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ON THE DISTANCE BETWEEN ADJACENT ZEROES 
OF SOLUTIONS OF FIRST ORDER 

NEUTRAL DIFFERENTIAL EQUATIONS 

1. Introduction 
Consider the first order neutral delay differential equation 

(1) [x ( i ) + P(t)x(t - T)]' + Q(t)x(t - a) = 0 

where P,Q 6 C([t0, oo), R+), and r,a E R+. 
When P(t) = 0, Eq.(l) reduces to 

(2) x'(t) + Q(t)x(t - a) = 0. 

The oscillation theory of neutral differential equations has been exten-
sively developed during the past several years. We refer to Bainov and 
Misher [1], Gyori and Ladas [3], and the references cited therein. But the 
results dealing with the distribution of zeroes of the oscillatory solution of 
neutral differential equation are relatively scarce. Recently, Domshlak and 
Stavroulakis [2] obtained estimates for the intervals length successive zeroes 
of solutions of Eq.(2), Liang [4] and Li [5] established estimates for the dis-
tance between adjacent zeroes of the solutions of Eq. (2). Lin [6] and Zhou 
[7] extend the results in [4]-[5] to Eq.(l). In this paper we establish a new 
estimate for the distance between adjacent zeroes of the solutions of Eq.(l) . 
Our results improve the all results in [4]-[7]. 

Let m — max{r, a}. By a solution of Eq.(l) we mean a function x € 
C(\tx — m, oo), R) , for some tx > to, such that x(t) -I- P(t)x(t — r ) is contin-
uously differentiate on [ix,oo) and such that Eq.(l) is satisfied for t > tx. 
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Assume that (2) holds and let $ e C([to - m,to],R) be a given initial 
function. Then one can easily see by the method of steps that Eq.(l) has a 
unique solution x £ C([to — m, oo), R) such that x{t) = for to — m < 
t<t0. 

2. Main results 
First we define a sequence {a t} by 

(3) ai = ee,ai+i — eeai,i = 1 ,2 , . . . 

It is easily seen that {a*} is increasing for g > 0. 
Observe that when g > - then c e 

lim ai = +oo, 
i—+ oo 

because otherwise the sequence {a*} would have a finite limit a, such that 

a = eea. 

Using the known inequality 
ex > ex, 

we have 
a = eea > ega > a 

which is a contradiction. 
When ^ < g < 1, we also define a sequence {6j} by 

U\ h 2 ^ ~ ^ 2 ( ! ~ g) _ ! 9 (4) h = — - — , bj+1 = 2 , j = 1 ,2 , . . . 
0 g 

J 

Observe that the sequence } is decreasing for \ < g < 1. 
For the sake of convenience, we set 

In the following, D(x) denotes distance between adjacent zeros of the 
solution x(t) of Eq.(l). Our main result is the following theorem. 

THEOREM 1. Assume that 

(A) P€ C([t0, oo), [0, oo)), Q€C([to, oo), (0, oo)),ReC1([t0, oo), [0, oo)), 
R'(t) < 0, a > r > 0; 

(B) There exist II(<I > IO) o,nd positive constant g such that 

S 1 ^ P/Q? \ ds>g>- for t > tv 
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Then 

( 5 ) D(x) < 2a + n e ( a - r ) , 

where 

f 1, when p > 1, 71 — / 
e | mini^i j^i l i + j\a,i > bj}, when 1/e < g < 1 

and di, bj are defined by ( 3 ) and ( 4 ) . 

Proof . It suffices to prove that for To > ti the solution x{t) of Eq.(l) has 
zeros on [To, To + 2a + ng(a — r)]. Otherwise, without loss of generality, 
we assume that x(t) is positive on [TQ,T0 + 2a + ne(a — r)]. Let TE — 
TQ + 2a + ne(a — r) and 
( 6 ) z(t) = x(t) + P(t)x(t - T) f o r t > TQ + r . 

We get 
(7) z(t) > 0 for t £ [T0 + T,Te} 

and 
( 8 ) z'(t) = —Q(t)x(t - a) < 0 f o r t e [T0 + a, Te]. 

From (1) and (6), we have 
( 9 ) z'(t) = -Q(t)x(t - a) 

= —Q(t)[z(t - a ) - P(t - a)x(t - r - a)} 

= -Q(t)z(t - a ) - P(t - sz'(t - T) f o r t > T0 + a + r . 
Q[t - T) 

That is 
( 1 0 ) z'(t) + R(t)z'(t - T ) + Q{t)z{t - a) = 0 f o r t > T0 + a + r. 

Set 
( 1 1 ) w ( i ) = z(t) + R(t)z(t - r ) f o r t > T0 + 2 r . 

Prom (7) and (11), we have 
(12) w(i) > 0 for t G [T0 + 2r, Te} 

and 
( 1 3 ) u'(t) = z'(t) + R'(t)z(t - r ) + R(t)z'(t - r ) f o r t > T0 + 2 r . 

By (10) and (13), we get 
( 1 4 ) J { t ) = R'(t)z(t - r ) - Q(t)z(t - a ) < 0 , f o r te[T0 + a + r, T e ] ) . 

Since z(t) is decreasing in [To + a, Te], by (11) we have 
( 1 5 ) u{t) < ( 1 + R(t))z{t - t ) f o r t e [T 0 + a + r , Te) 
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and so 

Substituting (16) into (14), we have 

(17) + 7 t J t + T-c)< R'(t)z(t - r) < 0 1 + K[t + T — a) 
for t 6 [T0 + 2a, Te}. 

Next, for convenience, we set 

„m -
q [ ) ~ l + R(t+r-*y 

Thus, (17) implies that 
(18) w'(t) + q(t)u(t + r - a) < 0 for t e [T0 + 2a, Te]. 
We consider the following two cases: 

Case 1. q > 1. From (12) and (14), we have 

(19) u{t) > 0 for t € [T0 + 2t, T0 + 2a + (a- r)] 

and 

(20) u'(t) < 0 for t e [T0 + a + r, T0 + 2a + (a - r)] 

which implies that u>(t) is decreasing, and 

w(t) > cj(T0 + 2a) for t € [T0 + a + r , T0 + 2a]. 

Integrating both sides of (18) from T0 + 2a to T0 + 2a + (a - r), we obtain 
T0+2cr+(o—T) 

(21) w(T0 + 2cr + (a - t)) < ùf(T0 + 2 a)- \ q(s)u(s + r-a)ds 
To+2<t 
T0+2<T+(<T-T) 

< u(To + 2cr)|l — j q(s)dsY 
T0+2(r 

By (21) and condition (B), we have 

u(T0 + 2a + (a- r)) < w(T0 + 2a){l - Q) < 0 
which contradicts with (19). 

Case 2. 1/e < q < 1. Setting n e = i* + j* and Tx = T0 + 2cr + (a - r), 
under the conditions (A) and (B), we know that 

t-T+r 1 

\ g(s) ds > g> - for i > i j . J e t 
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Observe that / (A) = q(s) ds is a continuous function, f(t) = 0 and f(t — 
T + a) > g and there exists some At £ (i, t — r + a) such that q(s) ds = g. 

Integrating both sides of (18) from t to At, we obtain 

At 

(22) u>(t) - u>(At) > \ q(s)u>(s + T -a)ds 
t 

for t e [Ti,T0 + 2a + (t* + j* - 1 )(a - r ) ] . 

Since t < s < t + (a — t ) , we easily see that To + 2a < t — (a — r) < 
s — (a — T) <t. 

Integrating both side of (18) from s — (a — r ) to t, we get 

t 
u{s + r — a) — u>{t) > J q(u)u(u + r — a) du. 

S+T — IT 

Prom (14), it is clear that u>(u + r — a) is decreasing in [To + 2a, t], we have 

t 
(23) w(s + r - a) > u(t) + u(t + r - a) \ q(u) du 

s+T—cr 
s s 

= U(T) + u(t + T — a) | ^ q(u) du — ^ q(u) du j 
s+T — cr t 

3 
> u;(i) + u(t + T — a)^Q — Jq(u ) du j . 

From (22) and (23), we have 

At 

(24 ) u>(t) > w(A t ) + j q(s)u(s + T - a ) d s 
t 

At s 
> w(At) + \ g(s) ju;(i) + uj(t + r - a) (p - \ q(u) du j j ds 

t t 
= u(\t) + Qu{t) + g2U){t + T — a) 

At s 
— uj(t + T — a) J ds J q(s)q(u) du. 

t t 

As is well known, the identical relation 

At s At At 
j ds^q(s)q(u) du = J du J q(s)q(u)ds 
t t t u 
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holds. On the right-hand we may exchange the variable notation of integra-
tion s and u the above equality becomes 

At s A t At 
J ds^q(s)q(u) du = j ds J q(u)q(s)du 
t t t 3 

which implies 
At s j At At 
J ds ^ q(s)q(u) du = - j ds j q(u)q(s)du 
t t t t 

-¿(¡«M-M-
Substituting this into (24), we have 

P2 

(25) w(t) > w(At) + gu{t) + Z-u(t + r-a) 
¿i 

and so 

(26) < = M € [TuT0 + 2a + {i*+j*-l)(a-r)]. 
UJ(t) Q 

When t e [Tu To + 2a + (i* + j* - 2)(cr - T)], we easily see that Ti < t < 
At < t + a - r < T0 + 2a + (i* + j* - 1 )(a - r) . Thus, by (26), we have 

(27) w ( A t ) > ^ - w ( A t - ( a - r ) ) . 
bi 

Since uj(t) is decreasing on [To + a + r , To + 2a + (i* + j*)(a — r)] and 
T0 + 2a < At - (a - r ) < t < Xt < T0 + 2a + (i* + j*)(a - T), we get 

u( At) > ^-u>(\t - ( a - t ) ) > ^-a;(*) > - (a - r )) . 

Substituting this into (25), we have 

1 P2 

u(t) > - (o- - T)) + eu(t) + y ' - - r))-

Therefore 

i f c ^ z l ) ) < = e m i J 4 + 2 , + ( i . - 2)(„ - r)]. 
er + é 

Repeating the above procedure, we obtain 

(28) < - f c f = , i € [Ti,T0 + 2a + i*(a - r)]. 
Q + & 
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Setting t = T0 + 2a + i*(a - r ) in (28), we get 

( 0 Qs u (Tq + 2cr + (i* — 1)(CT — t ) ) 
i y j u,(r0 + 2<x + i * ( < 7 - T ) ) 

On the other hand, from (14) we know that u(t) is decreasing in [To + a + 
r , Te], hence 

( 3 0 ) u{t-{a -T)) > i ^ ^ + ^ 

LU(t) 

When t G [To + 2cr+ (a — r),Te], dividing (18) by to(t), and integrating from 
t — (a — r ) to t, we get 

ln u ( —̂  + *5 ~—h—-< \u(t - (a - t)) J t_(j_r) 

By using (30) and (B), we have 

In - i ^ ^ > \ g ( a ) - i ^ ds > q. 

It follows that 

(31) ~ T ) ) > e* = 0 l for t e [T0 + 2a + (a - r ) , Te\. 
uj{t) 

Repeating the above procedure, we get 

u ( t - ( a - r ) ) 

u>(t) 

Setting t = T0 + 2a + i*(a - r ) in (32), we have 

(32) V ¿i > e ^ ' - 1 = Oi. f o r i e [T0 + 2a + r ( a - r ) , T e ] . 

(33) u>(ro + 2 a + ( i * - l ) ( g - r ) ) 

Prom (29) and (33), we obtain 

(34) Oj. < 6j. 

which contradicts (5) and completes the proof of Theorem 1. 

THEOREM 2. Assume that 

(C) P e C([to, oo), [0, oo)), Q € C([t0, oo), (0, oo)), jR'(i) < a, a > 0 and 
a > t > 0; 
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(D) There exist t\{ti > to) and positive constant g such that 

f Q(s) 1 
\ -1±-L ds > g> - for t>t\. 

,, J 1 + a e t+T—a 

Then (5) holds. 

P r o o f . Let x(t) be a solution of Eq.(l), without loss of generality, we assume 
that x(t) is positive in [T0,Te], T0 > tu Te = T0 + 2a + ne{a - r) . Let 

(35) z{t) = x(t) + P{t)x{t - T) for t > T0 + r. 

Then 

(36) z(t) > 0 for t 6 [T0 + r, Te] 
and 

(37) z'(t) - -Q(t)x(t - or) < 0 for t G [T0 + a,Te}. 
Prom (1) and (35), we have 

(38) z'(t) + R(t)z'(t - T) + Q{t)z{t - a) = 0 for t > T0 + a + r . 

By (C) and (38), we have 

(39) z'(t) + az'(t - T) + Q(t)z(t - a) < 0 for t > T0 + a + r. 
Set 

(40) u(t) = z{t) + az(t - r) for t > T0 + 2r. 

Prom (36) and (40), we get 

(41) Lj(t)> 0 fo r i € [T0 + 2r,Te} 
and 

(42) u'(t) = z'(t) + az'(t-T) < 0 for i e [T0 + a + r,Te}. 
By (39) and (42), we get 

(43) u'{t) < -Q(t)z{t - a) < 0 for t € [T0 + cr + r, Te]. 
Since z(t) is decreasing in [To + cr, Te], by (40) we have 

(44) u(t) < (1 + a)z(t - t) for t G [T0 + a + r , Te] 
and so 

(45) z{t - a) > fa;(* + T-<7) for t e [T0 + 2a, Te}. 
1 + a 

Substituting (45) into (43), we have 

J(t) + + r _ < o, for t G [T0 + 2a, Te}. 
1 + a 
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By using a similar method as in the proof of Theorem 1, we can derive a 
contradiction. The proof is complete. 

When P(t) = p, Q(t) = q are constants, we get 

COROLLARY 1. Assume that 

(A') p > 0,g > 0,(7 > r > 0; 

( B ' ) * ^ = <?>*. 

Then ( 5 ) holds. 

COROLLARY 2 . Assume that 

( a ) P(t) = 0 , Q € C([t0, o o ) , [0, o o ) ) , a > 0; 
( b ) There exist ti(ti > t o ) and positive constant g such that 

t 1 
\ Q(s) d s > e > - f o r t > t i J e 

t - T 

and x(t) is a solution of Eq.(2) on [ix,oo), t x > t \ . Then 

D(x) < (2 + ne)a, 

where 

. . _/•'•> when Q > 1 
^ ) ne ~ | minj^ij^ilz + j|oj > bj}, when 1 / e < g < 1 

and ai, bj are defined by ( 3 ) and ( 4 ) . 

REMARK. Theorem 1 and Theorem 2 improve and extend all results in 
m—in-

EXAMPLE 1. Consider the delay differential equation 

(47) x'(t) + x{t - 0.4) = 0, 

here Q(t) = 1. We have g = u = 0.4 and oi = 1.491, 02 = 1.816, . . . , aw = 
4.387, a n = 5.784, a 1 2 = 10.111,.. . ; bx = 7.500, b2 = 6.136, 63 = 5.631, 
64 = 5.379, . . . . 

We find 

ai < 5 < bj, 1 < i < 10, j > l ; a n > bj,j > 3;ai2 > bj,j > 1; 

Hence, by Corollary 2, we have ng = 12 + 1 = 13 and D(x) < 15 x 0.4. This 
improves the result of [4]: D{x) < 28 x 0.4. 

EXAMPLE 2. Consider the neutral differential equation 

(48) [x(t) + x(t - 0.45)]' + 2x(t - 1) = 0, 
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here p = 1, q = 2, and r = 0 .45 , a = 1. W e have g = 2 ( 1 f + ° 1 4 5 ) = 0 .55 and 
a i = 1 .733, a 2 = 2 .594 , o 3 = 4 .165 , a 4 = 9 .884 , . . . ; &i = 2 .975 , b2 = 1 .703 , 
63 = 0 . 9 0 7 , . . . . 

W e find 

01 > bj, j >2;a2 > bj,j >2;a3 > bj,j > 1. 

Hence, by Corol lary 1, we have n e = 1 + 2 = 3 and £>(x) < 2 x l + 3 x ( l -

0 .45 ) = 3 .65 . 
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