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APPLICATIONS OF C -GROUPS TO EXISTENCE 
OF SOLUTIONS OF SOME MIXED PROBLEMS 

Introduction 
This paper consists of two parts. In the first, the existence of solutions 

of inhomogeneous and the semilinear abstract Cauchy problem have been 
proved. It has been done by C-semigroups which are generalisation of Co-
semigroups. The C-semigroups can be applied to the many differential and 
integral equations that may be modelled as an abstract Cauchy problem on 
a Banach space, where strongly continuous Co-semigroups cannot be applied 
directly, for example to ill-posed problems. In the second part, the existence 
of the entire C-group for the hyperbolic type abstract problem has been 
proved. Finally, the theory of C-groups have been applied to generalised 
backward parabolic equation (ill-posed problem) and hyperbolic one in the 
space Lp(tt), p> 1. 

2. The abstract Cauchy problem 
Let X be a Banach space with the norm || ||, B{X) the space of bounded 

linear operators from X to itself and C € B{X); A is an unbounded linear 
operator with the domain D(A) and the image Im(A) C X. In the book [4], 
the fundamental theories of the C-semigroups have been presented. 

D E F I N I T I O N 1 . Suppose that C is an injective linear, bounded operator 
on X. A strongly continuous family of bounded operators {VF(Z)} : X —> 
X, t > 0, is a C-regularised semigroup, if W(0) = C, and W(i)W(s) = 
CW(t + s), for all t,s > 0. 

D E F I N I T I O N 2 . The operator A generates t > 0 , if 

A. = C " lim M D ' - C s ) 
t - o + t 

and has the domain D(A) = {x| limit exists and it is Im(C)}. 
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At first we will consider the following linear abstract Cauchy problem 

(1) u'(t) = Au(t) + /(/), t G (0, T), «(0) = x. 

D E F I N I T I O N 3. If A generates a C-regularised semigroup {W(i)}, t > 0, 
x G Im(C) and / G C((0,T),Im(C)), then we may define a mild solution of 
(1) by 

t 
(1') u{t) = W{t)C~xx + \W(t- a)C_1/(«)<&-

o 
Next we will be considered the semilinear initial value problem 

(2) tt'(f) = Au(t) + f(t,u(t)),t G (0,T),u(0) = x. 

D E F I N I T I O N 4 . A function u : ( O , ? 1 ) ) X is said to be a mild solution 
of the problem (2), if u G C((0,T),X) for any x G Im(C) and u satisfies the 
following integral equation 

t 
(3) u(t) = W{t)C~xx + \ W(t - 8)C-Xf{a, u(s))ds, 0 <t<T. 

o 
D E F I N I T I O N 5. A function / : ( 0 , T ) x X -»• IM(C) is said to satisfy 

Lipschitz condition with respect to w, uniformly in t G (0 ,T), with constant 
L > 0 if | | C - \ f ( t , w 2 ) - /(i,ti;i))| | < L\\W2 - wi|| for every t G (0 ,T ) , 
w1,w2 G X. 

T H E O R E M 1 . Suppose that: 
i) A generates a C-regularised semigroup / > 0 generated by A, 
ii) / : ( 0 , T ) x I ^ Im(C) is continuous with respect to t, 
iii) / satisfies Lipschitz condition, 
iv) « ( 0 ) = x G I m ( C ) . 

Then there exists a unique mild solution of the problem (2). 

P r o o f . Define the operator P, from C((0,T),X) into itself, by 
t 

(.Pu)(t) = W^C^x + \W(t- s)C_1/(5,u(s))ds. 
o 

Let K = sup 0 < i < T ||W(i)||. It follows from the definition of P that 
t 

| |(p«)(i) - (P»)(t)|| = II5 W(t - ^ c - V C - , « ^ ) ) - fM*))]d*\\ 
o 

t 
< j KL\\u - v\\C((o,T),x)ds = tKL\\u - V||C({O,T>,X)-

0 
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We prove by induction on n that 

| | (P" U ) ( i ) - (P"®)(t)| | < " *llc«o,D,jr). 

Suppose that this inequality holds with n — 1, i.e., 

I K P - M W - ( P - ^ K O I I < ^ r ^ r l l " " vlh«>,T>,x). 

Then 

||(P"ti)(i) - (P"«)(i)ll < j - v \ \ c w w U 

(KLtT n 
= B , lh-^llc«0,T>,X)-

For n large enough < 1 and by an extension of the contraction prin-
ciple (see [3], Theorem 2.2, p.88) P has a unique fixed point in C((0, T),X), 
being desired solution of the integral equation (3). 

D E F I N I T I O N 6. By a classical solution of the abstract problem ( 1 ) we 
mean a function v e C((0,T), D(A))n C\(0,T),X) satisfying (1). 

T H E O R E M 2 . Let A be a generator of the C-regularised semigroup 
{W(i)} , t > 0, / G C((0,T),Im(C)) and 

t 
v(t) = \W(t- a)C_1/(«)<i«,0 < t < T. 

o 
The initial value problem (1) has a classical solution u on (0,T) for every 
x £ C(D(A)), if one of the following conditions is satisfied: 

(i) vec\(o,T),x). 

(ii) veC({0,T),D(A)). 

P r o o f . For h > 0 the following identity holds 
( 4 ) c«t + k ) - c « t ) = ( w m - c M t ) + c y w ( i + h _ s ) c _ l f ( s ) d s 

t 

The continuity of / and closedness of C, C - 1 imply that 
t+h 

ton \ W(t + h-s)C~1f(s)ds = Cf(t). 
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The assumption (i) and the indentity (4) guarantee that there exists 
l i m / i ^ 0 WW-CM*) f i.e., v(t) G D(A) for t G <0 ,T) and that 

= CAv(t) + Cf(t) for i € (0,T). at 
C is closed and injective operator, so 

& t ) } = Av(t) + f(t)ioTte(0,T). 

Since u(0) = 0, it follows that u(t) = W ( i ) C - 1 x + v(t) is the solution of the 
problem (1). Similarly the assumption (ii), the continuity of / , closedness of 
C, C - 1 and existence of limit of the right-hand side of the identity (4) when 
h tends to zero, imply that there exists and v satisfies the equation 

= Av(t) + f ( t ) for t G (0,T). It is clear that u(t) = W(t)C~lx + v(t) 
is the solution of the problem (1). 

An idea of this proof is based on the proof of Theorem 2.4 from [6], 
(p. 107). 

R e m a r k 1. If there exists a classical solution of the problem (1) for 
some x G C(D(A)) and some / G C((0,T),Im(C)), then v satisfies both (i) 
and (ii). 

T H E O R E M 3 . Suppose that A generates a C-regularised semigroup 
{W(t)}, t>0,andx£ C(D(A)), f G C((0,T),C(D{A))). Then (1) has a 
unique classical solution (1'). 

The proof follows from Theorem 2. 

R e m a r k 2. If {W(i)}, t > 0, is a C-regularised semigroup generated 
by A, then A is closed (cf. [5], Theorem 3.4, p.14) and Y = [D(A)] with the 
graph norm ||a;||[D(A)] = IMI + ll-^ll» x £ ^(A), is a Banach space and W\y 
is a C-regularised semigroup (cf. [5], Theorem 3.5 and Definitions 2.4, 2.5, 
p. 4). 

D E F I N I T I O N 7. A function u : ( 0 , T ) —• X is said to be a classical solution 
of the problem (2) , i fu G C( (0 ,T) ,y )nC 1 ( (0 ,T) ,X) and u satisfies (2) in X. 

T H E O R E M 4 . Let the function f : (0,T) x Y C(Y) be a Lipschitz 
continuous in Y, uniformly in t G (0, T) and let f(t, y) be a continuous from 
(0, T) into C(Y) for each y £Y, then for any x G C(Y) the problem (2) has 
a unique classical solution on {0,T). 

P r o o f . First we apply Theorem 1 in Y and obtain a mild solution u G 
C({0,T),Y) satisfying in Y (a fortiori in X ) the integral equation 
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t 

u(t) = W(t)C-xx + S W{t - u(s))ds, 0 < t < T . 
o 

Next, let g(t) = f ( t , u ( t ) ) , t G (0,T). Then, by the assumption of our the-
orem, it follows that g(t) e C(Y) for t e (0,T) and g e C((0,T),C(Y)). 
Theorem 2 guarantees existence of a unique classical solution v on (0 ,T) for 
the linear problem 
( 5 ) v'(t) + Av = g(t),v( 0 ) = x , 

if g e C((0,T),C(Y)) and x e C(Y). This solution is then clearly also a 
mild solution of (5) and therefore 

t 

v(t) = W(t)C~lx + \ W ( t - s)C~1g(s)ds 
o 
t 

= W^C^x + \ W ( t - u{s))ds = u(t), 0 < t < T . 
o 

So u = v and u is a classical solution of the problem (2) an (0 ,T). 

2. The entire C-group for abstract hyperbolic type equation 

DEFINITION 8. The family of bounded operators {W(z)}, z € C, is an 
entire C-group, if 

1) W(z) is an entire £?(X)-valued function of z, 
2) W(z)W{w) - CW(z + w) for all complex z,w e C, 
3 ) W ( 0 ) = C. 
D E F I N I T I O N 9. Suppose that B is closed densely defined operator such 

that (—oo, 0) is contained in the resolvent set q(B), with {r||(r + B)-1}, r > 
0} bounded. The spectrum of B is contained in 5© = { r e ' ^ r > 0, \<f>\ < 0 } 
for some 0 < n. For the operator B it can be defined the fractional power 
{-Ba}. If zero is in q{B) and 0 < Q0 < f , then {-Ba} can be defined as 
the generator of exponentially decaying strongly continuous analytic semi-
group {Ta(t)}, t > 0, given by 

r , 
where 0 < (¡> < tt, a<f> < y, t > 0, and is the boundary of S^ [1]. When 
zero is not in q(B), another formula [2] defines the fractional powers, with 
the same properties. 

T H E O R E M 5 . [4] Suppose that (—B) generates a strongly continuous an-
alytic semigroup on a Banach space X and A is complex. Then there exist 
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real k, a > 1 such that A = (AB) generates an entire Ce-group Te(z), z G C 
for all e > 0 where C£ = . 

R e m a r k 3. Definition 9 and Theorem 5 guarantee that, if -B generates 
an analytic semigroup in a Banach space X and 0 G q(B), then exists 
B i , and —B? generates a strongly continuous analytic semigroup; both 

operators B 2, —B 2 will generate entire C-groups with the same C = e~eB 

(see [4]). 

T H E O R E M 6. Suppose that —B generates strongly continuous analytic 
semigroup and 0 € q(B), then there exists a > 1 such that for all £ > 0 
the operator A = 

Ce = iBle-°B* ' 

0 / 
—B 0 generates an entire W£{z), z G C, group with 

I 0 
0 I 

P r o o f . The proof is similar to that of Theorem 4.1 in [4]. Since {e }, 
» 

£ > 0, is a bounded strongly continuous analytic semigroup, iB?e 
a bounded operator for all £ > 0. Since B, and therefore B2, is injective, 

1 t 
Lemma 3.1 in [4] guarantees that iB?e~eB is injective for all £ > 0. By 
the Theorem 5 with the operator B 2 and A = i, there exists a > 1 such 

j $ 

that iB2 generates an entire group {,?e(z)}, z G C, with C equal to e~eB . 
Now the family of bounded operators {We(z)}, z G C, on X x X will be 
defined as follows 

is 

We(z) = 2 
iB$(Se(z) + Se(-z)) S£(z)-S£{-z) 
-B{Se{z) - S£(-z)) iB*(Se(z) + S£(-z)) 

Making some routine calculations, we obtain 

d 
dz 

W£(z) = -B(Se(z) - S£(-z)) iB*(Se(z) + S£(-z)) 
-iBl(S£(z) + S£(-z)) -B(Se(z) - Se(-z)) 

A W£(z)x 

• ® r 

for x = (£1,2:2) € -D(A), z £ C. Theorem 2.8 from [4] implies that an 
extension of A generates an entire semigroup {W£(z)}, z G C, with VFe(0) = 

i 0 
0 i iB$Se(0) I °f = iBÌe~eB 

from [4] and Theorem 2.3 from [4 
{w£(z)}, z e e . 

.Le t G = 0 (-B)"1 

1 0 Proposition 2.9 
guarantee that A generates Ce-group 
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3. Applications to generalised backward parabolic and hyper-
bolic equation Im Lp, p > 1 

Let ft be a bounded domain in Rn with smootlj boundary I \ Con-
sider the differential operator A(x,D) = E|0|<2m aa(x)Da, m G N, where 
the coefficients aa(x) are sufficiently smooth complex-valued functions of 
x G ft. The principal part A'(x,D) of A(x,D) is the operator A'(x,D) = 

E m = 2 m a ^ ) D a . 

D E F I N I T I O N 1 0 . The operator A(x,D) is strongly elliptic, if there exists 
a constant c > 0 such that 

3t(-l)mA'(x,D) > c\C\2m f o r x G ft a n d C € Rn. 

For 1 < p < oo we associate with A(x,D) an operator Ap in Xp(ft) by 

D(AP) = W2m'p(Cl) n W0
m,p(ft) and Apu = A(x,D)u for u e D(AP). 

It has been proved in [6], (Theorem 7.35) that — Ap is the infinitesimal 
generator of analytic semigroup on £ p ( f t ) , p > 1. By adding to A(x, D), and 
hence to Ap, multiplied by enough large positive k, the identity operator, we 
obtain an infinitesimal generator — (Ap + kl) of analytic semigroup, which 
is invertible. In the sequel we will tacity assume that this has been done and 
thus assume directly that Ap itself is invertible. 

E X A M P L E 1. Let X = ¿ p ( f t ) , p > 1. Consider generalised backward 
parabolic problem 

(6) u'(t) = Apu(t) + /(*), t e (0,T),u(0) = x. 

It is clear that all assumptions of Theorem 5 are satisfied. Thus, operator Ap 
generates C-entire group on the space ¿ p ( f t ) , p > 1. So, if C~lx € Zp(f t) 
and C - 1 / ( i , x) € £ p ( f t ) for t € (0,T), then there exists a unique mild 
solution of the problem (6) and u e C((0,T) ,£ p ( f t ) ) . 

Let C~lx e W2m-P(ft)nWom 'p(ft) and C~l f ( t , . ) G VF2m-p(ft)nW0
m,p(ft) 

for t G ( 0 , T ) . In this case, Theorem 3 guarantees the existence of a unique 
classical solution of the problem (6) and u G C((0,T), W2m 'p(ft)nVF0" l ,p(ft)) 
n C x ( iP( f t ) ) . 

E X A M P L E 2. Let as above X = £ p ( f t ) , p > 1. Consider generalised 
hyperbolic problem 

( 7 ) u"(t) + Apu(t) = f ( t ) , t <= (0,T),u(0) = x,u'(0) = y 

which can be written as the following Cauchy problem in the space X x X 

w'(t) = F(t),t G (0,T), w(0) = w0, 
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By Theorem 6, the operator A generates on the space X xX C-entire group. 
If C^x, C _ 1 y , C~lf(t,.) e for t e ( 0 , T ) , then there exists a mild 
solution of the problem (7), i.e., u e C1(<0,T), jDp(ii)). 

if C~xx e w2m*(£i) n w™'p(ii), c-1y, c~lf(t,.) e ¿ p ( i i ) for t e 
( 0 , T ) , then there exists classical solution of the problem (7), i.e., u £ 
c ( ( o , t ) , w2m^(si) n w 0

m , p ( i i ) ) , U e c 2 « o , T ) , X P ( f t ) ) . 

Re m ar k 4. In the homogeneous case ( / = 0) there exist global solutions 
for t G (0, oo). 

R e m a r k 5. Theorems 3.7 and 3.10 from [6], (pp.217, 218) guarantee 
that the restrictions of (—A) generate analytic semigroups in the space of 
continuous functions (p = oo) and in L1 (the operator A are defined in these 
spaces by strongly elliptic operator A(x,D) of order 2TO). SO we can also 
obtain by theory of C-groups solutions of backward parabolic and hyperbolic 
equations in these spaces. 
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