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LEFT-EDGE SOLID VARIETIES 
OF DIFFERENTIAL GROUPOIDS 

Abstract. An identity s « t is called a hyperidentity in a variety V if by substituting 
terms of appropriate arity for the operation symbols in s « i, one obtains an identity 
satisfied in V. Such substitutions are called hypersubstitutions. In the paper we consider 
hyperidentities and hypersubstitutions in the variety of differential groupoids, certain 
idempotent and medial groupoids. Differential groupoids are modes as defined in [Rom-S; 
85]. We show that this variety and all its subvarieties are left-edge solid. 

1. Introduction 
Algebras in the variety defined by the medial law, the idempotent law, 

and the identity x{yz) & xy are called differential groupoids. Romanowska 
and Smith pointed out some interconnections between differential groupoids, 
differentials and differentiation ([Rom-S; 91]). From x(yz) & xy one obtains 
x(xy) « xx PS x and if in a medial and idempotent variety the equation 
x(xy) « x is satisfied one has also x{yz) « (x(xy))(yz) « (xy)((xy)z) « 
xy. That means, we can also consider the variety DG = Mod{(xy)(uv) ~ 
(.xu)(yv), x2 « x, x(xy) & x} . 

The variety of differential groupoids (also called LIR-groupoids in [Rom-
R; 87]) satisfies also the identity 

(xy)z « (xz)y 

of left normality ([Rom-S; 91]) since (xy)z « (xy)(zz) « (xz)(yz) & 
((xz)((xz)y))(yz) « ((xz)y)(((xz)y)z) ta (xz)y. 

In this paper we consider the dual variety RR — Mod{(xy)(uv) « 
(xu)(yv), xx « x, (xy)y & y} (see [Dud; 94], [Rom-R; 87], [Rom-R; 89]) 
and some of its subvarieties, for instance varieties which are dual to vari-
eties of n-cyclic groupoids introduced by Plonka ([Plo; 85]). All results are 
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dualizable and give us dual results for DG. There is no particular reason to 
prefer one or the other variety. 

To these varieties we apply the theory of M-hyperidentities and M-solid 
varieties ([Den-R; 95], [Den-W; 98]). Our main result is that the variety of 
differential groupoids as well as all its subvarieties are left-edge solid and 
dually, that the variety RR and all its subvarieties are right-edge solid. 

2. Basic concepts 
An identity s & t is called a hyperidentity in a variety V if for ev-

ery substitution of terms of V of appropriate arity for the operation sym-
bols in s « t, the resulting identity holds in V. In this paper we consider 
groupoids (binars), i.e. algebras with one binary operation f A and varieties 
of groupoids. 

Our informal definition of a hyperidentity shows that we are interested 
in a map which associates to the binary operation symbol / a binary term 
<t(/). Any such map is called a hypersubstitution. Let W(X) be the set of 
all terms of type 2 on an alphabet X — {xi,x2,xs, • • •} and let W{X2) be 
the set of all binary terms, i.e. terms built up from Xi = {x,y}. Using a 
hypersubstitution a we can define a uniquely determined mapping a defined 
on terms by 

(i) a[x] := x for any x £ X, 
(ii) *[f(h,t2)] :=a( / ) (a[ i i ] ,a[ i 2 ] ) . 

By Hyp we denote the set of all these hypersubstitutions. If we define 
a multiplication o^ on the set Hyp by a\ oh <72 := a\ o a<i where 0 is the 
usual composition of functions together with an defined by o"id(/) = f{x, y) 
we obtain a monoid Hyp — (Hyp; 0^,0^). If M is a submonoid of Hyp 
then we define an equation s & t built up by terms s,t of type 2 to be 
an M-hyperidentity in the variety V of groupoids if for all a € M the 
equations CT[S] « a[t] are satisfied as identities in V. Hyperidentities are 
M-hyperidentities for M = Hyp. A variety V of groupoids is called M-solid 
if every identity satisfied in V is an M-hyperidentity in V. For M = Hyp we 
speak of solid varieties. All M-solid varieties of groupoids form a complete 
sublattice SM{2) of the lattice £(2) of all varieties of groupoids with 

M\ C M2 Smi (2) 2 SM2 (2) • 

For more background on the theory of M-hyperidentities and M-solid vari-
eties see e.g. [Den-R; 95] and [Den; 97]. 

Particular submonoids of Hyp are the monoids Left and Right of all 
leftmost and rightmost hypersubstitutions. A hypersubstitution a € Hyp is 
called leftmost if the left most variable in the term a ( f ) — t is x. 



Left-edge solid varieties 3 

The varieties corresponding to SLeft(2) and to Smghti2) are called left-
edge-solid and right-edge-solid, respectively. 

Let V be a variety of groupoids and let M be a monoid of hypersubsti-
tutions. To test whether an identity s « t of V is an M-hyperidentity of V, 
our definition requires that we check, for each hypersubstitution a in M, 
that a[s] ~ a[t\ is an identity of V. 

Indeed, we can restrict our testing to certain "special" hypersubstitu-
tions. To make this restriction precise we recall of two concepts, both intro-
duced by J. Plonka in [Plo; 94] for arbitrary types of algebras. 

DEFINITION 2.1. Let V be a variety of groupoids. A hypersubstitution a 
is called a V-proper hypersubstitution if for every identity s & t of V, the 
identity <x[s] « &[t] also holds in V. We use P(V) for the set of all V-proper 
hypersubstitutions. 

Clearly, (P(V)\°hiaid) is a submonoid of ( H y p ; oh, aid)> a variety V is 
M-solid for the monoid M = P(V) and P(V) is the largest M for which V 
is M-solid. 

DEFINITION 2.2. Let V be a variety of groupoids. Two hypersubstitutions 
ax and (72 are called V-equivalent if c r \ ( f ) « 0*2(/) is an identity in V. In 
this case we write a i a2. 

By induction on the complexity of term definition one shows 

<7! ct2 Vi € W ( X ) ((J 1 [i] « <72[t] e I d V ) 

(here IdV denotes the set of all identities satisfied in V). 
Using this proposition one proves also: If o\ O"2 then <JI[S] « <71 [I] is 

an identity in V iff o"2[s] ~ 02M is an identity in V (see e.g. [Den-W; 97]). 
It is clear from the definition that the relation is always an equiva-

lence relation on Hyp and its restriction M to M is always an equivalence 
relation on M. 

DEFINITION 2.3. Let V be a variety of groupoids and let M be a monoid of 
hypersubstitutions. Let $ be a choice function which chooses from M one 
hypersubstitution from each equivalence class of the relation ~ y | M and with 
$([ci<i]~v) = and let (V) be the set of hypersubstitutions so chosen. 
The elements of Af^(V) are called $ — V-normal form hypersubstitutions 
of M . We will say that the variety V is M^ (V)-solid if for every identity 
s « t € IdV and for every hypersubstitution a € M£(V), the equation 
<j[s] « a[t] belongs to IdV. 

Then from the remark before Definition 2.3 it follows that the variety V 
is M-solid iff it is Mg(V)-solid ([Arw-D; 97]). 
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On the set Mg (V) we can define a multiplication by 

<7i oN a2 = $[(<ti oh a2)]~v 

and obtain a groupoid (F); oN , aid) with identity. 
It is easy to see that (V); oN, aid) is a monoid if V is M-solid ([Den-

W; 97]). The converse is not true ([Wis; 97]). Note that HP(V) is the monoid 
of V-proper hypersubstitutions, then P(V)$(V) is also a monoid and V is 
P(V>solid. 

3. iLR-normal form hypersubstitutions 
Our first aim is to calculate the normal form hypersubstitutions for the 

variety RR = Mod{(xy)(uv) « (xu)(yv), i s w x, (xy)y « y}. We need 
some more identities satisfied in RR. 

In a similar way as in the introduction one can show 

PROPOSITION 3.1 ([Dud; 94],[Rom-R; 87]). A medial idempotent groupoid 
satisfies (xy)y « y i f f it satisfies (xy)z ~ yz and x{yz) « y(xz). • 

In the sequel we write xny for x(... (x(xy))...). An inductive definition 
of xny is given by xly := xy, xny = x(xn~1y). Further we set x°y := y. 

We recall of several identities satisfied in the variety RR. 

PROPOSITION 3.2 ([Rom-R; 87] for the dual identities). The variety RR 
satisfies the following identities: 

(i) xk(yx) k e N, k > 1, 
(ii) (xky)ly*y, k,l e N, k,l> 1, 

(iii) ( y k x ) y w xy, k e N, 
(iv) (xly)(xky) « xky, k,l € N, k,l > I, 
(v) ( y l x ) ( x k y ) w xk+1y, k,l E N, k,l> 1, 

(vi) xkn(yln(xkn-1(... (xkl (yh (xy))...)))) « xk+1y, 
k i , . . . , kn, l i , . . . , ln EN 
ki,k2,..., kn > 1, l\,... ln > 1 and k — ki + ... + kn. • 

THEOREM 3.3 ([Rom-R; 87], see also [Dud; 95]). The set of all binary terms 
of RR is {xky | Jfe > 0} U {ykx \ k > 0}. • 

Each of these terms is in fact an equivalence class, i.e. an element of the 
quotient set W(X2)/Id RR and there is a function $ which selects from each 
of the classes the given binary term in {xky | k > 0} U {ykx \ k > 0}. But 
this means Hyp^(RR) = {crxky | k > 0} U {aykx \ k > 0} is the groupoid of 
normal form hypersubstitutions w.r.t. the choice function <f>. The elements 
of Hyp^(RR) are pairwise different. Otherwise, if there are natural numbers 
k,l with k / I and axky ~RR crxiy then xky w xly € IdRR, but there are 
algebras in RR which doesn't satisfy this identity. If axky ~rr cryix i.e. if 
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xky « ylx e IdRR then by Proposition 3.2 xky « xk+ly £ IdRR and we 
get a contradiction as in the previous case. To describe the operation o ^ on 
Hyp$(RR) we prove the following relations 

PROPOSITION 3.4. (i) axky oh axiy ~RR axkiy , k,l> 0, 
(ii) axky °h Vy™x ~RR <V™X , k,m > 0, 

(iii) aymx oh aynx ~RR ay , m, n > 2, 
(iv) Ox Oh 0ynx ~RR Vy , n > l , 

Vyx °h <?ynx ~RR Gy i n > 2, 
&ymx °h &x ~RR &x > TTl > 0, 
&ymX °h ~RR CTxmy , m>0, 

(v) aymx oh axky ~RR ax , m,k> 2, 
(vi) ux oh axky ~RR ax , k > 0, 

ayx °h <yxky ~RR crx , k >2, 
&ymx °h &xy ~RR Vymx , m> 0, 
crymx oh ay ~rr (Jy , m > 0. 

P r o o f , (i) We prove this relation by induction on Z. Assume that I = 0. 
Then ( a x k y oh ay)(f) = âxky[y] « y and thus axky oh ay ~RR ay and (i) is 
satisfied for I = 0. Assume now that (i) is satisfied for Z — 1, i.e. axky o^ 
crxi-iy ~rr <rxk(i-i)y. Then ( a x k y oh axiy)(f) = âxky[xly] = ùxky[x{xl~ly)\ = 
xk{xk^~^y) = = xk ly. This proves (i). 

(ii) We give a proof by induction on m. For m = 0 we have ( a x k y o^ 
<Jx)(f) = âxky[x] = x and therefore axky oh ax ~rr ax. Assume that 
^xky °h <ry(m-i)x ~rr <ryk(m-i)x. Then {axky oh ay™x)(f) = àxky[y(ym~lx)\ -
yk(y(m~1)kX) = yk+(m-l)kx _ yk mx a n ( j ^jj jg satisfied. 

(iii) We prove this by induction on n. For n = 2 we obtain (aymx oh 

Vy(yX))(f) = àymx[y(yx)] = (xmy)my « y by Proposition 3.2 (ii) and thus 
Oymx °h ay2x ~ r r Assume that aymx oh ayn-ix ~RR ay. Then (a y m x o^ 
<7ynx)(f) = àymx[ynx] = ayrnx[y(yn~lx)} — ymy & y and therefore, aymx oh 

<Jynx ~ r r cry for all m, n > 2. 
(iv) The first relation is clear. We prove the second one by induction 

on n > 2. For n = 2 we get (ayx oh a y ^ ) ( f ) = âyx[y(yx)] = (xy)y « y 
and thus ayx o^ ayix ~RR cry. Assume that 

is ~RR ay Then 
(<Tyx °h 0y"x){f) = àyx[ynx) = àyx[y{yn~lx)] = <ryx(f)(y, cryx[yn'lx\) « 
<7yx(f){y, y) = yy~ V and then ayx 0h aynx ~ R R ay for all n > 2. 

The relations ay™xohcrx ~RR ax and aymxohayx ~rr axmy for all m > 0 
are obvious. 

(v) We prove this by induction on k. For k = 2 one has ( a y 

ax(xy)){f) = âymx[x(xy)] = (ymx)mx « i b y Proposition 3.2 (ii) and then 
crymx oh ax2y ~RR ax. 
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Assume now that o y » x oh oxk-iy ~RR OX. Then (oymx oh a x k y ) ( f ) = 
&ymx[xky] = aymx[x(xk~1y)] = o y m x ( f ) ( x , x ) = xmx sa x and so we obta in 

crymx oh axky ~RR ox. 

(vi ) The-first, the third, and the fourth relation need no proof. 
We show oyx o^ Axky ~RR OX for all k > 2 by induction on k. 
We begin with k — 2, then oyx[x(xy)] = (yx)x « x and so oyxohaxiy ~RR 

ox. Assume that oyx oh oxk-iy ~RR ox. Then oyx[xky] = o•ya[®(a;fc~12/)] -
<Jyx(f)(x,ayx[xk~1y]) = xx « x. This completes the proof. • 

Proposition 3.4 shows that the multiplication oN in Hyp^(RR) can be 
given by the following Cayley-table: 

° N 
O x Oy Oxy Gyx 0 X k y O x l y Oymx Oynx 

O x ox Oy O x Oy O x O x 
Oy Oy 

Oy Ox Oy Oy Ox Oy Oy ox O x 

Oxy ox Oy &xy Oyx &xky ax'y O y m x OyK-x 

O y x ox Oy &yx Oxy O x ox Oy Oy 

ox Oy Cy'x o fc2 x y Oxk ly Oymk x O y n k x 

&x l y crx Oy 
&xly 

ay'x Oxk-ly o ¡2 xl y O y m l x OYTLLX 

(7y-mx (?x Oy <Jymx <Jxm.y O x O x Oy Oy 

<Jynx ox Oy (Jynx O x n y Ox O x 
Oy Oy 

4. Hyperidentities and RR—proper hypersubstitutions 
Now we want to answer the following two questions: 

1. Which identities are preserved by all hypersubstitutions, i.e. which 
identities satisfied in RR are hyperidentities? 

2. Which hypersubstitutions satisfy all identities of RR, i.e. which hy-
persubstitutions are i?improper? 

To check the medial law we need some more identities satisfied in RR. 

PROPOSITION 4.1. The following identities are satisfied in RR: 

( x k y ) k ( u k v ) « { x k y ) k - i { { x i u ) { ( x k - l y ) i ( u k ~ l v ) ) ) , 1 < j < k - 1, k > 2. 

P r o o f . We give a proof by induction on j and begin with j = 1: 

(xky)k(ukv) = ( x f c ! / ) f c - 1 ( ( x ( x f c - 1 y ) ) ( t i (u f c - 1 i ; ) ) ) 
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Assume now that {xky)k{ukv) ss (xky)k ^ ^((x^ 1u)((xk ly)i 1(uk 1v))). 
Then 

(xky)k-^~1\(xi-1u)axk-1yy-1(uk-1v))) 

« (x f cy) f e- '((xM((x f c-

and then (x k y) k (u k v) « (xfey)fe_J((x:?'u)((xfc_1y)-7(ufe_:L'v))) . • 

Especially with j = A; — 1 we obtain: 

COROLLARY 4 .2 . The following identity holds in RR: 

(xky)k(ukv) « (xfcy)((xfc-1u)((xfc-12/)fc-1(nfc-1i;))) 

Proof . This follows from Proposition 4.1 with j = k — 1. • 

THEOREM 4.3. The idempotent and the medial law are hyperidentities in RR. 

Proof . For every term v 6 Wx (where Wx is the set of all terms built up 
only by using of x) we have v « x € Id RR (applying the idempotent law). 
If we apply an arbitrary normal form hypersubstitution a of RR to i 2 « i , 
on the left hand side we get a term v G Wx and on the right hand side we 
get x, so cr[x2] = v « x = <j[x] G IdRR and the idempotent law is satisfied 
as a hyperidentity in V. 

Now we turn our attention to the medial law. It is routine matter to check 
that for every o G {crx, <?xy, &yx} we have a[(xy)(uv)] & a[(xu)(yv)] G 
IdRR. Now we show by induction on k that axky[(xy)(uv)] « axky[(xu)(yv)] 
G IdRR for all fc G N, k > 2 and begin with k = 2. Then 

¿x2y[(xy)(uv)} = (x 2y) 2(u 2v) « (x2y){(xu)({xy)(uv))) 
« (x2y)((xu)((xu)(yv))) « (x(xy))((xu)((xu)(yv))) 
« (x(xu))((xy)((xu)(yv))) « (x(xu))((x(xu))(y(yv))) 
« (x2u)2(y2v) = aI2v[(xu)(yn)] 

by Corollary 4.2 applying the medial identity several times. Assume that 

^ - l y [ ( x y ) ( W ) ] = ( x ^ ^ - V - M « ( a * " 1 « ) * - V " 1 « ) 

Then 

alfcj,[(xy)(w)] = (x k y) k (u k v) 

« (x f ey)((x f c-1u)((x f c-1?/) f c-V f e~M)) (by Corollary 4.2) 
« (xky)((xk~1u)((xk~1u)k~1(yk~1v))) (by hypothesis) 
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« (x f c
2/)((x f c-1u) f c(/-1 ' !;)) and 

axky[(xu)(yv)] = (:xku)k{ykv) 

» (xku)((xk~ly)((xk~1u)k~1(yk~1v))) by Corollary 4.2 

«(x(x f c-1w)((x f c-1
2 /)((x f c-1u) f c-1(y f c _ 1 t ' ))) 

« (x (x f e - 1 y) ) ( (x f c - 1 u) ( (x f c - 1 n) f c - 1 ( / - 1
i ; ) ) ) 

« (xky)((xk-1u)k(yk~1v)) . 
This shows that dXky[(xy){uv)) « <jIfcy[(xu)(j/u)] € IdRR for all k > 2. 
To show that aykx also preserves the medial identity we apply the equation 
aykx — axky ON ayx, i.e. aykx ~rr crxky oh ayx and therefore we have 

V i N l H = ¿xKyivyxiixy^uv)}} = axky[(vu)(yx)] = (vku)k{ykx) 
» (vky)k(ukx) - axky[(vy)(ux)} = axky[ayx[(xu){yv)]] 

~ { < r x
k y ° h ° y x ) * [(xy)(uu)] = crykx[(xy)(uv)} . 

This finishes the proof. • 

Note that the medial law is a hyperidentity in the variety of all medial 
and idempotent groupoids. So Theorem 4.3 follows from this more general 
fact. But we wanted to give an independent proof. 

The variety RR is not solid since the identity (xy)y ~ y fails to be a 
hyperidentity as we can see by <Jx[{xy)y\ — x ^ y = ax[y\. 

If we want to check which hypersubstitutions preserve all identities of 
RR we have only to consider the identity (xy)y « y. 

By RZ we denote the variety of right-zero semigroups, i.e. RZ = 
Mod{xy « y}. Clearly RZ is a subvariety of RR. 

PROPOSITION 4 . 4 . {o-xiy I I > 0 } is the monoid of all RR—proper normal 
form hypersubstitutions. 

P r o o f . We have only to check the equation ( x y ) y & y. Applying axiy for 
arbitrary I > 0 we get axiy\{xy)y] — {xly)ly « y = 0xiy[y] by Proposition 
3.2(ii). For 1 = 0 we have ay[(xy)y] — y — cry[y\• Now we have to prove that 
no normal form hypersubstitution different from ax iy preserves the equation 
(.xy)y & y. Clearly, ax is not proper since crx[{xy)y\ — x and crx[y\ — y. 
For aymx , m > 1 we have aymx[(xy)y] - ym(ymx) and oy™x{y] -- y. 
Assume that ym(ymx) « y e IdRR. Then ( y m ( y m x ) ) ( ( x y ) y ) w yy w y € 
IdRR and by the medial identity also (y(xy)){{y2m~1x)y) & (y(xy))(xy) « 
(x(xy))(xy) « xy. 

But this means xy & y 6 IdRR and RR is the variety of right-zero-
semigroups. Since RR is different from RZ we have a contradiction. • 

Further we have 
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COROLLARY 4.5. The monoid of all RR-proper normal form hypersubsti-
tutions is isomorphic to the monoid (N; 1,0) of all natural numbers with 
zero. 

P r o o f . We consider the map (p : {crxiy \ I > 0, I G N} —> N defined 
by <p(crxiy) = I• This map is one-to-one and onto since hypersubstitutions 
for different I are different. Further ip(axiy

 axky) = (P{(Jxl ky) = I • k = 
• v i ^ y ) by Proposition 3.4(i). • 

5. Right-edge solid varieties of entropic groupoids 
In section 2 we introduced the concept of left- and rightmost hypersub-

stitutions. Let Right^(RR) be a set of all rightmost normal form hypersub-
stitutions of RR. 

A variety V is right-edge-solid iff the set of all V—proper normal form 
hypersubstitutions agrees with the set of all rightmost normal form hyper-
substitutions. 

Checking Hyp%(RR) and Right$(RR) we notice that P(RR)% = 
Right$(RR). So we have 

PROPOSITION 5.1. The variety RR is right-edge-solid. • 

In [Rom-R; 87] also subvarieties of DG were considered. In the same 
way we obtain the subvarieties of RR. If in a subvariety of RR not all terms 
of the form xky are pairwise different, i.e. if there are repetitions among 
these terms, then we consider the least m G N such that there exists an 
I G N with xmy ~ xly G IdRR. Let r be the least natural number such 
that xmy « xm+ry G IdRR. (m is called index and r is called period.) 
Then the IdRR—classes of x, xy, x2y,..., xmy, xm+1y,..., x m + ( r _ 1 )y are all 
distinct and xm+uy & xm+vy G IdRR if and only if u = v mod r. Clearly, 
xpy « xqy G IdRR iff ypx « yqx G IdRR. Let RRm<r = Mod{(xy)(uv) « 
xu)(yv), x2 x, (xy)y w y, xmy « xm+Ty, m > 0, r > 1, m, r minimal}. 

Then we have 

THEOREM 5.2. Every variety RRmtr is right-edge-solid. 

P r o o f . From xmy m xm+ry G IdRRm,r it follows that ymx « ym+rx G 
IdRRmf. Therefore all binary terms over RRm,r are {xly \ 0 < I < k + r — 
1}U {ylx | 0 < I < fc+r-1}. The hypersubstitutions {axiy | 0 <l< k+r-1} 
preserve (xy ) (uv ) « (xu)(yv),x2 « x,(xy)y w y. We check the identities 
xmy w xm+ry, m > 0, r > 1 , m , r minimal and obtain axiy[xmy\ — xsy 
with s = m • I mod r and axiy[xm+ry] — xs'y with s' = (m + r)l mod r. 
Because of (m + r)l = m • I mod r we have xsy & x3'y G IdRRm,r and 
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thus the equations xmy w xm+ry are right hyperidentities and therefore the 
varieties RRmtT are right-edge-solid. • 

The variety RRo,i agrees with the variety RZ of right-zero-semigroups. 
We have infinitely many different varieties between RRo,i and RR. Each 
variety RRmtr contains the variety of right-zero-semigroups and each variety 
RRm,r is contained in the variety RR. 

For the join and the meet of two varieties RRmtr, RRmi>T' we have 
RRm,r V RRm'y = -R-Rmax(m,m'),i c.m,(r,r') a n d RRm,r A RRm'y = RRmtr H 
RRm'y = RRmm(m,m'),g.c.d.(r,r') • The meet of all these varieties is clearly 
the variety i?i?o,i of right-zero-semigroups and the join is the variety RR. 

If V is a variety of groupoids and if £ is an equational basis for the 
equational theory of V, i.e. a system of axioms for V, then by Vd we denote 
the dual variety Vd = Mod cryx[T,] = {<7vx[s] ~ &yx[¿] | s ~ i G S}. Clearly, 
the variety RRd is the variety DG of differential groupoids. 

Then dually we obtain 

THEOREM 5.3. The variety DG = Mod{(xy)(uv) « (xu){yv), x2 » x, 
x(xy) « x} is left-edge-solid. The varieties DGmiT = Mod{(xy)(uv) ~ 
(,xu)(yv), x2 RS x, x{xy) & x, xyk ~ xyk+r, k > 0, r >l,k,r minimal} 
are also left-edge-solid. • 

In [Rom-R ;87] Romanowska and Roszkowska proved that the subvariety 
lattice C(DG) of DG consists of exactly the varieties DGm,r, of DG, and of 
the trivial variety and that C(DG) is isomorphic to a lattice £o,l which is 
defined in the following way: 
Let Md be the lattice of all natural numbers with l.c.m. and g.c.d. as lattice 
operations, let A/o be the lattice of all natural numbers with min and max 
as lattice operations, let £ be the direct product of N& and No and let £o,l 
be the lattice arising from C by adding a new greatest element 1 and a new 
least element 0. 

A similar proposition holds for the dual variety RR. If we define 
SLeft(DG) := SLeft(2)nC(DG) and SRight(RR) := SRight{2) Ci£(RR) then 
we obtain: 

COROLLARY 5.4. SLeft(DG) = £(DG), SRight(RR) = C(RR) m 
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