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OSCILLATORY BEHAVIOUR OF THE SECOND-ORDER
NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS
WITH DISTRIBUTED DELAY

Abstract. In this paper, the oscillatory behaviour of second-order nonlinear neutral
differential equations with distributed delay was examined, some exciting results were
obtained which developed some traditional results in history.

1. Introduction
Consider the nonlinear second-order neutral differential equation

b d
(1) [2(t) + {<(t - 6)du(,6))" + | f(a(t — s)dn(t,s) =0, >t

where a, b, ¢, d are nonnegative constants, the functions u(t, 8) and n(t, s)
are continuous in ¢ € [tg, o), of bounded variation in 6 € [a,b] and s € [c, d],
respectively.

Let us give the following two basic hypotheses:

(Ha) 0 < Vi_op(t,0) <1, VEioa(t,s) >0,
(Ha) f(z) > k>0,

for some positive constant k and for z # 0.

The neutral differential equations have many applications in various
fields such as dealing with vibrating masses attached to an elastic bar and
in some variational problems (see [1]).

In [2], [3] there was discussed the oscillatory behaviour of the following
delay differential equation

(E1) 2'(t) + q(t)z(t — 7) =0,
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in [4] the results of [2], [3] were extended to

(E2) [=(t) + p(t)2(t — 7)]" + q(t)z(t — o) = 0,

and in [5] to the second-order neutral delay differential equation
(Es) [2(t) + p(W)a(t — 7)]" + q(t) f(z(t - 0)) = 0,
including (Ey), (E2) and the ordinary differential equation

(E4) z(t) + q(t)z(t) = 0.

Obviously (E1)-(FE4) are special cases of (1).

In this paper, we will discuss the more generalized form of Eq.(1) by
using Riccati technique due to Kamenev {6] and Yu [7], and the method
of the integral mean value due to Wintner [8], Hartman [9], Coles [10] and
Willett [11].

2. Main results

Let
b

2(t) = o(t) + | z(t - 6) du(t, 6),
c(t) € Cl[tg, 00) be a given function, a(t) = exp{—2 St c(s)ds} and

d
¥(t) = a®){k[ViLen(t, ) — | Vo_an(t — 5, 8)dn(t, s)] + ¢ (2) — ¢'(2)}-

[

At first we give the following five lemmas.

LEMMA 1. Let z(t) be an eventually positive (negative) solution of (1). Then
z(t) and 2'(t) are nonnegative.

Proof. In view of (Hy), it is clear that 2(t) > z(¢t) > 0, ¢ > Tp, for some
To > to. In the following we will see that 2’(t) is nonnegative. Actually,
according to (1), we have z”(t) < 0 for t > to, this indictates that 2'(¢) is
decreasing. Hence, if there is Ty > Ty such that 2/(T}) < 0, then

2(t) < 2(Ty) + (t — T1)2'(T1) — —o0, t— o0,
which contradicts to z(t) > 0 for ¢ > Tp. So the proof is completed.

REMARK 1. From the proof of Lemma 1 we can obtain that, if V& n(t,s) > 0
for t > to and z(t) is a nonoscillatory solution of (1), then z(t)z'(t) is
eventually positive.
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LEMMA 2. If (1) is nonoscillatory, then there ezists a number Ty > to and
a function v(t) € C*[T1,00) such that

(2) v'(t) + ¥(t) + <0, t>Ty.

Proof. Without loss of generality, assume that z(t) > 0 for t > T} and for
some T > ty. By Lemma 1 and (H;) as well as (1), we can get

d
2(t) + f(alt — 5)) dn(t, 5) = O,

c

d
2"(t) + kxz(t —s)dn(t,s) <0
and )
d b
2"+ k S[z(t —s)— Sa:(t —s—0)du(t - s,0)]dn(t,s) <0,
hence
d
2(t) + k(g [1— Ve u(t—s,0)]dnt, s))z(t —d)<o.
Now define
=a SEAUN c
o) =alt)| T+ el0), t2Ti2T,

for some positive number 3, then
d

v(6) < = 260000) + a0 ~ b(§ 1 - Vimanle = 0] an(s, )

c

—_ z/(t)z,(t — ﬂ) + cl(t)}

G- P)
d
<~ 2(t)o(t) + a(){ (1 - Vimanle - 5,0)]dn(t, )
20\,
-(g) o)

d

= 2c(t)v(t) + a(t){ —k (S (1 — Vi u(t—s,8)dn(t, s))

c

IN
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(Ugt; c(t))2 + c'(t)}

v (t)
= —(t) —
and the proof is completed.
In what follows, let us use the conception of the integral mean value to
introduce other lemmas. Let S be the set of all nonnegative locally integrable
on [tg, 00) functions g satisfying the condition

@ T ([o(s)ds)  [Galo0) ~ Galt)] > 0

t—oo

for some a € [0,1), where

Galt) = ate) | S L

[ a(8)9%(6) ds
If G4(00) = 00 in (3), we consider that g € S. And let Sy be the set of all
nonnegative locally integrable on [tg, 00) functions g satisfying
t
(4) lim S a(s)g ( )ds
= ({ g(s)ds)?

In order that either (3) or (4) holds for a nonnegative locally integrable
function g, it is necessary that g is not integrable on [tg, 00), i.e.

(5) | g(s)ds = o0

Every element in S or Sy is called a weight function. And it is clear that
SeCS.
Let g € S and define

S 9(8) S P(u )dud6
S g(u) du

LEMMA 3. Let v(t) be a solution of inequality (2). If there exists g € S
satisfying

Ag(s,t) =

(6) li—mt—booAg(ﬂt) > —o0,
then

T 92(s)
S a(s)

ds < oo.
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LeEMMA 4. If inequality (2) has a solution v(t) satisfying

T v3(s)

S m ds < 00,
then lim;_, o0 Ag(.,t) < 00 for any g € Sy and

tl_i.rgloAg(u, t) < v(u) — §L 1;((:)) ds.

In addition, if
(7) S P(s)ds < oo,

T
then
8 > T(s)ds+ | 28
(8) v@)_§¢@)3+§a“)3-

The proofs of Lemmas 3 and 4 are similar to those of Lemmas 2.3 and
2.4 in [5}.
LEMMA 5 ([11]). Assume that B(t) and Q(s,t) are nonnegative continuous
functions for T < s,t < 0o. If there exists € > 0 such that

oo

(9) S Q(s,t)B%(s)ds > ?i'(l +¢e)B(t)#0, t>T,
then the inequality
(10) v(t) > B(t) + o§°c2(s, twi(s)ds, t>T,

t
does not have a continuous solution v(t).

Now we will give out our main results.

THEOREM 1. If there ezists g € S such that (6) holds, then either (1) is
oscillatory or limy_, oo An(-,t) < 00 for each h € Sy.

Proof. Suppose that (1) is nonoscillatory. According to Lemma 2, there is
a function v € C? such that (2) holds on [T, c0). Then, by Lemma 3, we
have

ds < o0.

OSO v?(s)
a(s)

Hence, by Lemma 4, we have lim;_,,Ax(.,t) < oo for each h € Sy, and our
proof is completed.
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COROLLARY 1. If

S Lds= Sz/)(s)dszoo,

a(s)
then (1) is oscillatory.
COROLLARY 2. If
1 t
(11) tli»r{olo 7 Sa(s) ds =0,
ts
(12) Tom = [ 6(6) do ds = oo
t—oot

then (1) is oscillatory.

The proofs of Corollaries 1 and 2 are similar to those of Corollaries 3.4
and 3.5 in [5].

THEOREM 2. Suppose that V2 n(t,s) > 0 on [tg,00) and that there is a
nonnegative locally integrable function g on [tg,00) satisfying (4). If

(13) S P(s)ds < o0,
T
(14) Et —(1—8 (s)ds—c(t)} > 1

hold, then (1) is oscillatory.

Proof. Suppose that z(t) is nonoscillatory solution of (1). Without loss of
generality, z(t) > 0 for t > Ty > to. Since V& n(t,s) > 0, it follows from
Remark 1 that 2'(t) > 0 is decreasing on [T, 00) for some T > Ty + b + d.
Let

(15) (t) = (t){—z,(t) +c(t)}, t=>T
T ES g T P
then (2) holds. By (13) and Lemma 4, we can get the inequality
> —_— >
u(t) > §7,/1(s) ds + § o) ds, t>T,

indicating that
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Since 2'(t) is positive and decreasing on [T, o), so

zt—b—-d) 2(T)+ S;_b_dz’(s) ds

t2'(t) t2'(t)
z(D)+2(t-b—-d)(t—-b-d-T)
>
- t2'(t)
S D+ W)t —b-d-T) t-b-d-T
= t2'(t) = t

This and (15) imply
— 1 T —_— V(%)
B t{ o | () ds — ()} < Tt ~ e(t)
4

< lim ————— =1,

which contradicts (14). This contradiction proves that (1) is oscillatory.

THEOREM 3. Assume that there is a T > 0 such that

o0

(16) F(t)= {¢(s)ds>0, t>T.
Let
ol )
&(t) = | };(S)E(s,t) ds#0, t>T,
where E(s,t) = exp{2 {;(F(6)) d6} fors >t > T. If
(17) $(t) = 0o o50452(5)}3:( £ ds > 1(1+ £)d(t)
= or ) a(s) s,t)ds > y € ,

for allt > T and for some € > 0, then (1) is oscillatory.
COROLLARY 3. Let F(t) and ®(t) be as in Theorem 3. If

(18) 2(1) > 5(1+e)F (1),

for allt > T and for some € > 0, then (1) is oscillatory.
COROLLARY 4. Let F(t) and ®(t) be as in Theorem 3. If
°§° F(s)
. a(s)

for allt > T and for some € > 0, then Eq. (1) is oscillatory.

(19) ds > %(1 +e)F(t),

27

The proofs of Theorem 3 and Corollaries 3, 4 are similar to those in [5].
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3. Examples

EXAMPLE 1. Let us consider the equation

27 T
(20)  [z() + | «(t - 0) du(t,0))" + {(t — s)dn(t,s) =0, ¢>2m,
0 0

where

_[A4, for8el0,2n), B, forse|0,m),
(t,S)—{.t%, 6 = 2m, ’7(’5’3)—{9,, for s =m,A >0

and A, B, A a.re some constants. Now let c(t) = —g, then a(t) = t and
P(t) = 271 (t) = 1, then
['a(s)g*(s)ds _
oo (Cole)de?

(I 9(s) ds)

L 906) G 0(6) ddds _
t
tmoo SZ‘II' g(s) dS

H

for A > %. Therefore, by Theorem 1, the equation(20) is oscillatory.

ExAMPLE 2. Consider the equation

2 1
(21)  [z(t) + {z(t — 6) du(t,0)]" + Va(t—s)dn(t,s)=0, t>2,
0 0
where
, for 8 € [0, 2),
)= {00 o e
(t+1) log(t+1)° ’
_ (N, for s € [0, 1),
n(t, s) = 4_17+—2—210gt fors=1,A>0

and M, N, A are some constants.

Now set c(t) = -3(3 + ﬁz—t) then a(t) = tlogt and %(t) = 455 ~
77 ~ wogrs- Let 9(0) = 7rogy, then
¢
d
i 208G ds 1 ,
tooo ({2 g(s)ds)2  t—oo loglogt — log log2
t s
6)dods ———( 4x—1 1 A
Szg(s)tSz"/’( ) s = lim S( e 2 )ds = oo,
t=00 f> g(s)ds t—oo'4slogs 4s s%log” s

for A > . Therefore, by Theorem 1, the equation (21) is oscillatory if A > —
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ExAMPLE 3. Consider the delay differential equation
1

(22) 2'() + { f(a(t - 9))dn(t,5) =0, t21,
0

where f(z) = = + z?signz,

_[G, forsel0,1),
n(t,s)—{ﬁ_, fors=1,A>%

and G, X are some constants. The equation (22) is a special case of (1) when
a=b=c=0,d=1. We will examine the oscillatory behaviour of (22) in
two cases.

Case 1:

1Y)

<A<l Lete(t)=~-=,2<ac< \/_. Then a(t) = t=,

1
4 at’

W(t) =ta (% + 37 — =) and QA(O;T—;; > 1. Ifg(t):l,then
[ a(s)g’(s) ds
im ———— =
= (§ g(s)ds)?
Aa? -1

E@t{% [ o(s)ds =t} = Z2m > 1.

b

Hence, by Theorem 2, the equation (22) is oscillatory if 3 < A <

1
Case 2: A > 1. Let ¢(t) = 3t, then a(t) = t3 and P(t) = t%(?y + 9—1, -
3—%7) If g(t) =1, then

o Lals)g*(s)ds _
t=oo ([ g(s) ds)?
tll’r&t{% [ (s)ds - c(t)} = 9’\3‘ Ls g > 1

t

Therefore, from Theorem 2, we obtain that (22) is oscillatory for

A2
According to the two cases above, the equation (22) is oscillatory for A >

1
1
i
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