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LEFT-EDGE SOLID VARIETIES
OF DIFFERENTIAL GROUPOIDS

Abstract. An identity s ~ t is called a hyperidentity in a variety V if by substituting
terms of appropriate arity for the operation symbols in s = t, one obtains an identity
satisfied in V. Such substitutions are called hypersubstitutions. In the paper we consider
hyperidentities and hypersubstitutions in the variety of differential groupoids, certain
idempotent and medial groupoids. Differential groupoids are modes as defined in [Rom-S;
85]. We show that this variety and all its subvarieties are left-edge solid.

1. Introduction

Algebras in the variety defined by the medial law, the idempotent law,
and the identity z(yz) = zy are called differential groupoids. Romanowska
and Smith pointed out some interconnections between differential groupoids,
differentials and differentiation ([Rom-S; 91]). From z(yz) = zy one obtains
z(zy) = zz =~ z and if in a medial and idempotent variety the equation
z(zy) = « is satisfied one has also z(yz) = (z(zy))(vz) = (zy)((zy)z)
zy. That means, we can also consider the variety DG = Mod{(zy)(uv)
(zu)(yv), 22 ~ z, z(zy) =~ z}.

The variety of differential groupoids (also called LIR-groupoids in [Rom-
R; 87]) satisfies also the identity

~
~
~
~

(zy)z = (z2)y

of left normality ([Rom-S; 91]) since (zy)z =~ (zy)(22) = (z2)(yz) =
((z2)((z2)y))(y2) = ((z2)y)(((z2)y)z) = (z2)y.

In this paper we consider the dual variety RR = Mod{(zy)(uv) =
(zu)(yv), zz = z, (zy)y =~ y} (see [Dud; 94], [Rom-R; 87], [Rom-R; 89])
and some of its subvarieties, for instance varieties which are dual to vari-
eties of n-cyclic groupoids introduced by Plonka ([Plo; 85]). All results are
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dualizable and give us dual results for DG. There is no particular reason to
prefer one or the other variety.

To these varieties we apply the theory of M-hyperidentities and M-solid
varieties ({Den-R; 95], [Den-W; 98]). Our main result is that the variety of
differential groupoids as well as all its subvarieties are left-edge solid and
dually, that the variety RR and all its subvarieties are right—edge solid.

2. Basic concepts

An identity s =~ t is called a hyperidentity in a variety V if for ev-
ery substitution of terms of V of appropriate arity for the operation sym-
bols in s = t, the resulting identity holds in V. In this paper we consider
groupoids (binars), i.e. algebras with one binary operation f4 and varieties
of groupoids.

Our informal definition of a hyperidentity shows that we are interested
in a map which associates to the binary operation symbol f a binary term
o(f). Any such map is called a hypersubstitution. Let W(X) be the set of
all terms of type 2 on an alphabet X = {z1,9,z3,...} and let W(X32) be
the set of all binary terms, i.e. terms built up from Xy = {z,y}. Using a
hypersubstitution ¢ we can define a uniquely determined mapping & defined
on terms by

(i) é[z] :=z for any z € X,
(i) 6(f(t1,22)] := a(f)(6[ta], 6(ta])-

By Hyp we denote the set of all these hypersubstitutions. If we define
a multiplication op on the set Hyp by o1 op 09 := J1 0 09 where o is the
usual composition of functions together with ;4 defined by o4(f) = f(z,y)
we obtain a monoid Hyp = (Hyp; on,0:). If M is a submonoid of Hyp
then we define an equation s =~ ¢ built up by terms s,¢ of type 2 to be
an M-hyperidentity in the variety V of groupoids if for all ¢ € M the
equations &s] ~ &[t] are satisfied as identities in V. Hyperidentities are
M-hyperidentities for M = Hyp. A variety V of groupoids is called M-solid
if every identity satisfied in V' is an M-hyperidentity in V. For M = Hyp we
speak of solid varieties. All M-solid varieties of groupoids form a complete
sublattice Spr(2) of the lattice £(2) of all varieties of groupoids with

M; C My = Sy, (2) D SMz(Z) .
For more background on the theory of M-hyperidentities and M-solid vari-
eties see e.g. [Den-R; 95] and [Den; 97].
Particular submonoids of Hyp are the monoids Left and Right of all

leftmost and rightmost hypersubstitutions. A hypersubstitution o € Hyp is
called leftmost if the left most variable in the term o(f) =t is .
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The varieties corresponding to Sr.f:(2) and to Sgignt(2) are called left—
edge-solid and right-edge—solid, respectively.

Let V be a variety of groupoids and let M be a monoid of hypersubsti-
tutions. To test whether an identity s &~ ¢ of V' is an M-hyperidentity of V,
our definition requires that we check, for each hypersubstitution ¢ in M,
that &(s] = &[t] is an identity of V.

Indeed, we can restrict our testing to certain “special” hypersubstitu-
tions. To make this restriction precise we recall of two concepts, both intro-
duced by J. Plonka in [Plo; 94] for arbitrary types of algebras.

DEFINITION 2.1. Let V' be a variety of groupoids. A hypersubstitution o
is called a V-proper hypersubstitution if for every identity s =~ t of V, the
identity &[s] = &(t] also holds in V. We use P(V) for the set of all V-proper
hypersubstitutions.

Clearly, (P(V); on,0:4) is a submonoid of (Hyp;op,044), a variety V is
M-solid for the monoid M = P(V) and P(V) is the largest M for which V
is M-solid.

DEFINITION 2.2. Let V be a variety of groupoids. Two hypersubstitutions
o1 and o2 are called V-equivalent if 01(f) = o2(f) is an identity in V. In
this case we write o1 ~y 03.

By induction on the complexity of term definition one shows

o1~y 02 © Vit € W(X) (61]t] = 82t} € IdV)
(here IdV denotes the set of all identities satisfied in V).
Using this proposition one proves also: If o1 ~vy o3 then §1(s] = 61[t] is
an identity in V iff &3[s] = &3[t] is an identity in V' (see e.g. [Den-W; 97)).
It is clear from the definition that the relation ~y is always an equiva-
lence relation on Hyp and its restriction ~y|M to M is always an equivalence
relation on M.

DEFINITION 2.3. Let V be a variety of groupoids and let M be a monoid of
hypersubstitutions. Let ® be a choice function which chooses from M one
hypersubstitution from each equivalence class of the relation ~y|M and with
®([oid]~y) = 0ia and let MY (V) be the set of hypersubstitutions so chosen.
The elements of MY (V) are called ® — V-normal form hypersubstitutions
of M . We will say that the variety V is M} (V)-solid if for every identity
s~ t € IdV and for every hypersubstitution ¢ € MY (V), the equation
G(s] = &[t] belongs to IdV.

Then from the remark before Definition 2.3 it follows that the variety V'
is M-solid iff it is MY (V')-solid ([Arw-D; 97)).
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On the set MY (V) we can define a multiplication by
010N 02 = @[(0’1 Oh 0'2)]~V
and obtain a groupoid (MY (V); on,0y4) with identity.
It is easy to see that (ML (V); on,0iq) is a monoid if V is M-solid ([Den-
W; 97]). The converse is not true ([Wis; 97]). Note that if P(V') is the monoid

of V-proper hypersubstitutions, then P(V)¥ (V) is also a monoid and V is
P(V)-solid.

3. RR-normal form hypersubstitutions

Our first aim is to calculate the normal form hypersubstitutions for the
variety RR = Mod{(zy)(uv) = (zu)(yv), zz = z, (zy)y ~ y}. We need
some more identities satisfied in RR.

In a similar way as in the introduction one can show

PROPOSITION 3.1 ([Dud; 94],|Rom-R; 87]). A medial idempotent groupoid
satisfies (zy)y = y iff it satisfies (zy)z = yz and z(yz) = y(zz). [

In the sequel we write 2™y for z(...(z(zy))...). An inductive definition
of zy is given by z'y := zy, 2™y = z(z™ 'y). Further we set 2% := y.
We recall of several identities satisfied in the variety RR.

PRrROPOSITION 3.2 ([Rom-R; 87] for the dual identities). The variety RR
satisfies the following identities:

(i) «*(yz) ~ yz, ke NEk > 1,
(i) (z*Fy)y =y, kl€N, k1>1,
(iii) (yk:c)y ~zy, k€N,
(iv) (zly)(zFy) = zFy, k,l €N, k1> 1,
(v) ('z)(zby) = 21y, k,leN, k1>1,
(vi) 2k~ (gt (zF-1( . (2P (v (z)) .. ) = 2P Ty,
]C]_,...,kn, ll,...,ln €N

ki koo kn > 10, dn>1 and k= ki + ... + kn. =
THEOREM 3.3 ([Rom-R; 87], see also [Dud; 95]). The set of all binary terms
of RR is {z*y | k > 0} U {¢*z | & > 0}. =

Each of these terms is in fact an equivalence class, i.e. an element of the
quotient set W(X3)/Id RR and there is a function ® which selects from each
of the classes the given binary term in {zFy | k > 0} U {v*z | k¥ > 0}. But
this means Hyp} (RR) = {o,#, | k > 0} U {0y, | k > 0} is the groupoid of
normal form hypersubstitutions w.r.t. the choice function ®. The elements
of HypY (RR) are pairwise different. Otherwise, if there are natural numbers
k,l with k # | and o+, ~RR 0y, then z*y ~ zly € IdRR, but there are
algebras in RR which doesn’t satisfy this identity. If ok, ~rR oy, 1. if
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zFy ~ y'z € IdRR then by Proposition 3.2 zFy ~ z¥*1y € IdRR and we
get a contradiction as in the previous case. To describe the operation oy on
HypY (RR) we prove the following relations

PROPOSITION 3.4. (i) Oyky Oh Oty ~RR Oghty , Kk, 120,

(ll) am"y Oh Oymz ~“RR Uyk'mz ) k,m 2 07
(111) Oymg Op Oyng YRR Oy , MTM,N >2,
(iv) Oz Op Oyng YRR Oy, T >1,

Oyz Oh Oyng ~“RR Oy , N 2 2,

Oymg Op Og YRR Oz , ™ 20,

Oymg Oh Oyz ~RR Ogmy , m 20,
(V) Oymg Oh Uzky ~RR Oz, MM, k > 2;
(Vi) 0z 04 O4ky ~RR Oz, k20,

U’yz Oh Ua:"y ~RR Oz ] k Z 2}

Oymg Oh Ogy ~RR Oy™z , MM >0,

Oymg Op Oy ~RR Oy , ™M 2 0.

Proof. (i) We prove this relation by induction on I. Assume that ! = 0.
Then (0o4k, on 0y)(f) = G4, [y] = y and thus ok, on 0y ~rR 0y and (i) is
satisfied for | = 0. Assume now that (i) is satisfied for [ — 1, i.e. ok, op
Ogi-1y ~RR Ogka-1Y- Then (ozky on 051, )(f) = Gk, [2'y] = 60, [x(z1y)] =
gk (z*-Ny) = gF+k(=1y = gkly This proves (i).

(ii) We give a proof by induction on m. For m = 0 we have (o, o
0z)(f) = Ggzky[z] = z and therefore Ogky Oh Oz ~RR Ogz. Assume that
Ogky Oh Oy(m-1)z ~RR Oyk(m—-1)5- Then (gx, o oymz)(f) = &zky[y(ym_lm)] =
yR(ym—Dbg) = yht(m-1kg — ykmy and (i) is satisfied.

(iii) We prove this by induction on n. For n = 2 we obtain (gymz op
Oy(yz))(f) = Gymz[y(yz)] = (z™y)™y ~ y by Proposition 3.2 (ii) and thus
Oymg Op Oy2, ~RR Oy Assume that oymy o Oyn-1, ~RR 0y. Then (oymg o
oyng)(f) = Gymgy™z] = 6ymzly(y"1z)] = y™y = y and therefore, oymg op,
Oyng ~RR Oy for all m,n > 2.

(iv) The first relation is clear. We prove the second one by induction
on n > 2. For n = 2 we get (0ys oh Oya))(f) = Gyz(y(yz)] = (zy)y = ¥
and thus oyy op 0y2; ~rR 0y. Assume that oy, op oyn-1, ~gr 0y. Then
(0ye o Oyna)(f) = Gyalyz] = Gyaly(y™'2)] = 0ya(f) (Y, Gyaly™ '2]) =
oye(f)(y,¥) = yy ® y and then oyg o oynz ~pgR oy for all n > 2.

The relations oymz 0p, 02 ~RR 0z and Oymz 04 Oyz ~RR Tzmy for allm > 0
are obvious.

(v) We prove this by induction on k. For k = 2 one has (oymz op
Og(zy))(f) = Gymz[z(zy)] = (y"z)™z ~ = by Proposition 3.2 (ii) and then
Oymg Op Ogx2y ~“RR Oz-
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Assume now that oymg op 0gk-1, ~gR 0z. Then (oymy op ok, )(f) =
Gymz[zFy] = Gymz[z(zF1y)] = oyma(f)(z,2) = 2™z ~ z and so we obtain
Oymg O Ogky ~RR Og.

(vi) The-first, the third, and the fourth relation need no proof.

We show gy op, Ogky ~RR Oz for all £ > 2 by induction on k.

We begin with k = 2, then 6. [z(2y)] = (yz)z = z and 50 00,02, ~RR
oz. Assume that oyg op 0yk-1y ~RrR 0. Then byalz®y] = 6yzlz(zF 1Y) =
0y (f)(z, 6yz[2*1y]) = zz ~ z. This completes the proof. [ ]

Proposition 3.4 shows that the multiplication oy in HypY (RR) can be
given by the following Cayley—table:

oN Og Oy Ogy Oyz O zky Tzly Oymy Oyng
Oz Oy Oy Oz Oy Oz Oz oy Oy

oy or Oy Oy Oz oy oy Or Og
Oyz 0z Oy Oy Ozy Oz Oz Ty oy
O'Zk,y Og Oy szky O'yzz Umkzy O‘zk-zy Uym-kz Uynvkm
O'zzy Or Oy Uzzy O'yzz Uzk-ly Umlzy O'ym-tz Uyn~lz
Oyng Oy Oy Oyng Ozny Oy Og Oy Oy

4. Hyperidentities and RR—-proper hypersubstitutions
Now we want to answer the following two questions:

1. Which identities are preserved by all hypersubstitutions, i.e. which
identities satisfied in RR are hyperidentities?

2. Which hypersubstitutions satisfy all identities of RR, i.e. which hy-
persubstitutions are RR-proper?

To check the medial law we need some more identities satisfied in RR.
PROPOSITION 4.1. The following identities are satisfied in RR:

(=*y)*(w*v) ~ (zF)* I ((Fu) (@YY (WP 10)), 1<j<k-1k22
Proof. We give a proof by induction on j and begin with 7 = 1:

(e*y)* (u*v) = (2*9)* 7 ((a(2* ) (u(u*"10)))
~ (2*y) 7 ((2u) (5 1y) (¥ 10)).
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Assume now that (zFy)*(ukv) = (zFy)*~ =D (27~ u)((z*1y) 1 (v~ 1v))).
Then

N (Ca N (e  Ca0))
= (@) (@) (@ (7 )
~ ()3 (2o 1) (7 )P @ )))
~ (2Fy) 7 ((a(o0 ) (F 1) (2 gy T W )))
~ ()3 (@) (25 ) (uF 1)

and then (z¥y)*(uFv) = (z%y)*~7 ((2u)((a*1y) (uP10)) - n
Especially with j = k — 1 we obtain:
COROLLARY 4.2. The following identity holds in RR:
(z*y)*(uPv) = (zFy)((z* ) (& )P (P 1o)))
Proof. This follows from Proposition 4.1 with j =k — 1. |
THEOREM 4.3. The idempotent and the medial law are hyperidentities in RR.

Proof. For every term v € W, (where W; is the set of all terms built up
only by using of ) we have v ~ = € Id RR (applying the idempotent law).
If we apply an arbitrary normal form hypersubstitution o of RR to 2% ~ z,
on the left hand side we get a term v € W, and on the right hand side we
get z, so 6[z%] = v &~ = = 6[z] € Id RR and the idempotent law is satisfied
as a hyperidentity in V.

Now we turn our attention to the medial law. It is routine matter to check
that for every o € {04, 0y, 0y, 0yz} we have 6{(zy)(uwv)] = &{(zu)(yv)] €
Id RR. Now we show by induction on k that 6., [(zy)(wv)] = 64, [(zu)(yv)]
€ IdRRfor all k € N, k > 2 and begin with k = 2. Then

Fa2y((zy)(wv)] = (2%y)* (u?v) = (2°y)((zw)((2y)(w)))

~ (z%y)((zw)((zu)(yv))) = (2(zy))((zv)((zu)(yv)))

~ (z(zw))((zy)((zu)(yv))) = (z(zw))((z(zw)) (y(yv)))

~ (2%u)?(y%0) = G2y [(2u) (y0)]
by Corollary 4.2 applying the medial identity several times. Assume that

Gar-1y[(zy)(wv)] = (2" 1y)* 7 (P To) & (&P Tu)E T (yF)
= e, (zw) ().
Then
Goky[(zy) (w0)] = (aF)* (utv)
~ (2y) (" u)((z*y)* 1 (u*1v)))  (by Corollary 4.2)

~ (z*y) ((z* u)((z*'w)* " (y* ) (by hypothesis)
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~ (zy)((zFu)*(F1v))  and
zky[(w)(yv)] = (zFu)*(yFv)
-1

~ (zFu) (" 'y) ((z*Tu)* (¥ 1v))) by Corollary 4.2
~ (z(z*~ 1U)((Ik ) () (5 )

~ (z(e* 1)) (&*Tu)((zb~ 1u)k Yy* 1))

~ (zFy) (@ )P (yF 1)) .

This shows that 6.+, [(zy)(uv)] = G4, [(zu)(yv)] € Id RR for all k > 2.
To show that o, also preserves the medial identity we apply the equation

Oykg = Oghy ON Oyz, 1.6. Oyky ~RR Ogky Op Oy and therefore we have

Yz yrz

Gyral(@y) (w0)] = 6ry [0yl (2y)(w0)]] = Gy [(vu) (y2)] = (v*u)*(y*2)
= (vFy)*(ube) = Gy [(vy)(uz)] = ok [ya((zu)(y0)]]
= (Ogky Oh 0yz) ” [(2y)(wv)] = Gyrg[(zy) (wv)] -
This finishes the proof. [

Note that the medial law is a hyperidentity in the variety of all medial
and idempotent groupoids. So Theorem 4.3 follows from this more general
fact. But we wanted to give an independent proof.

The variety RR is not solid since the identity (zy)y = y fails to be a
hyperidentity as we can see by 6;[(zy)y] = z % y = &z[y]-

If we want to check which hypersubstitutions preserve all identities of
RR we have only to consider the identity (zy)y = y.

By RZ we denote the variety of right—zero semigroups, i.e. RZ =
Mod{zy = y}. Clearly RZ is a subvariety of RR.

PROPOSITION 4.4. {04, | | > 0} is the monoid of all RR—proper normal
form hypersubstitutions.

Proof. We have only to check the equation (zy)y ~ y. Applying oy, for
arbitrary | > 0 we get G, [(zy)y] = (dy)ly ~y = 641y[y] by Proposition
3.2(ii). For I = 0 we have oy[(zy)y] = y = 6y[y]. Now we have to prove that
no normal form hypersubstitution different from o, preserves the equation
(zy)y = y. Clearly, o, is not proper since 6;[(zy)y] = = and &;[y] = .
For oymz , m > 1 we have Gymz[(zy)y] = y™(y™z) and Gymely] = v.
Assume that y™(y™z) ~ y € Id RR. Then (y™(y™z))((zy)y) R yy = y €
Id RR and by the medial identity also (y(zy))((¥*™1z)y) = (y(zy))(zy) =
(z(zy))(zy) ~ zy.

But this means zy = y € IdRR and RR is the variety of right-zero-
semigroups. Since RR is different from RZ we have a contradiction. [

Further we have
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COROLLARY 4.5. The monoid of all RR-proper normal form hypersubsti-
tutions is isomorphic to the monoid (N;-,1,0) of all natural numbers with
zero.

Proof. We consider the map ¢ : {oy, | | 2 0, I € N} — N defined
by <p(azzy) = [. This map is one—to—one and onto since hypersubstitutions
for different [ are different. Further ¢(o,1, on 04k,) = @(ogey) = 1-k =
@(0g1y) - p(0gr,) by Proposition 3.4(i). ]

5. Right—edge solid varieties of entropic groupoids

In section 2 we introduced the concept of left— and rightmost hypersub-
stitutions. Let Rz’ghtg (RR) be a set of all rightmost normal form hypersub-
stitutions of RR.

A variety V is right-edge—solid iff the set of all V—proper normal form
hypersubstitutions agrees with the set of all rightmost normal form hyper-
substitutions.

Checking HypY (RR) and Right)(RR) we notice that P(RR)Y =
RightY (RR). So we have

PROPOSITION 5.1. The variety RR 1is right—edge—solid. |

In [Rom-R; 87] also subvarieties of DG were considered. In the same
way we obtain the subvarieties of RR. If in a subvariety of RR not all terms
of the form z*y are pairwise different, i.e. if there are repetitions among
these terms, then we consider the least m € N such that there exists an
| € N with 2™y =~ z'y € Id RR. Let r be the least natural number such
that z™y =~ ™"y € IdRR. (m is called index and r is called period.)
Then the Id RR—classes of z, zy, 2%y, . . ., 2™y, ™1y, ..., 2™~y are all
distinct and z™*%y ~ ™'y € Id RR if and only if u = v mod r. Clearly,
zPy = 2% € Id RR iff yPz ~ y%z € Id RR. Let RRp,; = Mod{(zy)(uv) =
(zu)(yv), 2% =~ z,(zy)y = y, 2™y ~ 2™y, m > 0, r > 1, m,r minimal}.
Then we have

THEOREM 5.2. Every variety RRy, » is right-edge-solid.

Proof. From z™y = ™"y € Id RRp,, it follows that y™z ~ y™*"z €
Id RRy, ;. Therefore all binary terms over RRy, » are {zly |0<I<k+r-
1}U{y'z | 0 < I < k+r—1}. The hypersubstitutions {1, | 0 < I < k+r—1}
preserve (zy)(uv) ~ (zu)(yv),z? = z,(zy)y ~ y. We check the identities
™y ~ ™y, m > 0, r > 1, m,r minimal and obtain Opiylz™y] = 2%y
with s = m -l mod r and 6,,[c™1"y] = ¥y with &' = (m + r)l mod r.
Because of (m + r)l = m -l mod r we have z°y = 'y € Id RRpy» and
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thus the equations 2™y ~ ™"y are right hyperidentities and therefore the
varieties RR,, » are right-edge-solid. [

The variety RRp ; agrees with the variety RZ of right—zero-semigroups.
We have infinitely many different varieties between RRp; and RR. Each
variety RR, » contains the variety of right-zero—semigroups and each variety
RR;,» is contained in the variety RR.

For the join and the meet of two varieties RRy,,, RRpy, we have
RRy, V RRm/,,,-/ = RRma.x(m,m’),l.c.m,(r,r’) and RRp;,» A RRm/,,,-/ = RRpr N
RRpy = RRpin(mm),g.cd.(rr)- The meet of all these varieties is clearly
the variety RRp 1 of right-zero—semigroups and the join is the variety RR.

If V is a variety of groupoids and if ¥ is an equational basis for the
equational theory of V, i.e. a system of axioms for V, then by V¢ we denote
the dual variety V¢ = Mod 0y,[5] = {6yz[s] = 6y[t] | s & t € £}. Clearly,
the variety RR¢ is the variety DG of differential groupoids.

Then dually we obtain

THEOREM 5.3. The variety DG = Mod{(zy)(wv) ~ (zu)(yv), z* ~ z,
z(zy) = z} is left-edge-solid. The varieties DGpr = Mod{(zy)(uwv) =
(zu)(yv), 2 ~ z, z(zy) = z, zy* =~ zy**", k >0, r > 1,k,r minimal}
are also left-edge—solid. [ |

In [Rom-R ;87] Romanowska and Roszkowska proved that the subvariety

lattice L(DG) of DG consists of exactly the varieties DGp, r, of DG, and of
the trivial variety and that £L(DG) is isomorphic to a lattice Lo 1 which is
defined in the following way:
Let NV be the lattice of all natural numbers with l.c.m. and g.c.d. as lattice
operations, let Ay be the lattice of all natural numbers with min and maz
as lattice operations, let £ be the direct product of Ng and Ny and let Lo 1
be the lattice arising from £ by adding a new greatest element 1 and a new
least element O.

A similar proposition holds for the dual variety RR. If we define
SLeft(DG) = SLeft(z) NL(DG) and SRight(RR) = SRight(z) NL(RR) then
we obtain:

COROLLARY 5.4. SLest(DG) = L(DG), Srignt(RR) = L(RR) n
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