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ON THE DISTANCE BETWEEN ADJACENT ZEROES
OF SOLUTIONS OF FIRST ORDER
NEUTRAL DIFFERENTIAL EQUATIONS

1. Introduction
Consider the first order neutral delay differential equation

1) [z(t) + P(W)z(t — 7)]' + Q(t)z(t — o) = 0

where P,Q € C([tg, ), R*), and 7,0 € R*.
When P(t) = 0, Eq.(1) reduces to

(2) z'(t) + Q(t)z(t — o) = 0.

The oscillation theory of neutral differential equations has been exten-
sively developed during the past several years. We refer to Bainov and
Misher (1], Gyori and Ladas [3], and the references cited therein. But the
results dealing with the distribution of zeroes of the oscillatory solution of
neutral differential equation are relatively scarce. Recently, Domshlak and
Stavroulakis [2] obtained estimates for the intervals length successive zeroes
of solutions of Eq.(2), Liang [4] and Li 5] established estimates for the dis-
tance between adjacent zeroes of the solutions of Eq. (2). Lin [6] and Zhou
[7] extend the results in [4]-[5] to Eq.(1). In this paper we establish a new
estimate for the distance between adjacent zeroes of the solutions of Eq.(1).
Our results improve the all results in [4]—[7].

Let m = max{7,0}. By a solution of Eq.(1) we mean a function z €
C([tz —m, o), R) , for some t, > ty, such that z(¢t) + P(t)z(t — 7) is contin-
uously differentiable on [t;,00) and such that Eq.(1) is satisfied for ¢ > ¢.
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Assume that (2) holds and let & € C([to — m, %o, R) be a given initial
function. Then one can easily see by the method of steps that Eq.(1) has a
unique solution z € C([to — m,00), R) such that z(t) = $(¢) for to — m <
t < ip.

2. Main results
First we define a sequence {a;} by
(3) a1 =e",a,~+1 =€gai,i= 1,2,...
It is easily seen that {a;} is increasing for ¢ > 0.
Observe that when p > % then

lim a; = 400,
100

because otherwise the sequence {a;} would have a finite limit a, such that
a = e%.
Using the known inequality
e® > ex,
we have
a=e >epa>a

which is a contradiction.
When 1 < p < 1, we also define a sequence {b;} by

2(1-9) 20l-0) . _
(4) b1:_£)2_$ bj-l"l: 92+E22"’ .7_1)2a
3

Observe that the sequence {b;} is decreasing for 1 < o < 1.
For the sake of convenience, we set

Q(t)
R(t) = P(t — ) ———"—.
(6 = Plt— o) s
In the following, D(z) denotes distance between adjacent zeros of the
solution z(t) of Eq.(1). Our main result is the following theorem.
THEOREM 1. Assume that
(A) PeC([tg, 00), [0, 0)), Q € C([to, ), (0,00)), R€ C*([to, ), [0, 00)),
R'(t)<0,0>71>0;
(B) There exist t1(t1 > to) and positive constant g such that

§ Q(s)
1+ R(s+7—0)

1
ds>p>~- fort>t.
t+1—0 €



Distance between zeroes of solutions 33

Then
(5) D(z) < 20 + ny(o0 — 1),

where
1 when 0 > 1,
Mo = min;>1 j>1{t + jla; > b;}, whenl/e<p<1
and a;, b; are defined by (3) and (4).

Proof. It suffices to prove that for Ty > t; the solution z(t) of Eq.(1) has
zeros on [Ty, Ty + 20 + n,(o — 7)]. Otherwise, without loss of generality,
we assume that z(t) is positive on [Tp,To + 20 + ny(o — 7)]. Let T, =
To + 20 + ny(oc — 7) and

(6) z(t) =z(t)+ P(t)z(t —7) fort>Tp+ T
We get.
(7) 2(t) >0 forte [To+7,T,)
and
(8) Z(t)=-Qt)z(t— o) <0 fort € [Ty + o,T).
From (1) and (6), we have
(9) Z(t) = —-Q(t)z(t - o)

= -Q()[z(t — o) - P(t —o)z(t — 7 - 0)]

Q(t)

=—-Q(t)z2(t — o) — P(t - o)
That is
(10) Z@)+RA)ZE-7)+Q(t)z(t—0)=0 fort>To+o+T.
Set

"t — for ¢t > .
Q(t—'r)z(t T) fort>To+o+7

(11) w(t) = z(t) + R(t)z(t — ) fort > Ty + 27.
From (7) and (11), we have

(12) w(t) >0 forte [Ty+27,Tp,)

and

(13) W' @W)=2Z@)+ R @)z(t—7)+ R(t)Z(t—7) fort>Ty+ 27
By (10) and (13), we get

(14) ' (t)=R'(t)2(t—7) - Qt)2(t —0) <0, forte[To+o+7,Tp)).
Since z(t) is decreasing in [Ty + o, T,], by (11) we have

(15) w(t) <1+ R(E)z(t—71) forte[To+o0+7,T,)
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and so
w(t+71—0)

16 t— .
(16) 2( J)>1+R(t+r—0) for t € [To + 20,T,)
Substituting (16) into (14), we have

Q(t)

(17) W (t) + wit+7—0)< R'(t)z(t—7)<0

1+R(t+7—-0)
for t € [To + 20, T,).
Next, for convenience, we set

q(t) )

- 1+R(t+7—-0)

Thus, (17) implies that
(18) W)+ qt)wt+7~0) <0 forte [To+20,T,).

We consider the following two cases:
Case 1. p > 1. From (12) and (14), we have

(19) w(t) >0 forte[Ty+27,To+ 20+ (0 — 7))
and
(20) W'(t)<0 forte[To+o+7,To+20+ (0 —7)]

which implies that w(t) is decreasing, and
w(t) > w(Tp+20) forte[To+o+7,To+ 20).
Integrating both sides of (18) from Ty + 20 to Ty + 20 + (0 — 7), we obtain
To+20+(o—T)

(21) w(To+20+(c— 7)) <w(To +20) — S g(sw(s+7—0)ds
To+20
To+20+(c—71)
<w(To+ 20){1 - S q(s) ds}.
To+20

By (21) and condition (B), we have
w(To+20+(c—7)) <w(Tp+20)(1—0) L0
which contradicts with (19).
Case 2. 1/e < g < 1. Setting n, = ¢* + j* and Ty = Ty + 20 + (0 — 7),
under the conditions (A) and (B), we know that
t—7+40 1
S q(S)dSZQ>—e- for t > ;.
t
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Observe that f()) = Sj g(s) ds is a continuous function, f(t) = 0 and f(t —
T+0) > p and there exists some A¢ € (¢,t— 7+ o) such that S:“ q(s)ds = .
Integrating both sides of (18) from ¢ to )¢, we obtain
At
(22) w(t) —w(h) > | g(s)w(s +7—0)ds
t
for t € [T1,To + 20 + (i* + j* —1)(o — 7)}.

Since t < s < t+ (o — 7), we easily see that Ty + 20 <t — (0 —7) <
s—(oc—71)<t.
Integrating both side of (18) from s — (o — 7) to t, we get
t
w(s+7—0)—w(t) > S g(w)w(u + 17— o) du.
s+17—0
From (14), it is clear that w(u + 7 — o) is decreasing in [Tg + 20, t], we have
’ t
(23) w(s+T—0)>w(t)+w(lt+T1—0) S g(u) du

s+T—0
s

=w(t)+w(t+7'—a){ S q(u)du—Sq(u)du}

s+T17—0 t
s

>w(t)+wlt+7— o){g— Sq(u) du}.

From (22) and (23), we have
LAt
(24)  w(®)>we)+ | as)w(s+7-0)ds
At

> w(Ae) + X q(s){w(t) +w(t+71—0) (g - §q(u) du) } ds

= w(X) + ow(t) + QPw(t + 7 — o)

At s
—w(t+7—0) S ds S q(s)q(u) du.

As is well known, the identical relation

At s At At
{ ds{a(s)q(w)du = | du | q(s)q(u)ds

t t u
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holds. On the right-hand we may exchange the variable notation of integra-
tion s and u the above equality becomes

At s At At
S dsSq(s)q(u) du = S ds S q(u)g(s) du
t t t s
which implies
At s 1 At At
S dsSq(s)q(u) du = 5 S ds S q(u)q(s) du
t ot t ot

At

=3(Jawa) =5

t

Substituting this into (24), we have
2

(25) w(t) > w(At) + ow(t) + %w(t +7—0)
and so
(26) wit= o= 7)) < 20-9) =by,t € [T1,To+20+ (" +5*—1)(o—17)].

w(t) 02
When t € [T1,Tp + 20 + (¢* + 7% — 2)(0 — 7)], we easily see that Ty <t <
AMSt+o—17<Ty+20+ (¢* + j* —1)(o — 7). Thus, by (26), we have

27) W) > lw()\t —(o=T)).

Since w(t) is decreasing on [Tp + o + 7,Tp + 20 + (* + j*)(o ~ 7)] and
To+20 <M~ (0-T)<t< A <Tp+ 20+ (i* + 5*)(o —7), we get

W) > %w(/\t (0 —7)) > —w(t) > —l—w(t ~ (o —1)).

Substituting this into (25), we have
1 2
wlt) > Fwlt - (0 =)+ ewlt) + Zwlt = (0 = 7).
1

Therefore
wit—(c-71)) 2(1-0
< =by,te [T, To+20c+ (@ +j*—-2)(0c—7
w(t) Q2+32§ [ 1,40 ( .7 )]

Repeating the above procedure we obtain

wit=(o-7) _ 201 e)

(28) w(t) 9 +an

=bj,t € [T1,To + 20 +i*(0 — 7)].




Distance between zeroes of solutions 37

Setting t = Ty + 20 + i*(0 — 7) in (28), we get

w(Ty + 20 + (i* — 1)(o — 7))

(29) w(To + 20 + (0 — 1))

< b]'

On the other hand, from (14) we know that w(t) is decreasing in [Tp + o +
T,T,), hence

w(t — (o0 1))

(30) o)

>1 forte [To+20,T,).

When t € [Ty +20 + (0 —7), T,], dividing (18) by w(t), and integrating from
t— (0 —7)tot, we get

w(t) [ ges=(0-7)
ln(w(t—(a—f)))+t_(g O R

o—T)

By using (30) and (B), we have

NG ko) A W SN (ol Gk s P
n (5 )>t_(§_,)q() oe ke

It follows that

t— (o —
(31) W >e?=aqa; forte€[To+20+ (0—71),T,.
Repeating the above procedure, we get
(32) wit — (o= 7)) > e -1 =g;. forte[To+20+i* (o —71),T,.

w(t)
Setting t = Tp + 20 + i*(0 — 7) in (32), we have

w(To + 20 + (i* — 1)(o — 7))
w(Ty + 20 +1*(o — 1)) > Qe

From (29) and (33), we obtain
(34) ais < bj-

(33)

which contradicts (5) and completes the proof of Theorem 1.
THEOREM 2. Assume that

(C) P € C([to, ), [0,00)), Q € C([ts, ), (0,)), R'(t) < a,a >0 and
o>1>0;



38 Y. Zhou, Y. Yu, B. Feng

(D) There exist t1(t; > to) and positive constant o such that
Q(s)

t
1
§ Ti;:;ds;z o> ; for t > ;.

t+7—0

Then (5) holds.

Proof. Let z(t) be a solution of Eq.(1), without loss of generality, we assume
that x(t) is positive in [Tp, Ty), To > t1, T, = To + 20 + ny(o — 7). Let

(35) z2(t) =z(t)+ P(t)z(t—7) fort>To+ .
Then

(36) 2(t) >0 forte [To+7,T,)

and

(37) Z(t) = -Q(t)z(t~0) <0 forte [Ty +o,T,).

From (1) and (35), we have

(38) Z{#)+ Rt)Zt-71)+Q(t)z(t—0) =0 fort>Ty+ o+
By (C) and (38), we have

(39) ZA)+a(t—-7)+Qt)2(t—0) <0 fort>To+o+T.
Set

(40) w(t) =2(t)+az(t—7) fort>To+ 27
From (36) and (40), we get

(41) w(t) >0 forte [Ty+ 27T,

and

(42) (@) =2t)+a(t~7)<0 forte[To+o+7,T,.
By (39) and (42), we get

(43) W ()< -Qt)z(t—0) <0 forte[To+o+7,T,.
Since z(t) is decreasing in [Ty + 0, T,|, by (40) we have

(44) wit)y<(1+a)z(t—7) forte[Ty+o+7,Tp)
and so

(45) z(t—o) > w(t%Ta—a) for t € [Ty + 20, T,
Substituting (45) into (43), we have

W'(t) + IQ_*_izzw(t +7—0)<0, forte [Tp+ 20,T,).
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By using a similar method as in the proof of Theorem 1, we can derive a
contradiction. The proof is complete.

When P(t) = p, Q(t) = ¢ are constants, we get
COROLLARY 1. Assume that
(AYp>0,g>0,0>7>0;
o—T) __ 1
(B) o= = o> L.

e
Then (5) holds.

COROLLARY 2. Assume that

(a) P(t) =0, Q € C([ty, ), [0,00)), 0 > 0;
(b) There exist t1(t1 > to) and positive constant p such that

¢
S Q(s)dsZQ>% fort>t;

t—r
and z(t) is a solution of Eq.(2) on [t,00), ty > t1. Then
D(z) < (2 + 7)o,
where

>
(46) ngz{l’ when o> 1

min;>1,;>1{¢ + jla; > b;}, whenl/e<p<1
and a;, b; are defined by (3) and (4).
REMARK. Theorem 1 and Theorem 2 improve and extend all results in
(4]-{7).
ExAMPLE 1. Consider the delay differential equation
(47) z'(t) +z(t —0.4) =0,

here Q(t) = 1. We have p = 0 = 0.4 and a; = 1.491, a3 = 1.816,..., a0 =
4.387, a3; = 5.784, ayz = 10.111,...; by = 7.500, by = 6.136, by = 5.631,
by = 5.379, .. ..

We find

a; <5<b;,1<i<10,5 > 1811 > b;,7 2 35a12 > 55,7 2 15

Hence, by Corollary 2, we have n, = 12+ 1 = 13 and D(z) < 15 x 0.4. This
improves the result of [4): D(z) < 28 x 0.4.

EXAMPLE 2. Consider the neutral differential equation
(48) [(t) + z(t — 0.45)] + 2z(t — 1) = 0,
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here p=1,qg=2,and 7 = 0.45, 0 = 1. We have p = 2(1-045 _ 0,55 and

1+1
a1 = 1.733, ap = 2.594, a3 = 4.165, ag = 9.884, ...; by = 2.975, by = 1.703,
bs = 0.907, ....
We find

ay > bj,7 22502 > b5,7 > 2;a3 > bj,5 > 1.
Hence, by Corollary 1, we have n, =1+2=3and D(z) <2x 143 x(1-
0.45) = 3.65.
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