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A THEOREM DESCRIBING THE STRUCTURE
OF SET MAPPINGS BETWEEN MEASURE ALGEBRAS

Abstract. The subject of this paper is the problem of describing the structure of
set mappings h between two measure algebras (A1, u1) and (Ag, us) effectively. We shall
use disjoint partitions of the o-algebras A; and A;, and we shall assume that the homo-
morphism h : A; — Ay is continuous. We shall construct a pairwise disjoint sequence
(An) in the second o-algebra Ay which covers the homomorphic image of the whole space
X1 and for n € N we construct a partition {E1n,E2n,..., Eg n} of the first space X so
that the set mapping

hin : A1 (Ein) = Ao (An N h(E;,)) is a o-homomorphism.

Introduction

For all definitions and known results concerning measure theory and
Boolean algebra theory, the reader is referred to the books of Halmos [1],
Royden [4] and Sikorski [5]. We recall here only the most important termi-
nology, definitions, and notations.

A Boolean algebra A is called a Boolean o-algebra if, whenever (A,) is
a sequence in A, there exists a smallest element B such that A, < B, for
all n, and B < C for any element C satisfying A, < C, and we denote B

o
by V An. Therefore, every o-algebra of sets is a Boolean o-algebra.

n=1
A Boolean o-algebra A together with a measure u such that

i) p(A)=0 iff A=0,and
ii) p,( V An) =3 w(An), if AnAAm=0 for n#m,
n=1 n=1

is called a measure algebra.
If A is a measure algebra, and A € A, by A(A), we mean the restriction
of the measure algebra A to A4, i.e.

A(A)={BeA:B<A}.
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An element A # 0 in a measure algebra A is called an atom if B < A implies
B=AorB=0.
A measure p as well as its corresponding measure algebra A is called

non-atomic if whenever F' € A with pu(F) > 0, there exists an element
E € A with E < F such that u(F) > u(E) > 0.

Suppose (X,Fy, p1) and (Y, Fa, pa) are two measure spaces, and A, Ay
are the corresponding measure algebras. A set mapping h : A; — Ay is
called a homomorphism if:

() hX) =Y,
(i1) h(—E) = —h(FE) for FE € Ay,
(iii) MEUF)=h(E)YUh(F) forany E,F¢€A.

If, in addition, h has the property that for any sequence (E,) in A,
o0 o0

h( U En) = U h(E,), then h is called a g-homomorphism.
n=1 n=1

The Boolean homomorphism h is continuous if, in addition, it satisfies
the condition p1(E,) — 0 implies po(h(E,)) — 0.

The point mapping ¢ : Y — X is called measurable if 9~1(E) € Fy for
each F € Fy.

By Lo(u) we mean as usual the set of all measurable functions with
respect to the measure p.

LEMMA 1. Let (X, A, p) be a finite measure space. If B = {go : @ € I} C
Lo(p), then there exists an extended real-valued function h such that

1) 9o < h p-a.e. foreveryoael,
i) if go < f p-a.e. for some f in Lo(p), then h < f p-a.e. and there is

(s}

a sequence (ga,) n Lo(p) with h=\ ga, = sup{ga, : n € N}.
n=1
Proof.
Case 1, if go : X — [0, 1].
Let 8 = sup{{(ga; V...V ga,) : 9o, € B, 1 < i < n € N}. For every
0
n €N, there is hn = goy, V Gagn V- -- V Jarn, With {An T 8. Put A=  hy,

1
(note that {(go V hn) < B, Vn).
Claim: go < h p-a.e. Vo € I.

Suppose g > h for some a € I on a set of positive measure, i.e. (go—h)>¢
on a set E with u(E) > 0, for some € > 0.
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Therefore,
f(gaVha)={(9a VEn)+ | (g0 Vhn)
E -E
>{ga+t | Bn
E -FE
> { hn + S | ha
E -E

:Shn+6u(E) — B+eu(E) >p

which contradicts the note above. Thus, g, < h p-a.e. for every a € I, and
i) is true obviously.

Case2.1f {g, : @ € I} is an arbitrary subset of Lo(u), define the mapping
¢ : (—00,00] — (0,1} by

1 ifz=00

={1 1
o(z) 5 (-HLMZT) + 3 otherwise.

Let h = sup{p o g, : & € I} so that, by Case 1:
(1) if go < f p-a.e. for some f, then o=l o h =supg, < f p-ae.,
(2) g loh =sup{gs : @ € I} > ga p-a.e., and also, there is a sequence

o0
(9a,.) such that \/ ¢ og,, = h.
n=1

Thus, V ga, = ¢! oh and hence B has the required i) and ii).

n=1

LEMMA 2. If the measure algebra (A, p) is finite non-atomic then for any
A € A with u(A) > 0, and for each € > 0, there exists B C A such that
w(B) < €.

The proof of this lemma is evident and we omit it. The following technical
lemma proves some combinatorial result we need in our main Theorem 4.

Although the proof of the next Lemma 3 has been published in [2] p. 169,
we include the proof in our paper for completeness. Let us mention that the
proof of this lemma was first included in the author’s M. Sc. thesis 3] (this
thesis has not been published).

LEMMA 3. Suppose that Ay,..., A, Ey are sets in A such that Z X, >

=1 A
MXE (n>M €eN). ThenVr, 1 <7 <n— M, there exists a subsequence
0
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Aiy, Ay, Ay, of (AT, such that
u(jL;Jl Ai,-) > (1 - (1 - %)) (1(Eo)).

Proof. It is clear that Z X, (z) > M, Vz € Ey. Let us call E an r-set

i=1 A
if |[E| = r, hence the number of r-sets in {1,2,...,n} is (’:), there is a set
FcA{l,...,n}with|F|=Msuchthatz € (Y A, H|EB|=r,2¢ | A
ieF i€EE

only if ENF = @, 1e. E C {1,2,...,n}\ F. But the number of r-sets
in {1,2,...,n}\ F is ("), Therefore Z XU (z) > () - (*M).

E|=r i€E
Since the right hand side of this 1nequahty does not depend on z, it is true

for every = € Ey.
Thus, the average measure of a union of r-many sets A; is

() S uUa)= () 5T x, )

|E|:r i€E IEl—r icE

(:) ( DXy A,-)d“

Ey |E|='r‘ icE

- L) e

ni(n = M

> (1- (1= %) ) e,

So there is a subsequence Aj,..., A;. of (A;), such that
G0 B o2

Note that if M — oo, (1—2£)" — 0, because M < n, then & — 1 if (n— M)
is bounded VM. O

Now, we state and prove our main theorem.
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THEOREM 4 [3]. Let (X1,Fy, p1) and (X2, Fs, p2) be two finite non-atomic
measure spaces, and let Ay and Ay be the corresponding measure algebras of
u1 and ug respectively.

Suppose h : Ay — Az is a mapping satisfying

(l) E,, E; € Ay implies h(El U Ez) = h(El) U h(Ez),
(i) if (En) is a decreasing sequence in Ay with pi(E,) — 0, then
p2(h(En)) — 0.

Then there is a pairwise disjoint sequence (An) in Ay such that h(X;) =
[o o]
U A, and for each n € N, there is a partition {E1np,...,Ex,n} of X1, so

n=1

that the mapping hin(E) = An Nh(E), for E € Ay(E;y) is a o-homomorph-
ism Of Al (E,; ) into Az (An N h(Em,))

Proof. Let P be the family of all partitions of the Boolean algebra A;. P is
partially ordered by the following relation

P <Q < Q is arefinement of P, for every P,Q € P.

If P={E,...,E,} e Pand H(P) = ) Xn(B,)’ then H(P) € Lo(ug). By
' i=1 i

)
(1), it is obvious that the operation H is monotonic.

(1) P < Q implies H(P) < H(Q), for all P,Q € P.

Now, let g = sup{H(P) : P € P}. It follows from Lemma 1 that by (1) and
the definition of H, there is a monotonic increasing sequence (Q,) in P, such
that

(2) g= lim H(Qn).

n—oo

We claim that g(z) < 00, ps-a.e.

In order to prove this, let us presume that, on the contrary, g = oo on
a set D C X with (D) > a > 0.

Let M be an arbitrary integer and let

Ly={zeD:H(Q.)(z) <M}, neN

Since lim H(Qn)(z) = oo for z € D and Ly D Ly D ..., we have
n—oo
nlirréo p2(Lyn) = 0, so given any € > 0, there is k € N such that up(Lg) < ¢

and H(Qx)(z) > M for every z € D\ Li. We can choose € so that the set
Zy = D\ L; has a positive measure. Hence pa(D \ L) > a—¢ > 0.



18 A. A, Mehemmed

Since, by the above considerations, H(Qy) > M X, We can apply here
Lemma 3. For every n > M, let Q), = {F1,..., F,} be a refinement of the
partition Qx = {F,..., En} such that py(Fj) < 2p1(Ex) and p(Fj) <
%p,l(Xl), for 1 <j<nand1<k<m,sucha @) exists by Lemma 2.

By Lemma 3, for every r, 1 < r < n, there is a subsequence F;, ..., F;
of Fy,..., F, such that

®) (h(,-gl F,)) = m(;h(mj)) > (1-(1-2) ) -0

J

r

and
(4) #1(U Fi,~> < %Tﬂ, where 8 = p;(X1).
=1

Since, for M > m, n may be chosen in such a way that the sequence (n— M)
is bounded, the conjunction of (3) and (4) contradicts the assumption (i).
This contradiction proves that g < oo pe-a.e.

Now, if we recall the definition (2) g = nlgr;o H(Q,), where Qy is an

increasing sequence in P, and if we define B, = g~1([1,n]), we obtain

o0 [e o]
U Bn = ‘1( U [l,n]) = h(X1), since g is finite and integer-valued. For
'n=1 n:l

every pair of integers (k,n), let Cr, = {z € By, : H(Qk)(:c) < g(z)}
Since H(Qk) T g for k T oo, we have klim 12(Cr.n) = 0. So, for a fixed

n, k may be chosen so that up(Ck,n) < 1. In this case, B, \ Cxn = {z €
B, : H(Qx)(z) = g(z)}.
Since H(Qx)(z) cannot be greater than g(z), we have

(5) B, \Cin={z € Bp: H(Qk)(.’t) = g(z)}.

n—1

Now, let Ay = g=1({0}), and for n > 0, let A, = B, \ ( U A;u ck,n) 50
1=0

that B, \ |J Ai is a subset of Ck n, and then ps (Bn \ U A,-) <L
i=0 i=1

o0 [e ]
Therefore, the sequence (A,) is pairwise disjoint and |J Ap = U Br =
n=1 n=1
h(X1) (with accuracy of a set of measure zero).
Now, consider the partition Qj such that (5) holds.
If Q. = {Fin, .- Emn} and A, B € A((Ein) such that AUB = E;,
and AN B = &, then we claim that us(A, NA(A) NA(B))=0.
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Presume that this is not the case. Then, we shall discuss the refinement
‘ Q;c = {El,rn ceey Ei—l,n7 A; B, Ei+1,n, <y Em,n} of Qk-
For every z € A, Nh(A) N h(B) we have

H(Qi)(#) = X, 5, )+xh(A)(m)+xh(B)($)
J#i

= th(E z)
J#i

m

2 Xy (B T1=9(z) + 1,
because h(A) U h(B) = h(AU B) = h(E;y).

But this contradicts (5).

Finally, define the mapping hin : A (Ein) — A2(AnNh(Eir)), by hin(E)
= A, Nh(E), for each E € A1 (E;y).

Since h(E;n \ E) U h(E) = h(E;,), we have hin(E;p, \ E) U h;n(E) =
A, Nh(E;,). .. by (i), which is the greatest element of Ay (A, N A(E;y)).

On the other hand, h;,(Ein \ E) N hin(E) = A, Nh(E;n \ E) Nh(E) by
definition of h;, and by the property of meet in Boolean algebra. But it was
proved previously that ps (A, NA(Ei \ E)NA(E)) = 0, it follows that in the
measure algebra A two elements A, Nh(E;, \ E) and A, Nh(E) are disjoint.
With the final result, the second one is the complement of the first one in
the algebra Ag (A, N h(E;y,)), 1.e. hin(Ein \ E) = —hin(E), and since h;,
preserves finite union, it is a homomorphism. Hence p1(F,) | 0 in A (E;p)
implies pg(hin(Ey)) | 0, by (ii) and the definition of h;p.

Thus, h;, is a o-homomorphism for each n € Nand each 1 <:<k,. O

LN
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