rational functions with poles in the domain D\ or in the exterior of 
[a, i>] or at infinity, just like in the hypothesis of Theorem 1.7. In this case the 
biharmonic function U(x, y) in D\ is to be determined with the piecewice 
rational boundary conditions 

(37) 
{i?i(x), x 6 (a, 

0, x € c2, 
u\c = ytHi(z)\c 

0, x € c2. 
f | c = SRir2(z)|c = 
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THEOREM 2.4. The solution of the FBP in the domain D1 is U(x,y) = 
SRF(z) = »{¿(z) + yB(z)}, where 

i A(z) = Hx(z) - [Px(z) - P,{z) + Qi(z)] + iKlt 

\B(z) = -iAl(z)-{H2(z)-[P2(z)-P2(z) + Q2(z)]} + iK2, 

Pi(z) and P2(z) are the principal parts of H\(z) and H2(z) in D\, respec-
tively; and Qj(z) = Pp{Hy(z)},j = 1,2 for the poles on c or at infinity. 

Proof . Thanks to the solution (13) given by Theorem 1.7, the proof is 
similar to the proofs of Theorems 2.1 and 2.2. 

Application 3. Let us solve the FBP in the domain D\ with the following 
boundary conditions 

m _ 1 du du fx-, x e (-1,1) 
U c T~, 2> ~a~ c c = U2KX) = 1 + x2 dt] dy {0, x 6 c2. 

We note that these conditions satisfy the hypotheses of Theorems 2.2 and 
2.3. The function in the first condition is rational on c and in order to apply 
the formulae (36) with H\(x) = 1, we must take in (34) with A(z) = 2P1*(z), 
where P*(z) is the principal part of the function R\{z) = for the pole 
z = i in D2. We obtain A(z) = For the second condition we note that 
the hypotheses of Theorem 2.3 are satisfied with H2(z) = ^ In Hence, 
in the formulae (38) P2{z) = 0 and Q2(z) is the principal part for the pole 
at infinity calculated in Application 2 and (35), so 

r _ i n _ 1 o 
B(z) = —iA'(z) - — In — + - Y -zn~P. V 7 W TTI Z+l 7T ^ 7T p= 1 

Let us consider the FBP with irrational piecewise boundary value. Let 
Hj(z) = Rj(z)G(z), j = 1,2, where G(z) = (z - a^-^b - z)~», ¡i G (0,1) 
and Ri,R2 are rational functions with poles in D\ or on c2 the pole at 
infinity included, as it was mentioned in Theorem 1.8. It is required to de-
termine the function U(x,y) biharmonic in the domain D\ and satisfying 
the conditions 

(39) 
lo, xec2, 

to, xec2, 

where G(x) = (x - a)M_1(6 - x) - / i is the value of G(z) for x € (a, 6), 
y = +0. 
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T H E O R E M 2 . 5 . The solution of FBP with condition ( 3 9 ) for the domain D\ 

is U(x,y) = RF(z) = 3i{A(z) + yB(z)}, where 

( 4 0 ) I M*) = A F E W S E F - m * ) - p ^ i + Q i m + ^ 

\ B(z) = —iA'(z) - - [P2(z) - P2(Z) + Q2(Z)}} + iK2, 

where Pj(z),Qj(z),j = 1 , 2 , are the principal parts of 

respectively, corresponding to the poles in D\, at infinity or on . 

P r o o f . Following the proof of the Theorem 2.2, imposing the first condition 
(39) i.e., U\c = RF(z)|c = &A(z)|c = R{f?i(z)}|c , using Theorem 1.8 and 
(20), we get A(z) from (40). From the second condition (39), g£|c = = 
—3?{i?(z) + iA'{z)}\c = UH2{Z)\C we find for B(z) + iA!{z) the solution ( 2 0 ) 

and then we find B{z) from (40). 
We note that for all theorems proved in Section 2 we had to solve two 

Dirichlet problems which are generally independent. Therefore we can com-
bine Theorems 2.2, 2.3, regarding the boundary conditions and we can con-
sider that for any logarithm or radical function a cut [AB] was made on axis 
X'OX in order to compute the complex integrals. 

Application 4. Let us solve the FBP with the following conditions 

( 4 1 > ^ r F P « * - * * ) . f Cl 

x 4 + a2 1 dU_ 

x2 + l VT^x2' drj 
= 0, 

C2 

where p = 1 , 2 , 3 , . . . and a € R. As it is seen, the conditions of Theorems 
2.3, 2.4 are fulfilled. Considering the function exp(—z4p) with the pole 
z = i in D\ and using (36), from the first condition (41) we get 

A(z) = - ± - ; e x p ( - z i n + i Z 
1 + z2 ; e(z2 + 1 ) ' 

In order to satisfy the second condition (41) we consider the function 
*(fTT)*»a+i z-ï hayinS a P°le z = i 'va. D\ and a pole of first order at infin-
ity. Here i i = \ and c is cut along the segment [—1,1]. From limz_>00(|^Y) 2 = 1 
it results P2(z) = — ̂ ^ a n d Q2{z)\z=oo = iz, because 
z4 + a2 .. a2 1 1 u , 1 1 . .. a 2 

We get for B(z) the following expression 

- 1 \ h 4 + a 2 1 (a2 + \)iz 
H : »2. B{z) = iA\z) + i ( ^ J ^ 

z2 + l z - 1 z -f-1 
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The above theorems may be used to solve FBP for simply-connected 
domains conformal mappable by means of rational functions to the half 
plane [1], [6]. The FBP for the circle was solved by Caius Iacob [6] in the 
sense state by Theorem 2.2. 

Remark. It is well known that a FBP is to be solved when the permanent 
plane flows of viscous fluid [2], [5], [8] or the plane problem of elasticity 
[6], [14] is studied. For the viscous fluid flows the function U(x,y) is the 
stream function for the velocity field w = u + iv,u = = — ̂  with 
A 2 ^ = 0. Imposing boundary conditions on the solid frontiers, we must 
preserve bounded or null velocity at infinity. In the case of the plane elasticity 
problem the function U(x, y) is the Airy function [2], [10] with A2U = 0 and 
the stress tensor components are Tn = ^ r , T i 2 = = ^ j r - The 
boundary conditions must preserve null stress at infinity. For an Almansi 
type (23) representation of the solution we can derive Kolosov-Mushelishvili 
type formulae [2], [4]. 

For these problems it is known the Goursat complex representation of 
biharmonic equation = 0 with the solution U(x,y) = + 

x(z)}> where <p,x are analytic functions in D\ [2], [4], [11]. For elasticity 
theory there are known the results of Mushelishvili [2], [4]. For viscous fluids 
the theory of Mushelishvili has been adapted by D. G. Ionescu [8], who has 
extended it on FBP for the circle and half-plane with given singularities for 
(p{z) and x(z). 
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